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Abstract 

Background:  Lung adenocarcinoma (LUAD) is a leading cause of cancer-related death worldwide. Ferroptosis, a 
form of cell death characterized by iron-dependent lipid peroxidation. However, the involvement of ferroptosis in the 
regulation of immune cell infiltration and its immunotherapeutic efficacy in LUAD remain unclear.

Methods:  The Cancer Genome Atlas (TCGA) LUAD cohort was used to assess the survival prognosis of FRGs and con-
struct a seven-gene risk signature. Correlation tests, difference tests, and a cluster analysis were performed to explore 
the role of FRGs in the immune microenvironment and their immunotherapeutic efficacy in LUAD. The effects of FRGs 
on LUAD cells were assessed by Western blot, iron assay, and lipid peroxidation assay.

Results:  The seven-gene risk signatures of patients with LUAD were established and validated. FRG clustering based 
on 70 differentially expressed FRGs was associated with the immune microenvironment and indicated potential 
immune subtypes of LUAD. The seven-gene risk signature was an independent prognostic factor for LUAD and was 
used to divide the LUAD cohort into a high-risk and a low-risk group. Immunocyte infiltration levels, immune check-
points, and immunotherapy response rates were significantly different between the two groups. Patients with high 
risk scores had lower overall levels of immunocyte infiltration but higher immunotherapy response rates. The key 
gene ribonucleotide reductase subunit M2 (RRM2) was associated with LUAD prognosis, which may be related to its 
ability to regulate the infiltration levels of activated mast cells and activated CD4 memory T cells. In addition, RRM2 
was involved in ferroptosis, and its expression was up regulated in lung cancer tissues and the LUAD cell lines. Silenc-
ing RRM2 can inhibit the proliferation and induce ferroptosis of H1975 cells suggesting that silencing RRM2 could 
promote ferroptosis in H1975 cells.

Conclusion:  Our results revealed RRM2 as a promising biomarker and therapeutic target associated with tumor 
immune infiltration in patients with LUAD.
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Introduction
Pulmonary carcinoma is the most serious malig-
nancy, representing the leading cause of cancer deaths 
in developed and developing countries worldwide 
[1]. Lung adenocarcinoma (LUAD) is the most com-
mon histological type of non-small cell pulmonary 
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carcinoma [2], and compared with other lung can-
cer subtypes, LUAD is more closely associated with 
genomic changes and is more heterogeneous [3]. 
Although mortality from pulmonary carcinoma has 
decreased in recent years, it still causes more deaths 
than breast, prostate, colorectal, and intracranial 
tumors combined [4]. More than half of patients with 
LUAD are diagnosed at advanced stages or with meta-
static disease [5], and the patients have a poor progno-
sis with a low 5-year survival rate [6].

Ferroptosis, a recently discovered form of programmed 
cell death characterized by iron-dependent lipid per-
oxidation, is associated with a variety of diseases, par-
ticularly cancer; therefore, modulating the occurrence 
of ferroptosis in cancer cells could be a potential strat-
egy for cancer therapy [7]. According to the literature, 
mitochondrial-induced cysteine starvation, endoplasmic 
reticulum-related oxidative stress, lysosome dysfunction, 
and lipid peroxidation related to Golgi stress contribute 
to the induction of ferroptosis in LUAD [8]. Research-
ers have also identified numerous genes involved in the 
organelle changes that induce ferroptosis. The regulatory 
mechanisms of these ferroptosis-related genes (FRGs) 
in the occurrence and development of pulmonary carci-
noma have attracted increasing attention [9]. Bufu Tang 
et  al. found that FRGs affected pulmonary carcinoma 
progression and tumor immunocyte infiltration. Ribo-
nucleotide reductase subunit M2 (RRM2), a rate-lim-
iting protein for deoxynucleoside triphosphate (dNTP) 
synthesis, inhibitedM1 macrophage polarization and 
promoted M2 macrophage polarization. However, fer-
rostatin-1 treatment effectively rebalanced macrophage 
polarization mediated by RRM2 inhibitors [10]. Huang 
et al. reported that aldo–keto reductase family 1 member 
C1 (AKR1C1) induced ferroptosis through multiple path-
ways and was associated with various cancer-infiltrating 
immune cells [11]. A study by Min Wang et  al. showed 
that long noncoding RNA (lncRNA) and competing 
endogenous RNA (ceRNA) networks also play impor-
tant roles in tumorigenesis and ferroptosis. Endogenous 
microRNA 6852 (miR-6852) inhibited cell growth, and by 
acting as an miR-6852 sponge, LINC00336 increased the 
expression of cystathionine-β-synthase (CBS), thereby 
inhibiting ferroptosis [12]. In addition to chromosomal 
genes, ferroptosis-related lncRNAs in the cytoplasm can 
also inhibit cancer by activating the p53 pathway. For 
example, studies by Chao Mao et al. showed that lncRNA 
P53RRA could bind to protein-binding protein 1(G3BP1) 
to activate G3BP1. The P53RRA–G3BP1 interaction 
replaced p53 in the G3BP1 complex, causing more p53 to 
be retained in the nucleus and leading to cell cycle arrest, 
apoptosis, and ferroptosis [13]. Luo et  al. summarized 
the regulatory mechanism of ferroptosis and the effect 

