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Abstract: Nowadays advanced mass spectrometry techniques make the identification of protein
posttranslational modifications (PTMs) much easier than ever before. A series of proteomic studies
have demonstrated that large numbers of proteins in cells are modified by phosphorylation,
acetylation and many other types of PTMs. However, only limited studies have been performed to
validate or characterize those identified modification targets, mostly because PTMs are very dynamic,
undergoing large changes in different growth stages or conditions. To overcome this issue, the genetic
code expansion strategy has been introduced into PTM studies to genetically incorporate modified
amino acids directly into desired positions of target proteins. Without using modifying enzymes,
the genetic code expansion strategy could generate homogeneously modified proteins, thus providing
powerful tools for PTM studies. In this review, we summarized recent development of genetic code
expansion in PTM studies for research groups in this field.

Keywords: genetic code expansion; noncanonical amino acid; unnatural amino acid; posttranslational
modification; protein acetylation; protein phosphorylation; protein methylation; protein oxidation

1. Introduction

Commonly, besides 3 stop codons, the genetic code of life contains 61 triplet codons which
can encode 20 canonical amino acids. Although these amino acids are the basic composition of
natural proteins, many proteins still need additional modifications of amino acid residues to be
properly functional. For this purpose, cells utilize posttranslational modifications (PTMs) such as
phosphorylation, acetylation, methylation and ubiquitination to modulate the activity, localization
and other properties of a protein [1,2], thus regulating a variety of biological processes such as gene
transcription, protein biosynthesis, cellular signaling and metabolism [3–5].

There are several challenges to study PTMs. Firstly, PTMs are very dynamic in cells and most of
them are reversible, so it is difficult to separate a purely modified protein. Secondly, PTMs happen
at multiple sites simultaneously in a single protein and various PTMs could compete with the same
amino acid residue, making the characterization of one particular PTM at one specific site difficult.
To do so, the most rigorous approach is to insert the modified amino acid directly at the desired position
in proteins. Obviously, co-translationally (rather than posttranslationally) incorporating modified
amino acids into proteins is one of best ways. In 1956, selenomethionine was first demonstrated to
be incorporated into proteins at methionine residues in bacterial cells [6] and then lots of amino acid
analogs, which could be substrates for the natural translational machinery, were identified to replace
their natural counterparts in proteins [7]. Besides this residue-specific strategy, several approaches
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have been developed to incorporate noncanonical amino acids (ncAAs) into a protein site-specifically.
Among them, the genetic code expansion strategy is the most popular one [8–10].

Typically, a pair of an aminoacyl-tRNA synthetase (AARS) and its cognate tRNA from different
domains of life is introduced into host cells. Such pairs of AARS/tRNA are called orthogonal pairs,
as they usually do not cross-react with endogenous pairs of AARS/tRNA in host cells. The introduced
AARS or its engineered variant charges the orthogonal tRNA with a specifically recognized ncAA.
Then the ncAA-charged tRNA is escorted by the elongation factor-Tu (EF-Tu) to the ribosome where
it reads an assigned codon (commonly a stop codon) on the mRNA and directs the incorporation
of the ncAA into the protein at the assigned position (Figure 1) [11]. Currently, the most widely
used orthogonal AARS/tRNA pairs to achieve ncAA incorporation are derived from either the pair
of pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl from Methanosarcina species [12,13] or the pair of
tyrosyl-tRNA synthetase (TyrRS)/tRNATyr from Methanococcus jannaschii [14]. Since the selected codon
for ncAA incorporation could be substituted for the original codon in the target gene by site-directed
mutagenesis, the genetic code expansion strategy could be employed to incorporate ncAAs into
specific positions of target proteins in living cells, thus providing powerful tools for biological studies
such as labelling proteins for microscopic and proteomic studies; encoding photo-crosslinkers for
mapping weak, transient and pH-sensitive protein interactions; incorporating photo-caged amino
acids for controlling reactions by light; and introducing biophysical probes and labels for monitoring
proteins [15–21]. In this review, we focus on its application in PTM studies.
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Figure 1. A scheme for the genetic code expansion strategy. The introduced orthogonal
aminoacyl-tRNA synthetase (AARS) charges its cognate tRNA with one ncAA. Then the ncAA-charged
tRNA is brought to the ribosome by EF-Tu. The introduced tRNA with a designed anticodon can
read the corresponding codon in the mRNA (UAG is probably the most reassigned codon used for
co-translational incorporation of posttranslational modifications (PTMs).), then direct the incorporation
of ncAA into the specific site of the target protein. AARS*: introduced aminoacyl-tRNA synthetase;
tRNA*: introduced tRNA; ncAA: noncanonical amino acid.
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2. Lysine Acetylation and its Analogs by Genetic Code Expansion

