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Abstract: Conjugated linoleic acids (CLA) are of important nutritional and health benefit to human. Food products of animal origin are 
their major dietary source and their concentration increases with high concentrate diets fed to animals. To examine the effects of diet 
supplementation on the expression of genes related to lipid metabolism, 28 Angus steers were fed either pasture only, pasture with soybean 
hulls and corn oil, pasture with corn grain, or high concentrate diet. At slaughter, samples of subcutaneous adipose tissue were collected, 
from which RNA was extracted. Relative abundance of gene expression was measured using Affymetrix GeneChip Bovine Genome 
array. An ANOVA model nested within gene was used to analyze the background adjusted, normalized average difference of probe-level 
intensities. To control experiment wise error, a false discovery rate of 0.01 was imposed on all contrasts. Expression of several genes 
involved in the synthesis of enzymes related to fatty acid metabolism and lipogenesis such as stearoyl‑CoA desaturase (SCD), fatty 
acid synthetase (FASN), lipoprotein lipase (LPL), fatty-acyl elongase (LCE) along with several trancription factors and co-activators 
involved in lipogenesis were found to be differentially expressed. Confirmatory RT-qPCR was done to validate the microarray results, 
which showed satisfactory correspondence between the two platforms. Results show that changes in diet by increasing dietary energy 
intake by supplementing high concentrate diet have effects on the transcription of genes encoding enzymes involved in fat metabolism 
which in turn has effects on fatty acid content in the carcass tissue as well as carcass quality. Corn supplementation either as oil or grain 
appeared to significantly alter the expression of genes directly associated with fatty acid synthesis.
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Introduction
Food products of animal origin contribute signifi-
cantly to the total nutrients in the human diet. Food 
products from ruminants are the major dietary source 
of conjugated linoleic acids (CLA) that are impor-
tant for human health. The cis-9, trans-11 CLA iso-
mer has been suggested to be an anticarcinogen, 
which reduced tumor proliferation in mice with 
experimentally induced epidermal carcinogenesis.1 
Cis-9, trans-11 CLA isomer and trans-11 vaccenic acid 
(TVA) are produced in the rumen as intermediates in 
the biohydrogenation of dietary linoleic acid to stearic 
acid.2 Since only a small amount of the cis-9, trans-11 
CLA is available for absorption in the small intestine, 
the major source of this CLA isomer in the adipose 
tissue of ruminants is from the conversion of trans-11 
vaccenic acid to cis-9, trans-11 CLA in the adipose 
tissue by stearoyl‑CoA desaturase (SCD).3 Noci et al4 
observed a linear relationship between trans-vaccenic 
acid and cis-9, trans‑11 CLA in the fat of beef cattle. 
Daniel et al5 concluded that high concentrate diets 
increase SCD gene expression in comparison to forage 
diets and suggested that the increase in cis‑9, trans-11 
CLA with forage diets would be due to an increase in 
the amount of TVA coming from the rumen. Thus, one 
way to increase cis-9, trans-11 CLA in beef products 
would be to increase production of TVA in the rumen 
by supplementing cattle with high levels of lipids rich 
in linoleic acids. However this type of supplementation 
would also increase the proportion of polyunsaturated 
fatty acids (PUFA) in beef fat6 and PUFA have been 
described to depress SCD gene expression. In addition, 
lipid supplementation could reduce lipogenesis by 
reducing enzyme activity, enzyme gene expression, 
or both, where as supplementation with glucogenic 
precursors (grains) would have the opposite effect.7 
Recently, Pavan et al8 and Pavan and Duckett9 found 
that supplementation of corn oil to high concentrate 
diets or grazing cattle increases carcass fatness 
and alters fatty acid composition of adipose tissues 
including cis-9 trans-11 CLA.

According to Pegorier et al10 there is evidence 
suggesting that dietary constituents such as fatty acids 
and glucose regulate gene expression in humans. 
Such studies have also been done in ruminants, where 
Bonnet et al11 found that lipoprotein lipase activity 
and mRNA are up regulated in adipose tissues and 

cardiac muscle of sheep that were re-fed (190% of 
metabolizable energy requirement) after a period of 
under-feeding (7 d at 22% of metabolizable energy 
requirement). Loor et al12 studied the changes 
in hepatic gene expression using longitudinal 
transcript and metabolic profiling. Lehnert et al13 
used cDNA microarrays for studying the effects 
of chronic and severe under-nutrition on the gene 
expression of bovine skeletal muscles. Microarray 
technology has been widely used for genome-wide 
expression profiling of thousands of genes that help 
bovine researchers to monitor genetic mechanisms 
regulating a variety of preferred traits involving 
disease resistance, nutrient partitioning, mammary 
development, muscle growth and stress tolerance.14 
Knowledge of the genes involved in digestion, 
absorption, and nutrient metabolism would allow 
researchers to develop optimal nutritional regimes 
for cattle of particular genetic backgrounds reared 
in a variety of environments. Such genomic 
information could be used to develop breeding 
strategies that promote animal health, well-being 
and food safety. The objective of this trial was to 
determine the effect of isoenergetic supplementation 
with different energy sources on the transcription of 
genes involved in fat metabolism at subcutaneous 
adipose tissue of grazing beef steers.