of ferroptosis on tumor cell metabolism and antitumor 
immunity [14].

However, the significance of FRGs in the immune 
microenvironment and their potential role in immu-
notherapy for LUAD remains unclear, and thus FRGs 
require further investigation. In this study, we identi-
fied seven FRGs closely related to the immune micro-
environment of LUAD, of which RRM2 affected the 
prognosis of LUAD by regulating the infiltration levels of 
activated mast cells and activated CD4 memory T cells. 
The expression of RRM2 also affected the response rate 
to LUAD immunotherapy. We also demonstrated the 
expression RRM2 is elevated in lung cancer tissues and 
knockdown of RRM2 induces ferroptosis in lung cancer 
cells H1975.We propose potential immune subtypes of 
LUAD based on the FRG cluster analysis that may lead to 
improved treatment for LUAD.

Materials and methods
Obtaining FRGand gene expression data for LUAD
A list of FGRs was downloaded from the public database 
FerrDb (http://​www.​zhoun​an.​org/​ferrdb/); after the non-
coding genes were deleted, 382 FRGs remained. Tran-
scriptome data for LUAD in fragments per kilobase of 
sequence per million mapped reads (FPKM) format were 
downloaded from The Cancer Genome Atlas (TCGA) 
(https://​ancer​genome.​nih.​gov/). The data included a 
total of 56,530 genes from 594 samples (535 tumor sam-
ples and 59 paracancerous samples); 492 of the samples 
had complete clinical information, including the sur-
vival time, survival status, age, gender, stage, and tumor/
node/metastasis (TNM) state. Data from the GSE310219 
cohort (54,675 genes from 307 early LUAD samples, 292 
of which had complete clinical information) were down-
loaded from the Gene Expression Omnibus (GEO) data-
base (https://​www.​ncbi.​nlm.​nih.​gov/​geo/).The clinical 
data of patients with LUAD included in this study are 
shown in Table 1.

Differentially expressed genes (DEGs) between LUAD 
tissues and adjacent tissues
The mRNA data for the TCGA-LUAD and GSE310219 
cohorts were standardized. The transcription sequences 
were then compared with the FRGs, which were ana-
lyzed using limma (an R software package). Differentially 
expressed genes (DEGs) with a log2 absolute value (FC) 
of > 1and an adjusted P-value of < 0.05 were selected.