Lysine acetylation, which was firstly discovered in histone, targets the ε-amino group of lysine
residues [22,23]. It is a reversible process catalyzed by lysine acetyltransferases and deacetylases,
which interact with each other to regulate acetylation levels of proteins in cells [24–26]. As a well-studied
example, histone acetylation plays a crucial role in regulating gene transcription [27,28]. On the other
hand, non-histone acetylation has also been proved to be important in multiple cellular processes such
as gene expression, metabolic regulation and cell signaling [29,30].

To study lysine acetylation, several genetic incorporation systems for acetyllysine (AcK) have
been developed. In 2008, Neumann et al. firstly demonstrated the site-specific incorporation of
AcK in recombinant proteins produced in Escherichia coli (E. coli) cells by engineering the PylRS to
recognize AcK specifically [31]. Later, this AcK-incorporation system was successfully introduced
into mammalian cells by Mukai et al. [32]. By a different engineering strategy, Umehara et al.
obtained another AcK-specific PylRS variant (AcKRS) with a different binding pocket for AcK [33].
However, all these AcKRS variants had dramatic decrease in catalytic efficiency during engineering [18].
To optimize AcK-incorporation systems, several approaches have been performed. Huang et al.
enhanced amber suppression by overexpressing the C-terminal domain of the ribosomal protein
L11 to decrease release factor 1-mediated termination of protein translation and they were able to
incorporate three AcK residues into one protein simultaneously [34]. Fan et al. further engineered
tRNAPyl for better binding with EF-Tu, increasing AcK-incorporation efficiency by 3-fold in E. coli
cells [35]. Recently, Bryson et al. utilized the phage-assisted continuous evolution to evolve PylRS
over its full sequence rather than the amino acid binding site alone and the resulting AcKRS variant
had a 10-fold increase in the incorporation efficiency [36]. Later, our group combined the optimized
AcKRS variant and tRNAPyl mutant to establish a facile protocol for AcK incorporation, allowing the
read-through of the amber stop codon up to 70% [37]. Till now, genetic incorporation of AcK has been
successful in bacteria [31,38], yeast [39], mammalian cells [32,40,41] and animals [42].

As mentioned, cells have different kinds of deacetylases to remove acetyl-groups from the
acetylated lysine residues. Although deacetylase inhibitors such as nicotinamine are commonly added
into growth media for overexpressing site-specifically acetylated proteins, cells may still have residual
deacetylase activities, making it possible that genetically-incorporated acetylated lysine residues could
be deacetylated during expression and purification. To solve this potential problem, non-deacetylatable
AcK analogs are needed (Figure 2). Huang et al. designed a nonhydrolyzable 2-amino-8-oxononanoic
acid (KetoK) and genetically incorporated it into proteins [43]. Later, by flexizyme-mediated tRNA
aminoacylation, Xiong et al. were able to incorporate thio-acetyllysine (TAcK) into histone H3
site-specifically with the cell-free translation system [44]. Recently, our group further engineered
the AcKRS for recognition of TAcK and successfully incorporated TAcK into proteins in E. coli
cells [45]. We showed that TAcK residues could be recognized by the AcK antibody and the
effect of thioacetylation was similar to that of acetylation on the enzyme activities of malate
dehydrogenase, indicating that TAcK could be an ideal mimic of AcK in acetylation studies.
Furthermore, we confirmed that TAcK residues could resist the deacetylase [45]. This system will
be particularly useful if long-lasting effects of acetylation need to be determined in living cells
with the concern of endogenous deacetylases. Very recently, Zhang et al. genetically incorporated
trifluoro-acetyllysine (TFAcK) into p53 to detect the conformational changes by NMR (nuclear magnetic
resonance). They also demonstrated that the TFAcK-containing p53 protein could not be deacetylated
by sirtuin deacetylase [46].
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Figure 2. The Structures of acetyllysine (AcK) and its non-deacetylatable analogs, including
2-amino-8-oxononanoic acid (KetoK), thio-acetyllysine (TAcK) and trifluoro-acetyllysine (TFAcK).