Materials and Methods
Feeding trials
Twenty-eight Angus steers (289 ± 3.8 kg) were ran-
domly assigned to four dietary treatments. Dietary 
treatments included 2 isocaloric supplementation 
treatments to steers grazing endophyte-free tall fescue, 
corn grain (PC; 0.52% of body weight [BW]) or corn 
oil (PO; 0.10% of BW) plus soybean hulls (0.45% of 
BW soybean hulls) as a carrier, no supplementation to 
steers grazing endophyte-free tall fescue (P), or a high 
concentrate diet (C; 80% corn grain, 2.6% soybean 
meal, 2.4% minerals, and 15% Bermuda grass hay). 
Steers on PC, PO and P were managed together under a 
rotational grazing system for 197 d; where as, C steers 
were maintained on an adjacent tall fescue pasture 
for the initial 105 d and then fed a high concentrate 
diet for 92 d. Additional information on experimen-
tal design, diet composition, animal performance and 
carcass quality is provided in Pavan and Duckett.9
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RNA isolation
At slaughter, samples of s.c. adipose tissue (head 
tail) were obtained immediately after exsanguination, 
frozen in liquid nitrogen and then stored at -60 ºC. 
Several research studies have shown that nutritional 
effects on fatty acid composition are similar among 
intramuscular and subcutaneous adipose tissue.9,15,16 
Both depots are actively being deposited during the 
finishing phase as evidenced by increases in external 
and marbling fat and the enzyme levels are similar 
between the two depots as well.17 Moreover RNA 
must be extracted from the tissue as soon as possible 
in order to have high quality RNA and s.c adipose 
tissue makes this task easier.

Total cellular RNA (tcRNA) was extracted from the 
s.c. adipose tissue (2 g) using TRIzol reagent (Gibco 
Invitrogen, Carlsbad, CA) according to manufacturer’s 
protocol. Following tcRNA extraction, Qiagen RNEasy 
MinElute Cleanup Kits were used for RNA cleanup, 
and a Quant-IT kit (Invitrogen, Carlsbad, CA) was 
used for RNA quantification. Purity and integrity of 
isolated RNA was confirmed by visualization of 18 S 
and 28 S ribosomal bands of individual samples sub-
jected to denaturing slab gel electrophoresis in 1.2% 
ethidium bromide-stained agarose gel and 260/280 
absorbance ratios. All tcRNA samples used in this 
experiment exhibited 260:280 ratios . 1.8.

Microarray
For microarray analysis, tcRNA was pooled by 
treatment on an equal weight basis for all individual 
samples in a treatment group. The Affymetrix 
GeneChip Bovine Genome array was used for 
hybridization of the extracted mRNA’s according to 
the Affymetrix protocol at Medical College of Georgia, 
Genomics facility. The GeneChip Bovine Genome 
Array contained 24,027 probe sets, representing 
over 23,000 transcripts. The array was scanned and 
the gene expression data was generated using the 
Affymetrix software.

Statistical analysis of microarray data
Statistical analysis was performed for each gene 
separately using the following simple linear model:

	 y T eijk i ij ijk= + +µ

where yijk is the base-2 logarithm of background 
adjusted and normalized average difference of 
signal intensity for gene i in array k; µi is the overall 
mean expression of gene i, Tij is dietary supplement 
j ( j = 1,2,3,4) on gene i, and eijk is the residual term.

F-ratios were computed for all possible contrasts 
between the treatment levels using the contrast 
statement in SAS. In order to control experiment wise 
error rates, a false discovery rate (FDR) criteria was 
employed. The Benjamini Hochberg method18 was 
used to identify genes differentially expressed at a 
given FDR level. The process is summarized in the 
following steps:

1.	 After selecting a significance level, αe, genes 
were sorted by P-values from the most to the least 
significant.

2.	 Threshold values were calculated for each test as:

	 threshold i e
i R

=
*α  for i = 1 to R

where R is the total number of tests (also the total 
number of genes) and i is the sorted position of the 
test.

3.	 Each P-value was then compared to its respective 
threshold, starting with the most significant 
P-value, until a P-value greater than the threshold 
value was encountered. All following contrast was 
then considered to be insignificant. For this study 
an FDR of 0.01 was used to identify potentially 
differentially expressed genes.

Least square estimates of both treatments for each 
single gene was calculated using the LSMEANS 
statement of SAS. The fold-change for each gene 
was calculated by taking the ratio of the least square 
estimates for all the four treatment comparisons to 
determine the magnitude of change in gene activity 
corresponding to each diet supplement.