Establishment and validation of a risk signature
Univariate Cox regression analysis was used to screen 
genes related to overall survival (OS), and multivariate 
Cox regression analysis was used to identify genes with 
independent prognostic effects. A P-value of < 0.05was 

http://www.zhounan.org/ferrdb/
https://ancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/


Page 3 of 17Deng et al. Cancer Cell International          (2022) 22:292 	

considered statistically significant. The genes screened 
using multivariate Cox regression were used to construct 
a risk signature; subsequently, the following predic-
tive risk-scoring model was established combining the 
regression coefficient (β) with the gene expression level: 
RiskScore = (β1 * expression level of ALOX12B) + (β2 
* expression level of DDIT4) + (β3 * expression level 
of SLC7A5) + (β4 * expression level of TRIB3) + (β5 
* expression level of IL33) + (β6 * expression level of 
RRM2) + (β7 * expression level of CAV1). The establish-
ment of the risk signature was achieved using the R soft-
ware packages ‘survival’ and ‘survminer’.

Prognostic potential analysis of risk signature
First, univariate and multivariate Cox regression were 
used to analyze whether the prognostic indicators were 
independent of other traditional clinical features, such as 
age, gender, and TNM state. The hazard ratio (HR) and 
95% confidence interval (CI)of each variable were meas-
ured, and a P-value of < 0.05 was considered statistically 
significant. Then, the patients with LUAD in TCGA and 
the GEO database were divided into a high-risk group 
and a low-risk group with the median risk score as the 
boundary. The difference in the OS between the high-
risk group and the low-risk group was analyzed using 

the Kaplan–Meier (K–M) curve. The prognostic poten-
tial and significance of the risk model were tested by a 
receiver operating characteristic (ROC) curve, and the 
area under the curve (AUC) was used to evaluate the 
specificity and sensitivity of the model. This analysis 
was conducted using the ‘survive’ package in R, and the 
‘ggDCA’ package was used for the decision curve analy-
sis (DCA) to analyze the net benefit of the risk signature. 
P < 0.05 represented statistical significance.

Enrichment analysis
Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses were per-
formed using the R packages ‘clusterProfiler’, ‘org.Hs.eg.
db’, and ‘enrichplot’ to explore the differences in various 
molecular mechanisms between the high- and low-risk 
groups. GO analysis included biological processes (BPs), 
cell components (CCs), and molecular functions (MFs).

Construction of a predictive nomogram
Using the R packages ‘survival’ and ‘regplot’, all inde-
pendent predictors of LUAD were identified and then 
combined with the survival information of patients with 
LUAD; nomograms were drawn to predict 1-,3-, and 
5-year survival rates.

Analysis of tumor microenvironment
First, the StromalScore, ImmuneScore, and EstimateS-
core of each LUAD sample were calculated by the estima-
tion algorithm, and the differences between the high- and 
low-risk groups were analyzed. Second, transcriptome 
data were quantitatively converted into the absolute 
abundance of specific cell types, including immune cells 
and stromal cells, using seven algorithms: CIBERSORT, 
TIMER, CIBERSORT-ABS, QUANTISEQ, MCPCOUN-
TER, XCELL, and EPIC. Third, immunocytes with 
independent predictive significance for the prognosis 
of LUAD were identified by univariate and multivari-
ate Cox regression analysis, and the correlation between 
the expression of each risk gene and the level of immu-
nocyte infiltration was analyzed using a correlation test. 
Fourth, the TCGA-LUAD cohort was clustered accord-
ing to the level of immunocyte infiltration, and the LUAD 
samples were divided into a high-infiltration group and a 
low-infiltration group. The differences in clinical charac-
teristics between the two groups were compared using a 
difference test. Finally, the scores of 29 immune-related 
functions or pathways were calculated by single set gene 
set enrichment analysis (ssGSEA), and the differences in 
scores between the high- and low-risk groups were com-
pared (statistical significance was defined as P < 0.05 for 
all tests).