The genetic code expansion strategy has been widely used to study the lysine acetylation. Due to
the importance of histone acetylation in gene transcription, Neumann et al. genetically incorporated
AcK into core histones including H2A, H2B and H3 [47], however it was hard to get recombinant H4
with acetylation. Mukai et al. and Wakamori et al. used the cell-free translation system to incorporate
AcK into H4 at four positions [48,49]. Recently, Wilkins et al. improved AcK incorporation into H4
by constructing a gene fusion coding for H3 connected to H4 by a proper linker [50]. There were also
many studies on non-histone protein acetylation by this technique. For instance, Pan et al. used the
genetic code expansion strategy to incorporate AcK into human peroxiredoxin 1 (hPrX1) at position
K27 and found that the acetylation of hPrx1 changed its biological role in different environments [51].
As another example, de Boor et al. genetically incorporated AcK into GTP-binding protein Ran to
demonstrate its role in nucleotide exchange and hydrolysis, as well as the interaction with import
and export receptors [52]. Recently, Ohtake et al. has applied genetic code expansion to show that
ubiquitin acetylation inhibits polyubiquitin chain elongation [53]. Besides eukaryotes, more and
more proteomic studies have shown that lysine acetylation is also widely distributed in prokaryotic
cells, enriched in metabolic pathways and protein biosynthesis [54]. Recently, our group has applied
the genetic code expansion in studying two metabolic enzymes, malate dehydrogenase (MDH) and
isocitrate dehydrogenase (ICDH) of E. coli [55,56]. Interestingly, although both enzymes are in the
tricarboxylic acid (TCA) cycle, the effects of lysine acetylation are completely different: acetylation
of MDH increased the enzyme activity, while acetylation of ICDH decreased the enzyme activity.
We also characterized lysine acetylation of E. coli TyrRS and showed that the acetylation impaired the
TyrRS activity by neutralizing positive charges of lysine residues binding to ATP, the substrate for
tRNA aminoacylation [57].

3. Lysine Ubiquitination by Combining Genetic Code Expansion with Native Chemical Ligation

Different from lysine acetylation which modifies lysine residues with a small acetyl-group,
lysine ubiquitination covalently attaches the carboxyl terminus of a 76-amino acid protein, ubiquitin,
to lysine residues [58]. It affects a variety of biological processes, among which the most remarkable
function is its role in protein degradation [59]. Several groups have used the native chemical ligation
strategy to create ubiquitin conjugates [60,61]. But these approaches need multi-step organic synthesis,
which may not be easily performed in a biological laboratory. Later, an easier approach to combine the
genetic code expansion strategy and native chemical ligation was developed (Figure 3). Li et al. firstly
incorporated D-Cys-ε-Lys into a protein at a selected position, which was reacted with a modified
ubiquitin harboring a C-terminal thioester by thiol exchange and then irreversible intramolecular
S-N acyl transfer to form a semisynthetic ubiquitinated protein [62]. However, this method could not
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form the natural isopeptide linkage between proteins and ubiquitin. For this purpose, Virdee et al.
engineered PylRS to recognize and incorporate δ-thiol-lysine into proteins and combined it with native
chemical ligation and desulfurization to link ubiquitin and substrate proteins with an entirely native
isopeptide bond [63] (Figure 3).
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4. Lysine Methylation by Combining Genetic Code Expansion and Different Chemical Reactions