Relative quantification of lipogenic gene 
expression by Real-time PCR
PCR primers that span intron/exon junctions were 
designed using Primer3 software.19 Primer sequences 
for both end-point and real time quantitative PCR effi-
ciencies are presented in Table 1. Primer sets were 
evaluated first by using end-point PCR. Pooled tcRNA 
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(1 Âµg) was reverse-transcribed in a 20 Âµl reaction 
volume using oligo dT and SuperScript™ III reverse 
transcriptase (Invitrogen) in a 2-step RT-qPCR reaction. 
PCR was conducted using GoTaq (Promega, Madi-
son, WI) and 100 nM of each respective primer. Prod-
ucts were subjected to slab gel electrophoresis and 
visualized by EtBr staining and fluorescence. Further 
all products were purified and subjected to di-deoxy 
sequencing at the Clemson University Genomics 
Institute and database comparisons made to verify 
identity of PCR products. For real time quantitative 
PCR (qPCR), pooled tcRNA (1 Âµg) was reverse 
transcribed as stated above. A standard curve based 
on the original mass of tcRNA in the RT reaction 
was generated (50, 10, 2, 0.4, 0.08, and 0.016 ng per 
reaction) ran in triplicate, and subjected to qPCR 
by using the QuantiTect® SYBR® Green PCR kit 
(Qiagen) on an Eppendorf® Mastercycler® ep realplex 
(Eppendorf). Primer efficiency was calculated by 
regression analyses using the Eppendorf Mastercycler 
Software and all efficiencies were between 0.85–1.07. 
For all qPCR conducted the thermal cycling conditions 
included; DNA polymerase activation at 95 °C for 15 
min., 40 PCR cycles for 15 s at 94 °C, 30 s at 60 °C, 
and 30 s at 72 °C in the presence of 100 nM of each 
primer combination.

Procedure and statistical analysis  
of qRT-PCR
One Âµg of tcRNA for each individual animal was 
reverse transcribed and the quality of the RT reaction 
was evaluated by end-point PCR using the GAPDH 
primer set. Quantitative PCR was then conducted 
on 2 ng of the RT reaction with each primer set 

combination for all samples. The transcript levels 
for each gene were calculated at cycle threshold 
values (Cq) at which each fluorescent signal was first 
detected above background. Two genes, GAPDH 
and β-actin, were evaluated as housekeeping genes 
for data normalization. To determine the appropriate 
housekeeping gene to be used to normalize the data, 
the Cq for GAPDH and β-actin, and all target genes 
per sample were entered into the BESTKEEPER 
program.20 This program determines the most stable 
housekeeping gene to be used for normalization by 
repeated pair-wise correlation analysis. Both GAPDH 
and β-actin exhibited a coefficient of correlation of 
0.99 (P , 0.001) and were considered suitable for 
data normalization. For the analysis of relative gene 
expression, all Cq values for each sample/primer pair 
combination and the respective primer efficiency 
were analyzed using the REST-2008 V2.0.7 program 
(http://www.gene-quantification.de/rest-2008.html)21 
and the data was normalized using GAPDH. This 
software calculates relative gene expression using 
Pair-wise Fixed Reallocation Randomization Test and 
relative expression determined at the 95% confidence 
interval.

Results and Discussion
Several genes relevant to lipid metabolism were found 
to be differently expressed in all four-treatment com-
parisons. The number of genes found to be differentially 
expressed when using an FDR of 0.01 can be found in 
Table 2. In this study, the largest number of differen-
tially expressed genes was observed for the contrast 
between P and C (1113 genes), which shows potential 
evidence of altered gene expression on animal with 

Table 1. Primer sequences (5’ to 3’) for quantitative real-time PCR.

Gene Forward Reverse Efficiency

β-Actin CTCTTCCAGCCTTCCTTCCT GGGCAGTGATCTCTTTCTGC 0.85
ACC AGCTGAATTTTCGCAGCAAT GGTTTTCTCCCCAGGAAAAG 1.07
C/EBPα TGGACAAGAACAGCAACGAG GGTCATTGTCACTGGTCAGC 0.95
FASN GCATCGCTGGCTACTCCTAC GTGTAGGCCATCACGAAGGT 0.93
GAPDH GGGTCATCATCTCTGCACCT GGTCATAAGTCCCTCCACGA 0.93
LPL GGGTTTTGAGCAAGGGTACA GCCACAATGACCTTTCCAGT 0.97
PPARγ AGGATGGGGTCCTCATATCC GCGTTGAACTTCACAGCAAA 0.86
SCD TTATTCCGTTATGCCCTTGG GGTAGTTGTGGAAGCCCTCA 0.95
Spot14 CCTCACCCATCTTACCCTGA CAAGCTAGCAAACTGCACCA 1.05
SREBP1 CTGGAGAAGCTGGACTGAGG GCTTTCCCAAGACTCAGCAC 0.86
STAT5 TGGGAAAGATGGGAACTGAG ACCAACAAGTCTGGGTCAGG 1.00
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diet supplementation. Andrae et al22 reported that high 
oil intake increases the energy density of the diet and 
this will alter the pattern of lipid deposition in steers 
fed with finishing diet. This change in lipid deposition 
could be due to changes in gene expression and this 
process could be inferred from the comparison between 
PO and C fed animals as well as between PO and P. In 
fact, 757 and 89 genes were differentially expressed 
between PO and C and PO and P, respectively.

The P-value of genes related to lipogenesis and 
gluconeogenesis can be found in Tables 3 and 4, 
respectively. Stearoyl-CoA desaturase (SCD) was 
viewed as a key lipogenic enzyme not only for its 

role in the conversion of saturated fatty acid (SFA) to 
monounsaturated fatty acids (MUFA) by inserting a 
double bond in ∆9 position but also for its pattern of 
regulation by diet supplementation. In our microarray 
gene expression analysis, SCD was found to be 
differentially expressed, between P and PC (P , 0.01), 
PO and PC (P , 0.01), PC and C (P , 0.01) and P and 
C (P , 0.01). Furthermore, expression of SCD was 
up-regulated in animals supplemented with corn grain 
(C) compared to those which were on grazing pasture 
(P) or pasture and corn grain (PC). However, the same 
gene was not significantly differentially expressed in 
comparisons between P and PO or C and PO (Table 3). 
The confirmatory gene expression analysis using qRT-
PCR showed that SCD mRNA expression was up-
regulated by 47- (P , 0.001), 30- (P = 0.002) fold, 
respectively for C and PC compared to P, while PO 
was only up-regulated by 7- fold (P = 0.068) compared 
to P (Tables 6, 7 and 8; Fig. 1(A), 1(B) and 1(C)). The 
most important result to be noticed from qRT-PCR 
analysis for SCD gene when compared between P and 
PO (Table 9) was that there were no differences in the 
relative abundance of SCD mRNA between the two 