Table 1  Clinical characteristics of lung adenocarcinoma patients 
included in this study

Characteristic TCGA-LUAD 
(n = 492)

GSE310219 (n = 292)

Age (%)

  ≤ 65 235(47.8) 179 (61.3)

  > 65 257(52.2) 113 (38.7)

Gender (%)

 Male 228 (46.3) 249 (85.3)

 Female 264 (53.7) 43 (14.7)

Stage (%)

 I + II 386 (78.5) –

 III + IV 106 (21.5) –

T(%)

 T1 + T2 427 (86.8) 235 (80.5)

 T3 + T4 62 (12.6) 52 (17.8)

 Tx 3 (0.6) 5 (1.7)

N(%)

 N0 317 (64.4) 198 (67.8)

 N1 + N2 + N3 165 (33.5) 93 (31.8)

 Nx 10 (2.0) 1 (0.3)

M(%)

 M0 328 (66.7) 281 (96.2)

 M1 25 (5.1) 8 (2.7)

 Mx 139 (28.2) 3 (1.1)
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Correlation analysis of immunotherapy
Tumor immune dysfunction and exclusion (TIDE) and 
microsatellite instability (MSI) scores of TCGA-LUAD 
participants were downloaded from the TIDE database 
(http://​tide.​dfci.​harva​rd.​edu/), and the tumor mutational 
burden (TMB) of patients with LUAD was downloaded 
using the R packages ‘TCGAbiolinks’ and ‘maftools’. 
Then, the Wilcoxon rank sum test was used to determine 
whether there were significant differences in the scores 
of five types of immunotherapies between the high- and 
low-risk groups. Moreover, the data of participants in the 
LUAD cohort (GSE126044) with anti-PDL1 treatment 
history were downloaded from the GEO database, and 
the differences in responses to anti-PDL1 immunother-
apy between patients with high and low risk were com-
pared. Additionally, the expression matrix of common 
immune checkpoints was extracted from the TCGA-
LUAD cohort, and the expression differences between 
the high- and low-risk groups were compared. Finally, 
the correlation between first-line targeted therapy driv-
ing genes and risk genes was analyzed using a correlation 
test. P < 0.05was considered statistically significant.

Drug screening
The risk genes were compared with the reference data 
set of the CMap database (https://​porta​ls.​broad​insti​tute.​
org/​cmap/), and the drugs were ranked according to the 
enrichment of risk genes in the reference gene expression 
profile. The drugs that significantly inhibited the expres-
sion of high-risk genes were screened for those with 
a P-value of < 0.05 and an enrichment score of < 0.The 
chemical structures of the selected drugs were searched 
in the PubChem database (https://​pubch​em.​ncbi.​nlm.​
nih.​gov/).​Using the ‘pRRophetic’ algorithm, a ridge 
regression model was constructed to predict the IC50sof 
these drugs according to the Genomics of Drug Sensitiv-
ity in Cancer (GDSC) (https://​www.​cance​rrxge​ne.​org/) 
cell line expression profile and TCGA gene expression 
profile, and antitumor drugs with significantly lower 
IC50s for high-risk LUAD samples were screened.

Cell culture and transfection
The normal lung cell line BEAS-2B and seven lung can-
cer cell lines (H1299, A549, H460, H23, H838, PC-9, and 
H1975) were purchased from the American Type Cul-
ture Collection (ATCC) and maintained in 1640 medium 
containing 10% fetal bovine serum (FBS) (Gibco, Grand 
Island, NY, USA) and 1% penicillin–streptomycin (Gibco, 
Grand Island, NY, USA) and cultured at 37  °C with 5% 
CO2. The siRNA of RRM2 was purchased from San-
gon Biotech (Shanghai, China) was used to silence the 
expression of RRM2. In this study, the sequence of RRM2 
siRNA was sense: 5’- GCG​AUU​UAG​CCA​AGA​AGU​

UTT-3’. H1975 cells were seeded in 12-well plates at a 
density of 6 × 104 cells/well and transfected 24  h later. 
RRM2 siRNA or negative control (NC) siRNA was trans-
fected to a final concentration of 20 nM using an siRNA 
transfection reagent (Polyplus, France). Finally, the trans-
fected cells were detected after48h.