Lysine methylation, another important lysine modification, was also firstly discovered in
histones [23]. Different from other lysine modifications, there are three forms of lysine methylation,
including mono-, di- and tri-methylation [64,65]. Unlike histone acetylation, which is often related to
transcription activation, histone methylation is involved in both transcription activation and silencing,
depending on methylation sites and forms [66,67]. On the other hand, lysine methylation of non-histone
proteins also plays important roles in many cellular processes. For example, methyltransferase Set 9 can
specifically methylate lysine residues in p53 to regulate its target gene expression [68]. In prokaryotic
cells, lysine methylation has been shown to modulate cell motility [69]. Previously, the synthesis of
lysine-methylated proteins mainly depended on native chemical ligation [70]. Later, genetic code
expansion was introduced into this field but it has been challenging to evolve an AARS to specifically
recognize methylated lysine but not lysine itself. Thus, direct incorporation of lysine methylation into
protein has not yet been successful. However, several groups have developed alternative methods
to genetically incorporate lysine methylation precursors first and then obtain methylated proteins by
different physical or chemical reactions [71].
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For mono-methylation, Nguyen et al. introduced the tert-butyloxycarbonyl (Boc)-methyllysine,
which could be removed by acid [72]; Groff et al. and Wang et al. independently incorporated photocaged
Nε-(o-nitrobenzylcarbamoyl)-methyllysine, followed by UV exposure to remove the protecting
group [73,74]; Ai et al. designed another protected methyllysine, Nε-allylcarbamoyl-methyllysine,
which could be deprotected by chloro-pentamethylcyclopentadienyl-cyclooctadieneruthenium (II) [75].
Yanagisawa et al. used the release factor 1-knocked strain in both cell-based and cell-free systems to
incorporate mono-methyllysine into H3 at multiple positions simultaneously [76].

For di-methylation, Nguyen et al. used the Boc group to protect the lysine residue
and the benzyloxycarbonyl group to protect all other lysine residues in the target protein.
Then the Boc-lysine was deprotected by acid and methylated by reductive alkylation using
formaldehyde and a dimethylamine borane complex [77]. Recently, Wang et al. developed
a method that could be performed in protein-friendly conditions. They genetically incorporated
Nε-(4-azidobenzoxycarbonyl)-δ, ε-dehydrolysine into proteins, which was followed by Staudinger
reduction with tris-(2-carboxyethyl)phosphine to form allysine and reductive amination with
dimethylamine in the presence of NaCNBH3 [78].

For tri-methylation, Yang et al. utilized the established phosphoserine (Sep) incorporation
system to generate Sep-containing proteins first (For more details of Sep-incorporation, please
refer to the ‘Serine phosphorylation and its analogs’ section below). Then the Sep residue was
dephosphorylated to form dehydroalanine, which was followed by Zn-Cu promoted conjugate
addition of 3-iodo-N,N,N,-trimethylpropan-1-amine to form tri-methylated proteins [79]. Moreover,
by using different alkyl iodides, this approach could also generate monomethyl-, dimethyl-, formyl-,
or acetyl-lysine residue at desired sites in proteins, making it an easy route to produce site-specific
authentic protein modifications (Figure 4).
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5. Other Lysine Modifications by Genetic Code Expansion

A number of proteomic studies have shown the existence of many other modifications
of lysine residues, including crotonylation [80], propionylation [81], butyrylation [81]
and 2-hydroxyisobutyrylation [82] (Figure 5). Kim et al. synthesized Nε-crotonyllysine (Kcr) and used
an evolved PylRS variant to efficiently incorporate Kcr into desired positions of recombinant proteins.
They successfully applied this system to express a site-specifically crotonylated human histone H2B
in E.coli and mammalian cells with high fidelity and efficiency [83]. Later, Gattner et al. showed
that the wild-type PylRS could be used to incorporate Nε-propionyl-(Kpr), Nε-butyryl-(Kbu) and
Nε-crotonyl-lysine (Kcr) into histone H3 [84]. Similarly, Wilkins et al. extended their studies on lysine
acetylation of histone H4 to lysine propionylation, butyrylation and crotonylation. This method was
then utilized to test the ability of antibodies to distinguish between different lysine modifications in
histone H4 [50]. Moreover, Xiao et al. reported a new evolved PylRS variant to site-specifically
incorporate Nε-2-hydroxyisobutyryl-lysine (HibK), a new type of histone mark [85]. Recently,
Owens et al. reported a versatile two-tier screen (a white/blue colony screen and a plate-based
colorimetric assay) platform to evolve AARSs for better ncAA incorporation and successfully
applied this platform to synthesize different forms of lysine acylation [86]. By a different strategy,
Wang et al. developed a versatile approach for generating proteins with lysine acylation by combining
genetically-encoded azidonorleucine with traceless Staudinger ligation [87].
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Figure 5. The structures of other modifications of lysine, including crotonylation, propionylation,
butyrylation and 2-hydroxyisobutyrylation.