Table 2. Number of genes differentially expressed between 
the four treatments.A

Treatments P C PC PO
P 0 1113 39 89
C 1113 0 113 757
PC 39 113 0 183
PO 89 757 183 0

Abbrivations: AP, pasture only; PO, pasture and corn oil; C, concentrate; 
PC, pasture and corn grain.

Table 3. Enzymes involved in lipogenesis differentially expressed among the dietary four treatments in microarray analysis 
and their P-value.B

Gene Gene product P vs. PO P vs. PC PO vs. PC C vs. PO C vs. PC C vs. P
ACC Acetyl-coA  

carboxylase
0.11 0.09 0.02 0.16 0.11 ,0.01* 

(4.62)↑
FASN Fatty acid synthase ,0.01* 

(-0.70)↓
0.01 0.01 ,0.01* 

(0.71)↑
,.01* 

(1.67)↑
,0.01* 
(0.52)↑

SCD Stearoyl-coA  
desaturase

0.51 ,0.01* 
(4.44)↓

,0.01* 
(4.256)↑

0.09 ,0.01* 
(3.96)↑

,0.01* 
(6.48)↑

LCE Long-chain fatty-acyl elongase 0.43 0.13 0.39 ,0.01* 
(0.64)↑

 0.05 ,0.01* 
(4.067)↑

IDH1 Isocitrate dehydrogenase 1 
(NADP+), soluble

0.14 ,0.01* 
(4.12)

,0.01* 
(3.72)↑

,0.01* 
(0.89)↑

,0.01* 
(2.91)↑

,0.01* 
(2.00)↑

6-PGD 6-phosphogluconate dehydrogenase 0.08 0.03 0.01 ,0.01* 
(0.522)↑

,0.01* 
(2.36)↑

,0.01* 
(1.50)↑

LPL Lipoprotein lipase 0.75 ,0.01* 
(1.65)↑

0.02 ,0.01* 
(0.183)↑

,0.01* 
(2.39)↑

 0.10

GPAT Glycerol-3-P acyltransferase, 
mitochondrial

,0.01* 
(-1.18)↓

,0.01* 
(-7.35)↓

,0.01* 
(-6.170)↓

,0.01* 
(0.616)↑

,0.01* 
(5.54)↑

,0.01* 
(1.80)↑

DGAT2 Putative Diacylglycerol  
O-acyltransferase

,0.01* 
(-0.524)↓

0.03 ,0.01* 
(3.295)↑

,0.01* 
(1.37)↑

,0.01* 
(1.978)↑

,0.01* 
(1.84)↑

SLC25 A Solute carrier family 25 
(citrate transporter)

,0.01* 
(-2.453)↓

0.89 0.08 ,0.01* 
(1.72)↑

,0.01* 
(0.120)↑

,0.01* 
(4.181)↑

B,*indicates the P-values of significantly differentially expressed genes using a false discovery rate of 0.01.
↓indicates lower expression in A than in B (A vs. B); ↑indicates higher expression in A than in B (A vs. B).
Values inside the parenthesis are the fold change.
Abbreviations: P, pasture only; PO, pasture and corn oil; C, concentrate; PC, pasture and corn grain.
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Table 4. Enzymes involved in the conversion of substrates to citric acid cycle intermediates (gluconeogenesis) that were 
differentially expressed among the four dietary treatments in microarray analysis and their P-value.C

Gene Gene product P vs. PO P vs. PC PO vs. PC C vs. PO C vs. PC C vs. P
PCCA Propionyl-CoA  

carboxylase alpha
,0.01* 

(-0.32)↓
0.67 0.26 ,0.01* 

(0.5737)↑
0.14 ,0.01* 

(0.897)↑
MCM Methylmalonyl-CoA  

mutase
,0.01* 

(-1.33)↓
0.02 0.08 ,0.01* 

(0.589)↑
0.01 ,0.01* 

(1.982)↑
MCE Methylmalony-CoA  

epimerase
,0.01* 

(-0.82)↓
0.02 0.01 ,0.01* 

(-0.223)↑
,0.01* 
(2.14)↑

,0.01* 
(1.56)↑

SDHc Succinate dehydrogenase  
complex (C)

0.07 0.11 0.05 ,0.01* 
(0.387)↑

0.01 ,0.01* 
(1.09)↑

SDHd Succinate dehydrogenase  
complex (D)