Western blot
Proteins were extracted from cells, and cell lysates were 
prepared using RIPA lysate with phenylmethylsulfonyl 
fluoride (PMSF) (Solarbio, Beijing, China). Protein quan-
tification was performed using a BCA protein assay kit 
(Sangon Biotech, Shanghai, China). Proteins were then 
separated by 12% sodium dodecyl sulfate–polyacryla-
mide gel electrophoresis (SDS–PAGE) and transferred to 
nitrocellulose membranes. The membranes were blocked 
with 5% bovine serum albumin (BSA) for 1  h and then 
incubated with primary antibody overnight at 4  °C. The 
next day, after washing the membrane three times with 
tris-buffered saline with Tween 20 (TBST), the mem-
brane was incubated for 1  h at room temperature with 
horseradish peroxidase-labeled secondary antibody 
(1:4000), followed by three washes with TBST. Finally, the 
colors were developed using BeyoECL Moon (Beyotime 
Biotechnology, Shanghai, China).

Detection of lipid peroxidation and apoptosis
C11-BODIPY 581/591 (10 μM; aBclone, Wuhan, China) 
was added to the H1975 cells, and the cells were incu-
bated at 37 °C and 5% CO2 for 1 h. Then, the cells were 
washed twice with phosphate-buffered saline (PBS). After 
trypsin digestion, the cells were resuspended with PBS 
containing 5% FBS and analyzed by flow cytometry. An 
apoptosis detection kit (BD Biosciences) was used to pre-
pare fluorescent dyes containing propidium iodide (PI) 
and fluorescein isothiocyanate (FITC) according to the 
manufacturer’s instructions. The H1975 cells were incu-
bated in the dark at room temperature for 15  min and 
then analyzed by flow cytometry.

Iron assay
FerroOrange (Dojindo, China) was used to detect the 
ferrous level of the cells. Following the manufacturer’s 
instructions, cells were incubated with FerroOrange for 
0.5  h. The fluorescence intensity was evaluated using a 
rotating disk super-resolution laser confocal microscope.

Immunohistochemical staining
From January 2020 to January 2021, 12 samples of LUAD 
tissues and normal tissues in the Department of Car-
diothoracic Surgery, Affiliated Hospital of Guangdong 
Medical University, were selected. The obtained tissue 
was transferred to a −80  °C refrigerator in an ice box 

http://tide.dfci.harvard.edu/
https://portals.broadinstitute.org/cmap/
https://portals.broadinstitute.org/cmap/
https://pubchem.ncbi.nlm.nih.gov/).Using
https://pubchem.ncbi.nlm.nih.gov/).Using
https://www.cancerrxgene.org/


Page 5 of 17Deng et al. Cancer Cell International          (2022) 22:292 	

for subsequent immunohistochemical (IHC) experi-
ments. All included research participants were assessed 
by experts in the pathology department of our hospital, 
and none of the patients studied had received radiother-
apy, chemotherapy, targeted therapy, or immunotherapy 
before surgery. All patients signed informed consent 
before surgery. The tissue was fixed with 4% paraformal-
dehyde and embedded in paraffin to prepare slices with 
a thickness of 5 μM. The slices were then dewaxed with 
xylene and dehydrated in gradient concentrations of alco-
hol. Subsequently, 0.01  M sodium citrate (pH 6.0) was 
used for antigen repair, and endogenous peroxidase was 
blocked by adding 0.3% hydrogen peroxide (H2O2) and 
incubating in 10% goat serum albumin for 30  min. The 
slices were then incubated overnight with RRM2 primary 
antibody at 4  °C.The next day, the samples were incu-
bated with 3,3′diaminobenzidine (DAB) after incubating 
with HRP-conjugated anti-rabbit secondary antibody for 
1 h. The sections were stained with Mayer hematoxylin, 
dehydrated, removed with xylene, sealed with neutral 
resin, and detected by a multi-functional microporous 
microscope (BIOTEK).

Statistical analysis
All data were generated, processed, and analyzed in R 
(version 4.1.1), R-Studio, and Strawberry Perl (5.32.1.1). 
Student’s t-test was used to determine the difference 
between the two groups, and the Wilcoxon rank sum test 
was used to identify differences for data from non-paired 
groups. P < 0.05 indicated that the difference was statisti-
cally significant. *P < 0.05, **P < 0.01, and ***P < 0.001.