6. Arginine Methylation by Genetic Code Expansion

Arginine is another positively charged amino acid and it can be posttranslationally modified
with one or two methyl groups [88]. Although Arginine methylation is not as abundant as lysine
methylation, it still has important effects on many cellular processes, including RNA processing,
transcriptional regulation, signal transduction and DNA repair [89]. By using the in vitro translation
system, Akahoshi et al. used the yeast arginyl-tRNA synthetase to charge a yeast tRNAArg-derived
tRNA mutant which has a CCCG four-base anticodon with monomethyl-arginine by an EF-Tu variant
E215A with an improved aminoacylation efficiency and site-specifically incorporated it into H3 protein
at position R8, R17 and R26, demonstrating that R8, R17 methylation could suppress K9 acetylation [90].
In this study, arginine analogs were introduced into proteins without the need for organic synthesis
and it will be useful for analyzing the functional roles of arginine modifications in various proteins.

7. Serine Phosphorylation and its Analogs by Genetic Code Expansion

As the most abundant PTMs in nature, protein phosphorylation can be found in organisms
from all three kingdoms [91,92]. Traditionally, it was believed that bacteria only possess aspartate
and histidine phosphorylation which plays roles in sensing the environment and regulating the



Molecules 2018, 23, 1662 8 of 19

import of nutrients [93,94] and the phosphorylation of serine, threonine and tyrosine residues was
exclusively found in eukaryotes [95]. However, the recent genomic sequencing and proteomic studies
demonstrated that the phosphorylation of serine, threonine and tyrosine residues is also distributed
widely in prokaryotes and involved in many physiological processes just like that in eukaryotic cells
including cell cycle, cell differentiation, cell division, cell metabolism, stress response, as well as
protein synthesis [96,97].

Due to the importance of phosphorylation, many scientists have tried to develop genetic
incorporation systems for phosphorylated amino acids. In 2011, Park et al. made a breakthrough
with phosphoserine (Sep) incorporation. It was based on their previous discovery that certain
methanogenic archaea used an unusual AARS, phosphoseryl-tRNA synthetase (SepRS), to catalyze
the formation of Sep-tRNACys for cysteine biosynthesis [98]. Combined with an engineered EF-Tu
variant which could bind with negatively-charged amino acids much better than the wild-type EF-Tu,
they were able to site-specifically incorporate Sep into proteins [99]. However, the amber codon
UAG selected as the signal for Sep incorporation in this system caused low protein yields, since
the UAG codon initially is a stop codon to bind with the release factor 1 (RF1) to stop translation.
To solve this problem, Heinemann et al. selected a partially recoded RF-1 knockout strain of E. coli
(EcAR7.∆A) in which seven original UAG codons of essential genes were converted to UAA codons.
After evaluating this improved system by incorporation of Sep into green fluorescent protein (GFP)
and serine/threonine-protein kinase WNK4, they suggested that the efficiency of phosphoserine in
this system was enhanced but with deleterious effects on cell fitness and viability [100]. Later, by a new
proteomic workflow, which can quantify both canonical and non-canonical amino acids in recombinant
proteins, they found that although Sep incorporation at UAG codons was enhanced in EcAR7.∆A,
there were still an unexpectedly large number of canonical amino acids incorporated at the UAG
codons [101]. To further improve the Sep-incorporation system, Pirman et al. introduced the
C321.∆A strain developed by the Church group (all 321 TAG codons in the E. coli genome were
substituted with TAA) [102], which not only eliminated all negative effects on cell growth brought by
RF1-knockout but also avoided the canonical amino acid incorporation [103]. A similar strategy was
also successfully performed in the cell-free translation system to produce multiply-phosphorylated
proteins by Oza et al. [104]. Without using genomically modified strains, Lee et al. were able to increase
Sep-incorporation efficiency in the commonly used expression strain BL21(DE3) by adopting improved
SepRS and EF-Tu variants [105]. Recently, George et al. compared both approaches in their studies
on ubiquitin phosphorylation [106]. Interestingly, they found that in the E. coli ∆RF1 strain, the UAG
codons can be skipped or bypassed by the ribosome to yield proteins with a single residue deleted.