0.32 ,0.01* 
(5.927)↑

,0.01* 
(5.10)↑

,0.01* 
(0.56)↑

,0.01* 
(5.035)↑

,0.01* 
(0.891)↑

PCK1 Phosphoenolpyruvate  
carboxylase 1

0.17 0.18 0.07 0.48 ,0.01* 
(0.807)↑

,0.01* 
(0.884)↑

PCK2 Phosphoenolpyruvate  
carboxylase 2

0.05 0.10 0.01 0.02 0.02 ,0.01* 
(2.437)↑

FBP2 Fructose-1, 
6-bisphosphate

,0.01* 
(-2.40)↓

0.12 0.03 ,0.01* 
(-0.52)↓

0.31 ,0.01* 
(-1.87)↓

C,*indicates the P-values of significantly differentially expressed genes using a false discovery rate of 0.01; 
↓indicates lower expression in A than in B (A vs. B); ↑indicates higher expression in A than in B (A vs. B).
Values inside the parenthesis are the fold change.
Abbreviations: P, pasture only; PO, pasture and corn oil; C, concentrate; PC, pasture and corn grain.

treatments, which were similar with microarray results. 
Chung et al23 reported increases in SCD activity of s.c 
adipose tissue of Angus and Wagyu steers fed with grain 
compared to hay; however changes in SCD mRNA 
were dependent upon breed type, with increased mRNA 
level in Wagyu. Daniel et al5 also reported higher SCD 
expression and increased MUFA in ovine adipose tissue 
explants exposed to insulin in vitro. Our data suggest 
that corn grain significantly increased the transcrip-
tion of the SCD gene while corn oil supplementation 
resulted in a lower increase in MUFA and SCD expres-
sion, which was not significantly different, compared 
to P for both microarray and qRT-PCR analysis. Fur-
ther studies24 regarding the effects of these supplemen-
tary diets on the subcutaneous fatty acid content using 
the same experimental animals showed that corn oil 
(PO) supplementation increased TVA and cis-9, trans-
11 CLA isomer content in subcutaneous tissue relative 
to P, PC and C. This suggests that supplementation of 
corn oil increased PUFA that affects the expression of 
SCD. As a result, it can be inferred that the presence 
of corn oil or grain in the diet may alter the expres-
sion of genes important to stearoyl-coenzyme A desatu-
rase; which in turn, may influence fatty acid synthesis.

Fatty acid synthase (FASN), which is thought 
to be the rate-limiting step in de novo fatty acid 

synthesis in ruminants was differentially expressed 
between PO and C (P , 0.01), PC and C (P , 0.01), 
PO and P (P , 0.01) and P and C (P , 0.01). Table 3 
shows that there is an increased gene expression of 
FASN in animals fed with corn grain (C) compared 
to those fed with corn oil and pasture. This suggests 
that concentrate in the diet may increase fatty acid 
biosynthesis. Real time PCR confirmed this result 
(Table 6; Figure 1(a)) where the relative expression 
of FASN trends to be higher in animals fed with 
concentrate (C) diets when compared with those fed 
with pasture (P) only. Acetyl-coenzyme A carboxylase 
(ACC) mRNA expression did not differ among 
majority of the treatments in both gene expression 
analysis methods (Table 3). Both ACC and FASN 
are key enzymes regulating de novo fatty acid syn-
thesis. Grain feeding, either on a high-concentrate 
diet or supplemented on pasture, up-regulated FASN 
mRNA compared to P. Up-regulation of FASN with 
grain feeding would suggest greater de novo lipogen-
esis. The lack of significant differential expression in 
FASN mRNA with oil supplementation on pasture 
(PO) compared to PC (Table 3) indicates that corn 
supplementation and not an increased energy sup-
plementation is responsible for the change in gene 
expression of FASN. Research in humans has shown 
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Figure 1. Relative expression from qRT-PCR analysis. A) Indicates the relative expression of C (Concentrate, corn grain) with respect to P (Pasture). 
B) Indicates the relative expression of PO (Pasture and Corn oil) with respect to P (Pasture). C) Indicates the relative expression of PC (pasture and corn 
grain) with respect to P (Pasture). Boxes represents the interquartile range, or the middle 50% of observations. The dotted line represents the median gene 
expression. Whiskers represent the minimum and maximum observations. The asterisk (*) represents genes that are significantly differentially expressed.
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that increased expression of FASN in adipose tissue 
is linked to excess fat accumulation and impaired 
insulin sensitivity.25 Geetha et al26 investigated the 
effects of exogenous fatty acid treatment on the 
function of ACC and FASN in mammary cells and 
found that, increasing concentrations of exogenous 
oleic acid and TVA caused inhibition of ACC and 
FASN activities. Among the two monounsaturated 
fatty acids, TVA was much more powerful inhibitor 
of ACC and FASN, when compared with oleic acid. 
Similar effects are also observed in this study, as the 
gene expression of FASN (Table 3) in adipose tissue 
has been found to be lower in corn oil fed animals 
(C and PO) because corn oil does contain oleic acid 
(28.5% of total fatty acids in corn oil).

Lipoprotein lipase (LPL), a lipolytic enzyme 
involved in the metabolism of triacylglycerol-rich 
lipoprotein particles, which generate free fatty acids, 
was found to be differentially expressed between 
P and PC (P , 0.01), C and PO (P , 0.01) and C 
and PC (P , 0.01). While LPL was not found to be 
differentially expressed between P and C as well as 
P and PO, which shows correspondence with the 
results obtained from qRT-PCR (Tables 3 and 9). This 
enzyme has the direct opposite function of FASN, 
which mediates the synthesis of fatty acids.