Results
Obtaining DEGs of LUAD
A total of 382 FRGs were downloaded from the public 
database FerrDb, and noncoding genes were deleted from 
the data set. Difference analysis showed that a total of 70 
FRGs were differentially expressed between tumors and 
normal tissues; the characteristics of these FRGs in the 
TCGA-LUAD cohort are shown in Fig. 1A. In addition, 
all LUAD samples were clustered by consensus clustering 
based on 70 differentially expressed FRGs, and the best 
clustering effect was achieved when K = 4 (Additional 
file 1: Figure S1A–D). Surprisingly, significant differences 
were observed in OS between the four clusters (Addi-
tional file 1: Fig. S1E).

Construction and validation of prognostic model
As shown in the forest map, 15 DEGs associated with 
LUAD prognosis were identified by the R software pack-
age ‘survival’ in the TCGA cohort (Fig. 1B). Subsequently, 
seven FRGs with independent prognostic significance 
for patients with LUAD were obtained by multivariate 

Cox regression analysis on the 15 appealed DEGs; the 
locations of these FRGs in the differential volcanic map 
are shown in Fig. 1C. The Kaplan–Meier curve revealed 
the survival differences between the seven FRGs at dif-
ferent levels (Additional file  1: Fig.  S1F–L). Ultimately, 
we established a seven-gene risk signature using the 
multivariate Cox regression coefficient, modeled as fol-
lows: Risk score of each patient = (0.262297470303534 * 
expression level of ALOX12B) + (0.0055627086031226 
* expression level of DDIT4) + (0.00646442374221167 * 
expression level of SLC7A5) + (− 0.0131510931059613 
* expression level of TRIB3) + (− 0.0300191156801198 * 
expression level of IL33) + (0.015384279700975 * expres-
sion level of RRM2) + (0.0046423481143834 * expression 
level of CAV1). According to the risk index ranking of 
504 patients in TCGA-LUAD, patients were divided into 
a high-risk group and a low-risk group, with the median 
risk index as the cutoff between high and low risk. An 
independent prognostic analysis of the clinical charac-
teristics of LUAD (age, gender, stage, and risk score) was 
conducted (Fig.  1D, E) after screening out the clinical 
information. The risk score and clinical stage were inde-
pendent factors affecting the prognosis of LUAD. The 
clinical correlation chart in Additional file 3: Figure S3A 
shows the proportion of patients with high and low risk 
scores at each stage. Further analysis showed that the OS 
rate of TCGA-LUAD participants in the high-risk group 
was significantly lower than the OS rate of those in the 
low-risk group (P < 0.001) (Fig. 2A). Figure 2B shows that 
a difference in the OS rate was also present between the 
low-risk and high-risk groups in the GSE30219 cohort; 
the OS rate of the high-risk group was significantly lower 
than that of the low-risk group (P < 0.001). The ROC 
curve (Fig.  2C) shows that our risk signature had high 
sensitivity and specificity in predicting the OS rate of 
patients with LUAD. The AUCs were 0.707, 0.685, and 
0.673 for 1-, 2-, and 3-year OS, respectively. We then 
added clinical features, including TIDE, tumor inflamma-
tion signature (TIS), age, and stage, to compare the accu-
racy of OS prediction. As shown in Fig. 2D, the risk index 
was the best predictor of OS. The DCA (Fig. 2E) showed 
that the net benefit of the risk index was the largest. 
Finally, a nomogram based on the two independent prog-
nostic factors was constructed to quantify the survival 
probability of patients with LUAD in 1, 3, and 5  years 
(Fig. 2F).

Enrichment analysis
We conducted an enrichment analysis to explore the 
potential biological characteristics of 70 DEGs. The 
25 pathways shown in Additional file  2: Figure S2A 
were enriched in the KEGG enrichment analysis. The 
more prominent pathways, represented by red bubbles, 
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included fluid shear stress and atherosclerosis, HIF-1 
signaling pathways, lipid and atherosclerosis, and fer-
roptosis. GO enrichment analysis showed that the bio-
logical processes (including responses to oxidative stress 
and metal ions) and the cell components (including the 
apical plasma membrane, cell apex, and oxidoreductase 
complex) were significantly enriched (Additional file  2: 
Figure S2B). Furthermore, GSEA enrichment analysis 
showed that the high- and low-risk groups were enriched 
incompletely different functions or pathways. Among 
high-risk patients, small cell pulmonary carcinoma, mel-
anoma, cancer pathways, thep53 signaling pathway, and 
pathogenic Escherichia coli infection were significantly 
enriched (Additional file 2: Figure S2C).