Similar to lysine acetylation studies, it is useful to genetically incorporate nonhydrolyzable analogs
of phosphorylated amino acids when endogenous kinases and phosphatases may impede proposed
studies. For this purpose, Rogerson et al. genetically incorporated one non-hydrolysable analog of
Sep, phosphonomethylene alanine (Pma) (Figure 6) into proteins by their optimized SepRS/tRNAsep

pair in a metabolically engineered E.coli strain in which the intracellular levels of Sep was decreased
by overexpression of serB (the phosphoserine phosphatase to remove Sep) and deletion of serC
(the phosphoserine aminotransferase to produce Sep) from the genome [107]. Recently, our group
successfully transferred the Sep-incorporation system into Salmonella to produce phosphorylated
protein in living cells of Salmonella [38]. We demonstrated that the phosphorylation of malate
dehydrogenase in Salmonella could inhibit the enzyme activity, which played an opposite effect of
acetylation of the same enzyme, suggesting that two PTMs could cross-react with each other to regulate
enzymes for adapting to different environments. Till now, Sep-incorporation has been successful in
E. coli, Salmonella and mammalian cells [38,99,108].
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Figure 6. The structures of phosphoserine (Sep), its nonhydrolyzable analog phosphonomethylene
alanine (Pma) and phosphothreonine (pThr).

8. Threonine Phosphorylation by Genetic Code Expansion

Due to the similarity between phosphothreonine (pThr) and Sep (Figure 6), evolving the
SepRS/tRNASep pair for the site-specific incorporation of pThr into proteins is feasible. But there
are still some challenges. Firstly, different from Sep which exists in cells as the precursor for serine,
there is no pThr biosynthesis pathway in E. coli cells. And the cellular uptake of negatively charged
compounds is relatively low, which cannot provide sufficient substrates for charging tRNAs. To solve
this problem, Zhang et al. introduced a threonine kinase PduX from Salmonella which is involved
in coenzyme B12 biosynthesis into E. coli cells to produce a high level of intracellular pThr [109,110].
Secondly, because of the structural similarity between pThr and Sep, it is challenging to evolve SepRS
to exclusively recognize pThr but not Sep. To overcome this issue, they used parallel positive selections
combined with deep sequencing and statistical analysis to obtain mutually orthogonal SepRS variants
to site-specifically incorporate pThr into recombinant proteins successfully [111].

9. Tyrosine Phosphorylation and its Analogs by Genetic Code Expansion

Different from Sep and pThr, there has been no known biosynthesis pathway in nature to generate
phosphotyrosine (pTyr). The low permeability of pTyr through cell membranes makes it difficult to
incorporate pTyr into proteins in living cells. Thus, Arslan et al. and Rothman et al. used cell-free
translation systems to bypass such obstacles. By using chemically charged tRNAs with pTyr or
its photocaged precursor, they successfully generated pTyr-containing proteins in vitro [112,113].
Later, several pTyr analogs were genetically incorporated into proteins in vivo (Figure 7). Liu et al.
developed a genetic incorporation system for sulfo-tyrosine (sTyr), which is another PTM for tyrosine
residues [114]. Due to the structure similarity, sTyr could be an ideal mimic of pTyr. Xie et al.
genetically incorporated p-carboxymethyl-phenylalanine (pCMF) and demonstrated that pCMF
could function as a pTyr mimic in the Y701 site of STAT1 [115]. Serwa et al. designed another
pTyr analog, p-(phosphonoamino)-phenylalanine by chemically modifying a genetically installed
p-azidophenyalanine residue [116].

Recently, three groups have independently developed genetic incorporation systems of pTyr
in vivo. Fan et al. removed genes of five phosphatases from the E. coli genome to stabilize pTyr in
cells. Combined with the M. jannaschii TyrRS (MjTyrRS) variant and E. coli EF-Tu variant, which were
screened for pTyr-tRNA formation and pTyr-tRNA binding respectively, we successfully incorporated
pTyr into proteins in living E. coli cells [117]. Luo et al. used a different strategy to increase the
cytoplasmic concentration of pTyr. They first synthesized a dipeptide (Lys-pTyr) which could be
transported into cells by the dipeptide transporter DppA and then hydrolyzed into free Lys and pTyr by
intracellular nonspecific peptidases. After solving the pTyr-uptake problem, they utilized an MjTyrRS
variant, which was previously engineered for pCMF incorporation to charge tRNA with pTyr and
direct its incorporation into desired positions of proteins. By the same strategies, they also genetically
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incorporated a nonhydrolyzable analog of pTyr, 4-phosphomethyl-phenylalanine [118]. Meanwhile,
Hoppmann et al. developed an efficient and easily accessible method to produce pure pTyr-containing
proteins from a charge neutral and stable pTyr analog, 3-4(bis(dimethylamino)phosphoryloxy)
phenylalanine, which can be converted into pTyr by pH shift [119].Molecules 2018, 23, x FOR PEER REVIEW  10 of 19 
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10. Tyrosine Sulfation by Genetic Code Expansion