The gene that codes for long-chain fatty-acyl 
elongase (LCE) enzyme was also differentially 
expressed between C and PO (P , 0.01) and C 
and P (P , 0.01) (Table 3). Moon et al27 suggested 
that mouse LCE expression is increased by sterol 
regulatory element-binding proteins (SREBPs) and 
that the enzyme is a component of the mammalian 
elongation system that converts palmitic to stearic 
acid by enhancing the addition of 2-carbon units to 
palmitic acid. LCE promotes increased production 
of stearic acid which is a saturated fatty acid. Our 
results indicate that there was an increased relative 
expression of LCE in animals fed with corn grain 
than with pasture or corn oil, suggesting that corn 
grain increases the production of saturated fatty 
acids in ruminants.

Furthermore, the glycerol phosphate acyltranferase 
(GPAT) gene which is involved in synthesis of trig-
lycerides was found to be differentially expressed in 
almost all the dietary treatment comparisons. Several 
other genes responsible for the production of fatty 
acid-binding proteins were identified as differentially 

expressed in P vs. PC and C vs. PC comparisons. 
Studies by Peterson et al28 found a coordinated 
change in the mRNA abundance for genes that code 
for ACC, FASN and GPAT when they induced milk 
fat depression (MFD) with a high concentrate/low 
forage diet and examined the milk composition.

Genes responsible for the production of enzymes 
involved in the conversion of substrates to cit-
ric acid cycle intermediates (gluconeogenesis) are 
shown in Table 4. Potential genes involved in this 
process like propionyl—CoA carboxylase alpha 
(PCCA), methylmalonyl—CoA mutase (MUT), 
methylmalonyl—CoA epimerase (MCE), succinate 
dehydrogenase complex (SDH), phosphoenolpyru-
vate carboxylase 1 (PCK1), phosphoenolpyruvate car-
boxylase 2 (PCK2) and fructose—1,6-bisphosphate 
(FBP2) were found to be differentially expressed 
among the various treatment comparisons. PCCA, 
MCM, MCE and FBP2 genes were found to be down 
regulated in animals fed with corn oil compared 
to pasture fed animals. Propionyl—CoA carboxy-
lase alpha enzyme plays a vital role in propionate 
metabolism, where it catalyses the intermediate step 
between propionyl-CoA and methylmalonyl CoA. 
Methylmalonyl—CoA mutase functions in propano-
ate metabolism where it activates the intermediate step 
between methylmalonyl—CoA and succinyl—CoA, 
where as succinate dehydrogenase complex catalyses 
the conversion of succinyl—CoA to succinate. The 
enzymes, PCK1 and PCK2 that plays an important 
role in pyruvate metabolism by catalyzing the con-
version of phosphoenol pyruvate to oxaloacetate, was 
also expressed higher in animals fed with corn grain. 
It appears that corn oil may decrease expression of 
some gluconeogenic enzymes compared to those 
steers that were fed with non-supplemented feed, 
where as those steers fed with corn grain would have 
a higher expression of gluconeogenic enzymes with 
respect to the grazing treatments.

Regulation of fatty acid metabolism is done 
through changes in transcription, mRNA processing 
or activity of several transcription factors. P-value 
and fold change of the expression of genes for tran-
scription factors or coactivators involved in lipogene-
sis from the microarray analysis are shown in Table 5. 
Peroxisome proliferator-activated receptors gamma 
(PPARγ) is a nuclear hormone receptor whose tran-
scriptional activities are stimulated by ligands and 
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plays a vital role in the induction of genes mediating 
fatty acid uptake, metabolism (involved in fatty acid 
oxidation) and storage.29 Another transcription factor, 
sterol regulatory element-binding protein-1 (SREBP-1) 
was found to be involved in fatty acid synthesis.30 
CCCAAT/enhancer-binding protein alpha (CEBPα) 
is another transcription factor involved in regulat-
ing adipogenesis. Clarke et al31 found that CEBPα 
mediates the expression of PPARγ and thus both 
play a role in regulating the expression of other pro-
teins necessary for the development of mature adi-
pocyte. STAT5’s (signal transducer and activator of 
transcription), has been reported to function in fat-
cell development, adipocyte differentiation and lipid 
accumulation by regulating PPARγ and CEBPα bind-
ing signals.32 Growth hormones and prolactin are acti-
vators of STAT5 and induce lipolysis.33 Hogan and 
Stephens34 have shown that STAT5 directly represses 

the expression of FASN in adipocytes. Havatine and 
Bauman35 reported reduced expression of FASN, LPL 
and SREBP-1 in mammary tissue of cows fed with 
trans-10 cis-12 CLA isomer or low forage/high oil 
diet to induce milk-fat depression. In the current study, 
LPL and SREBP mRNA levels were unchanged with 
corn oil dietary supplementation. This is consistent 
with the findings by Duran-Montge et al36 where they 
found that the mRNA expression of SREBP in adipose 
tissue in pigs showed no differences between various 
lipid dietary treatments, while they observed increase 
in the expression of liver SREBP mRNA. This sug-
gests that fat synthesis in adipose tissue could be reg-
ulated in a different manner than in liver. Additional 
research has shown that mRNA in adipose tissue of 
FASN, LPL and SREBP are not down regulated until 
dietary corn oil supplementation levels reach 0.15% 
of BW, levels higher than that were fed in this study 