Difference of immune related indexes between LUAD 
patients
We calculate the StromalScore, ImmuneScore, and Esti-
mateScore for each LUAD sample usingthe estimate 

algorithm. The t-tests revealed significant differences in 
StromalScore, ImmuneScore, and EstimateScore between 
high- and low-risk groups (Fig.  3A–C). To explore the 
influence of different levels of immune-related scores 
on the prognosis of patients, the StromalScore, Immu-
neScore, and EstimateScore of all patients with LUAD 
were divided into high- and low-score groups by aver-
age. The OS rates of the two groups were compared using 
the Kaplan–Meier method; Fig.  3D shows that a higher 
EstimateScore represented a better prognosis. The same 
was true for ImmuneScore and StromalScore (Additional 
file 5: Figure S5A, B). Significant differences in risk scores 
were also observed among the four clusters (Additional 
file 3: Figure S3C).

LUAD immune subtype based on FRG clustering
In addition, the t-test revealed significant differences in 
immune-related scores among the four clusters obtained 
by the consensus clustering analysis (Fig.  3E–G), 

Fig. 1  Construction of 7–gene Risk Signature. A The heatmap of FRDEGs between normal and tumor samples. B The forest plot of univariate 
Cox regression. C Differential expressed volcanic maps. The positions of seven key FRGs in the volcanic map. D, E Forest plots show independent 
prognostic roles of RiskScore and other clinical features
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suggesting that the four clusters obtained for70 differ-
entially expressed FRGs may serve as immune subtypes. 
To explore the relationship between the aforementioned 
four clusters and the two groups clustered according to 
the level of immunocyte infiltration, we drew a clini-
cal correlation heat map, shown in Fig.  3H. Significant 
differences were observed in immunocyte infiltration 
among the four clusters. For example, the samples with 
high immunocyte infiltration in the composition of C3 
were significantly more than those with low immuno-
cyte infiltration, whereas the samples with low immu-
nocyte infiltration in the C2 and C4 clusters were more. 
The mulberry diagram in Fig. 4A shows the correspond-
ing relationship between immune infiltration level, FRG 
cluster, risk level, and other clinical features. The above 
results show that the four clusters identified by the clus-
tering of 70 FRGs may represent the immune subtypes of 
LUAD.

Further analysis of immune cell infiltration in LUAD tumor 
microenvironment
The CIBERSORT algorithm was used to quantify the lev-
els of 22 immune cells in each LUAD sample, and at-test 
was used to compare the levels of immune cells between 
the high-risk and low-risk patients. As shown in Fig. 4B, 
significant differences were observed in the levels of B 

cell memory, CD4 memory T cells, activated CD4 mem-
ory T cells, regulatory T cells (Tregs), resting NK cells, 
monocytes, M0 macrophages, resting dendritic cells, 
resting mast cells, and activated mast cells between high-
risk and low-risk patients. The relative proportion of 22 
immune cells in all LUAD samples is shown by a barplot 
(Additional file  3: Figure S3D). When Kaplan–Meier 
curves were used to compare the effects of immuno-
cytes with different infiltration levels on the OS rates, we 
found that different infiltration levels of 12 typesof cells, 
such as activated CD4 memory T cells and resting mast 
cells, were associated with different OS rates (Additional 
file 4: Figure S4A–L). To learn more about the differences 
between immune cells in high- and low-risk patients, we 
analyzed the data using six other algorithms (TIMER, 
CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, 
XCELL, and EPIC); Fig.  4B shows the different infiltra-
tion levels of immunocytes in each database.