Tyrosine sulfation is a common and important PTM of membrane-bound and secretory proteins
in eukaryotic cells [120,121]. It is essential to many cellular processes related to protein-protein
interactions such as endogenous chemokine signaling (HIV-entry) [122]. To facilitate tyrosine sulfation
studies, Liu et al. applied the genetic code expansion strategy to synthesize proteins with purely
and site-specifically sulfated tyrosine residues [114]. In this study, they evolved the MjTyrRS to
incorporate sTyr into hirudin, which is used as an anticoagulant in medicine. Later, they optimized
this system to allow the overexpression of objective proteins with site-specific tyrosine sulfation
efficiently [123]. Recently, by introducing the C321.∆A E. coli strain, Schwessinger et al. established
a second-generation sTyr-incorporation system and demonstrated a practical application of this system
in crop protection by synthesizing RaxX60-sY sulfated protein, which could activate immune response
on rice with XA21 [124].

11. Tyrosine Nitration by Genetic Code Expansion

Unlike other PTMs, tyrosine nitration of proteins is a nonenzymatic process in which reactive
nitrogen species such as peroxynitrite (ONOO−) and nitrogen dioxide (•NO2) initiate the oxidation of
proteins and generate 3-nitro-tyrosine (nTyr) (Figure 8) [125]. Tyrosine nitration is involved in biological
processes related to protein oxidation, causing many oxidative damage-related diseases including
cancers and neurodegenerative disorders [126]. Taking Alzheimer’s disease (AD) as an example,
a clinical study showed that the nTyr concentration of AD patients increased significantly (>6-fold)
compared with controls [127]. To study the effects of tyrosine nitration, several genetic incorporation
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systems for nTyr have been established. Firstly, Neumann et al. evolved the MjTyrRS to site-specifically
incorporate nTyr into manganese superoxide dismutase (MnSOD) at position Tyr34 and showed
that the nitration at this position could decrease > 97% enzyme activity of MnSOD alone [128].
Later, Cooley et al. used optimized selection protocols to engineer the MjTyrRS to get an improved
nTyr-incorporation system and successfully applied it into heat-shock protein studies to elucidate
the role of elevated cellular nTyr levels in human disease [129,130]. By engineering the suppressor
tRNATyr with two substitutions in the anticodon loop (G34C/G37A), Rauch et al. further improved
nTyr-incorporation efficiency [131]. Recently, Tack et al. utilized an engineered β-lactamase that
is structurally dependent on nTyr-incorporation to study the evolving fitness of bacteria with
an expanded genetic code and they found that after 2000 generations of directed evolution, the fitness
deficit of cells related to nTyr toxicity was overcome by adaptive mutations [132]. The most commonly
mutated or deleted genes were amino acid transporters in the hydroxyl and aromatic amino acid
permease family such as the tyrosine-specific permease TyrP and the tryptophan permease Mtr.
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12. Tyrosine Hydroxylation by Genetic Code Expansion

3,4-dihydroxy-phenylalanine (DOPA) is a redox-active amino acid, which is naturally derived
from tyrosine by co-translational or posttranslational modification (Figure 8) [133]. And it is
involved in many biological processes such as the adhesive nature of the proteins [134]. In 2003,
Alfonta et al. used an evolved MjTyrRS variant to site-specifically incorporate DOPA into recombinant
proteins in response to the amber codon UAG [135]. Later, Hauf et al. expanded the genetic
code with a photocaged DOPA derivative (o-nitrobenzyl DOPA) through an engineered MjTyrRS
which could be cleaved by UV light [136]. Recently, Kim et al. constructed a bacterial strain which
can biosynthesize DOPA by a tyrosine phenol-lyase and optimized the incorporation efficiency of
DOPA [137]. Since DOPA can form a stable covalent linkage to the interacting protein, it has been used
as a selective cross-linker which can detect the weak and/or transient protein interactions in protein
complexes [138–140].