Table 5. Genes for transcription factors or coactivators involved in lipogensis differentially expressed among the four dietary 
treatments in microarray analysis and their P-value.D

Gene Transcription factor P vs. PO P vs. PC PO vs. PC C vs. PO C vs. PC C vs. P

PPAR(g) Perxoisome proliferators activated  
Receptor (gamma)

0.1129 ,0.01* 
(3.9110)↑

,0.01* 
(5.11)↑

0.8011 0.032 0.175

STAT5B Signal transducer and activator of 
transcription 5B

0.9877 0.2260 0.375 0.090 0.2430 0.1032

SREBP Sterol regulatory element  
binding protein

0.8901 0.150 0.2675 0.9644 0.2554 0.831

CEBP(a) CCAAT/enhancer—binding  
protein (alpha)

0.2739 ,0.01* 
(4.647)↑

0.011 0.152 ,0.01* 
(3.37)↑

0.931

D,*indicates the P-values of significantly differentially expressed genes using a false discovery rate of 0.01;  
↓indicates lower expression in A than in B (A vs. B); ↑indicates higher expression in A than in B (A vs. B). 
Values inside the parenthesis are the fold change.
Abbreviations: P, pasture only; PO, pasture and corn oil; C, concentrate; PC, pasture and corn grain.

Table 6. Relative gene expression obtained for C (concentrate, treatment) with respect to P (pasture, control) using 
RT-PCR.E

Gene Type Expression Std. error 95% C.I. P(H1) Result
GAPDH REF 1.000
SREBP TRG 0.593 0.208–1.684 0.110–3.203 0.239 NR
FASN TRG 8.849 2.805–30.023 0.931–49.909 0.006 UP
PPARγ TRG 0.540 0.121–2.243 0.059–5.170 0.266 NR
STAT5 TRG 0.051 0.007–0.408 0.002–1.642 0.007 DOWN
CEBPα TRG 0.862 0.372–1.753 0.165–2.752 0.687 NR
ACC TRG 0.181 0.039–1.415 0.012–3.720 0.042 DOWN
SCD TRG 47.140 11.700–447.69 6.843–2,194.549 ,0.0001 UP
LPL TRG 0.485 0.087–2.153 0.046–9.564 0.283 NR
EP(H1)—Probability of alternate hypothesis that difference between sample (C) and control groups (P) is due only to chance.
Abbreviations: TRG, Target; REF, Reference; NR, not significantly regulated.
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(Duckett and Pratt, unpublished data). PPAR(γ) and 
CEBP(a) in microarray analysis were found to be 
differentially expressed in the comparison between 
P and PC with a reduced gene activity in PC, where 
as RT-PCR results (Fig. 1c) of the same comparison 
confirmed the microarray detection of PPARγ, but the 
gene expression for both were found to be unchanged. 
PPAR(γ) and CEBP(a) were found to be differentially 
expressed in microarray analysis between PO and PC 
with increased gene activity in PO and in all other 
comparisons (P and PO, C and PO, C and PC and C 
and P) they were not found differentially expressed 
(Table 5) as well in the confirmatory qRT-PCR analy-
sis (Tables 6,7 and 8).

Validation of high throughput methods like 
microarray using qRT-PCR has become a routine 

procedure and it is supposed to be the strongest 
confirmatory detection method done independently 
to quantify gene expression. Although Affymetrix 
arrays show high precision and repeatability, array 
results can be influenced by the variation in manu-
facturing process, sample preparation and data 
analysis. In the current study, eight genes (that have 
an influence in lipid metabolism based on previous 
studies) were selected to conduct qRT-PCR analysis 
to confirm our results obtained from microarray. The 
highest correspondence between microarray and qRT-
PCR results were obtained between the comparison 
of P versus PO (7 out of 8) and P versus C (6 out of 
8 genes) validated using qRT-PCR. While for P ver-
sus PC the microarray results of 4 genes showed cor-
respondence with the confirmatory qRT-PCR results 

Table 7. Relative gene expression obtained for PO (corn oil and pasture, treatment) with respect to P (pasture, control) 
using RT-PCR.F

Gene Type Expression Std. error 95% C.I. P(H1) Result
GAPDH REF 1.000
SREBP TRG 0.809 0.321–1.933 0.147–4.362 0.602 NR
FASN TRG 2.218 0.572–18.831 0.219–30.941 0.283 NR
PPARγ TRG 0.820 0.182–4.452 0.063–9.497 0.748 NR
STAT5 TRG 0.333 0.051–2.477 0.012–7.607 0.181 NR
CEBPα TRG 0.815 0.310–1.998 0.186–3.713 0.590 NR
ACC TRG 0.608 0.093–4.004 0.047–15.540 0.489 NR
SCD TRG 7.187 0.484–68.919 0.213–1,036.416 0.068 NR
LPL TRG 0.892 0.188–3.174 0.113–20.060 0.847 NR
FP(H1)—Probability of alternate hypothesis that difference between sample (C) and control groups (P) is due only to chance.
Abbreviations: TRG, Target; REF, Reference; NR, not significantly regulated.