13. Summary and Perspective

For easy searching, we listed genetic incorporation systems for different PTMs in Table 1. It should
be noticed that optimized systems may not always provide better incorporation efficiency, since ncAA
incorporation depends on many factors including target protein properties, incorporation site contexts,
expression strains and even growth media.
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Table 1. An index of genetic incorporation systems for PTM studies.

PTM Types Noncanonical Amino Acids (AARSs Derived From) References

Lysine acetylation
Acetyllysine (PylRS) 32,34,38

Analog Thio-acetyllysine (PylRS) 46
2-Amino-8-oxononanoic acid (PylRS) 44

Trifluoro-acetyllysine (PylRS) 47
Lysine ubiquitination

Precursor D-Cys-ε-Lys (PylRS) 63
δ-Thiol-lysine (PylRS) 64

Lysine methylation
Mono-methylation precursor Boc-methyllysine (PylRS) 73

o-Nitrobenzylcarbamoyl-methyllysine (PylRS) 74,75
Nε-allylcarbamoyl-methyllysine (PylRS) 76

Di-methylation precursor Boc-methyllysine (PylRS) 78
Nε-(4-azidobenzoxycarbonyl)-δ, ε-dehydrolysine

(PylRS) 79

Tri-methylation precursor Phosphoserine (SepRS) 80
Other lysine acylation

Crotonyllysine (PylRS) 84,85,87
Propionyllysine (PylRS) 85

Butyryllysine (PylRS) 85,87
2-Hydroxyisobutyryllysine (PylRS) 86

Precursor Azidonorleucine (PylRS) 88
Arginine methylation

Monomethyl-arginine (yeast ArgRS) 91
Serine phosphorylation

Phosphoserine (SepRS) 100,101,106
Analog Phosphonomethylene alanine (SepRS) 108

Threonine phosphorylation
Phosphothreonine (SepRS) 112

Tyrosine phosphorylation
Phosphotyrosine (MjTyrRS) 118–120

Analog Carboxymethyl-phenylalanine (MjTyrRS) 116
4-Phosphonomethyl-phenylalanine (MjTyrRS) 119
p-(Phosphonoamino)-phenylalanine (MjTyrRS) 117

Sulfotyrosine (MjTyrRS) 115
Tyrosine sulfation

Sulfotyrosine (MjTyrRS) 115,124,125
Tyrosine nitration

3-Nitro-tyrosine (MjTyrRS) 129–133
Tyrosine hydroxylation

3,4-Dihydroxy-phenylalanine (MjTyrRS) 136–138

With the help of advance mass spectrometry techniques nowadays, detection of protein PTMs
becomes much easier than ever before. And more and more studies have demonstrated that proteins
usually have multiple PTMs which cross-interact with each other to modulate protein properties
and functions [141]. This review focus on individual PTM incorporation but establishing a system
for incorporating multiple PTMs into proteins simultaneously will be highly desirable. Recently,
our group utilized mutually orthogonal SepRS and AcKRS systems in response to two stop codons
to simultaneously incorporate Sep and AcK into target proteins. We also demonstrated mutual
orthogonality of PylRS, MjTyrRS and SepRS systems, implying the possibilities to incorporate
three different PTMs into a single protein [142]. Similarly, Wright et al. produced site-specifically
acetylated Thioredoxin reductase 1 that also contains selenocysteine (Sec) by simultaneous UAG
codon reassignment to AcK and UGA codon recoding to Sec [143]. They also demonstrated another
strategy to produce dual-modified proteins, combining the Sep-incorporation system and enzymatic
phosphorylation to synthesize the proto-oncogene Akt protein with dual-phosphorylation at S473 and
T308 simultaneously [144].
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Besides PTMs listed above, there are many other PTMs in nature such as phosphorylation
of aspartic acid and histidine [145], carboxylation of glutamic acid [146], carbohydration of
asparagine [147], which are also play important roles in biological processes. Developing genetic
incorporation systems for them is another major direction for this field. However, due to the distinct
structures from substrates of PylRS, TyrRS and SepRS, commonly-used orthogonal pairs may not be
proper for those PTMs. So de novo engineering of new orthogonal pairs from other AARSs should
be necessary.
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