Table 8. Relative gene expression obtained for PC (corn grain and pasture, treatment) with respect to P (pasture, control) 
using RT-PCR.G

Gene Type Expression Std. error 95% C.I. P(H1) Result

GAPDH REF 1.000
SREBP TRG 0.533 0.177–1.596 0.111–2.865 0.139 NR
FASN TRG 4.575 1.721–11.813 0.843–30.280 0.006 UP
PPARγ TRG 0.643 0.099–3.015 0.046–15.982 0.505 NR
STAT5 TRG 0.387 0.051–2.017 0.020–25.991 0.268 NR
CEBPα TRG 1.558 0.841–3.126 0.618–3.970 0.089 NR
ACC TRG 0.640 0.070–5.163 0.036–73.163 0.614 NR
SCD TRG 30.314 2.661–245.852 1.407–1,527.9 0.002 UP
LPL TRG 0.566 0.094–3.073 0.039–11.392 0.418 NR
GP(H1)—Probability of alternate hypothesis that difference between sample (C) and control groups (PC) is due only to chance.
Abbreviations: TRG, Target; REF, Reference; NR, not significantly regulated.
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(Table 9). This slight difference in the correspondence 
across the two platforms might be accounted due to 
the pooling of RNA for microarray analysis where 
as individual RNA samples were used for qRT-PCR. 
Also, the qRT-PCR primer is designed based on the 
sequence database, which is derived from multiple 
sequence alignment of ESTs. As a result there is a 
high chance that affymetrix may target one gene, 
while the sequence database may infact represent an 
entire gene family with less specificity and therefore 
will interrogate neither the Affymetrix gene nor the 
database gene and thus give results that differ from 
both platforms.37

Despite the changes in gene expression, Pavan 
et al38 found that there were significant effects on the 
carcass qualities with these dietary supplements. Car-
cass traits did not differ between PC and PO while 

the dressing percentage and Hot Carcass Weight 
(HCW) where greater in PC, PO and C compared to 
P. Marbling score, Longissimus Muscle (LM) area 
and quality grade did not differ between grazing 
treatment. Pavan et al38 observed that the energy 
supplementation (PC and PO) increased the dressing 
percentage and carcass weight compared to P how-
ever these steers has less dressing percentage and car-
cass weight compared with steers supplemented with 
C. All these suggest that the effects on the expression 
of genes in fatty acid metabolism by high concentrate 
diet increases the fatty acid metabolism, which in turn 
is also reflected in carcass quality.

Conclusions
Maintenance of energy homeostasis occurs through 
the induction of genes coding for enzymes that 

Table 9. Comparison of Microarray and qRT-PCR results.G

Transcript Microarray RT-PCR Acceptable^ Correspondance

P-value$ P-value#

P vs. C
6/8SREBP 0.831 0.239 Yes

PPARg 0.175 0.266 Yes
STAT5 0.1032 ,0.01*(0.051)↑ No
CEBPa 0.931 0.687 Yes
ACC ,0.01*(4.62)↓ 0.042*(0.181)↑ No
SCD ,0.01*(6.48)↓ ,0.01*(47.14)↓ Yes
LPL 0.1 0.283 Yes
FASN ,0.01*(0.52)↓ ,0.01*(8.849)↓ Yes
P vs. PC
SREBP 0.15 0.139 Yes 4/8
PPARg ,0.01*↑ 0.505 No
STAT5 0.226 0.268 Yes
CEBPα ,0.01*(4.64)↑ 0.089 No
ACC 0.09 0.614 Yes
SCD ,0.01*(3.96)↓ 0.002*(30.31)↓ Yes
LPL ,0.01*(1.65)↓ 0.418 No
FASN ,0.01 0.006*(4.57)↑ No
P vs. PO

7/8SREBP 0.8901 0.6902 Yes
PPARg 0.1129 0.748 Yes
STAT5 0.9877 0.181 Yes
CEBPα 0.2739 0.590 Yes
ACC 0.11 0.489 Yes
SCD 0.51 0.068 Yes
LPL 0.75 0.847 Yes
FASN ,0.01*(0.70)↓ 0.283 No
G ,↓indicates lower expression in A than in B (A vs. B);↑indicates higher expression in A than in B (A vs. B).
*Indicates statistical significance; 
$FDR corrected P-values from the F-test done in microarray analysis.
#Probability (P-value) of alternate hypothesis that difference between samples (C, PC and PO) and control (P) groups are due only to chance.
^indicates resemblance between microarray and qRT-PCR if Yes otherwise No.
Abbreviations: P, pasture only; PO, pasture and corn oil; C, concentrate; PC, pasture and corn grain.
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regulate specific rate limiting steps in lipid and 
energy metabolism. Consequently, the metabolic 
effects of CLA are presumed to involve changes in 
gene expression. Control of lipid homeostasis in 
response to the body’s energy requirements is pri-
marily exerted through transcription factors of the 
nuclear hormone receptor family. These receptors 
bind small, lipophilic molecules that modulate recep-
tor activation state. The results of this study showed 
that diet composition could have a significant impact 
on the expression of several genes crucially important 
to fatty acid and lipid metabolism. Corn supplemen-
tation either as oil or grain appeared to significantly 
alter the expression of genes directly associated with 
fatty acid synthesis. Based on previous studies, our 
results suggest that the effects of gene expression on 
different concentrate dietary supplements on adipose 
tissue are different from those found in other tissues. 
These results were confirmed with qRT-PCR that 
showed satisfactory correspondence across the two 
platforms.
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