Relationship between immunocyte infiltration and clinical 
characteristics
The correlation heat map shown in Fig.  4C reveals the 
relationship between the immune cells; most modules 
are blue, suggesting that the immune cell infiltration in 
the LUAD microenvironment is negatively correlated. 
To understand the correlation between immune cell 

Fig. 2  Verification of 7-gene Risk Signature and Construction of Nomo Graph. A, B Survival analysis between the high- and low-risk groups based 
on OS. C ROC curve of the 7-gene signature model. D 1-year survival rate predicted by 7-gene signature and other clinical features was compared 
in ROC curve. E Decision curve. F Nomogram for predicting 1,3,5-year survival rates in LUAD patients
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infiltration and clinical characteristics, we calculated 
the immune cell infiltration level of all LUAD samples 
in TCGA using the ssGSEA algorithm and then down-
loaded the clinical information for all LUAD samples 
from TCGA using the R package ‘TCGAbiolinks’. The 
580 LUAD samples with clinical information were clus-
tered into two groups according to the level of immune 
cell infiltration and visualized by a heat map (Fig.  5A). 
The left portion, dominated by blue, represents the sam-
ples with less immunocyte infiltration, whereas the right 
portion, dominated by red, represents the samples with 
higher immunocyte infiltration. The clinical information, 
such as survival status, stage, gender, tumor location, 
and related driving gene mutation state, corresponded 

to the heat map below. In addition, to better under-
stand the immune differences between high-risk and 
low-risk groups, we quantified 29 immune-related func-
tions using the ssGSEA algorithm. As shown in Fig. 5B, 
16 immune-related functions or pathways, such as Adcs 
and CCR, showed significant differences. When the 
Kaplan–Meier curve was used to compare the effects of 
different levels of immune-related functions on OS rates, 
we found that various levels of multiple immune-related 
functions or pathways predicted different OS rates. Fig-
ure  5C shows that varying levels of mast cell-related 
immune functions or pathways corresponded to a dif-
ferent prognosis for patients with LUAD. After univari-
ate Cox regression analysis, we identified activated mast 

Fig. 3  Difference of immune related indexes between LUAD patients. A, B, C Violin Chart. Differences in StromalScore, ImmuneScore and 
EstimateScore between high- and low-risk patients. D Different OS based on different levels of ESTIMATEScore. E, F, G Differences in StromalScore, 
ImmuneScore and EstimateScore among the four FRGs clusters. H Proportion of high- and low-infiltration of immunocytes in four FRGs clusters
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Fig. 4  Difference and correlation of immunocyte infiltration in LUAD patients. A Alluvial diagram of the relationship between RiskScore and several 
features. B Immune cell infiltration heatmap, 7 algorithms to assess immune cell infiltration level among the high-and low-risk groups. C Correlation 
heatmap, correlation of infiltration levels of immune cells in LUAD

Fig. 5  Analysis of Immunocytes Clustering and immune-related functions in LUAD Patients. A Clustering of immunocytes infiltration. TCGA-LUAD 
cohort was divided into two groups with high-and low-infiltration levels according to 24 immunocytes. B The difference of immune-related 
function scores between high- and low-risk groups. C Different infiltration levels of Mast-cell represent different LUAD OS
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cells and activated CD4 memory T cells as prognos-
tic immune cells of LUAD; these two cell types, which 
had high levels of infiltration, were adverse prognostic 

factors for LUAD (Fig.  6A). Further analysis confirmed 
that the expression levels of seven risk genes signifi-
cantly affected the infiltration level of immunocytes in 

Fig. 6  Analysis of the relationship between FRGs and prognosis-related immunocytes and immunotherapy-related indicators. A Immunocytes 
which play independent prognostic role in LUAD patients. B Correlation between the expression levels of 7 hug FRGs and the infiltration levels of 
immunocytes. C Immunocytes whose infiltration level correlated with RRM2 expression. D Difference in TMB among high- and low-risk groups; E, F, 
G, H Violin Chart. Differences in Four Immunotherapy Related scores between high- and low-risk Groups
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the LUAD microenvironment, and the infiltration level of 
activated mast cells, which was most related to the prog-
nosis of LUAD, was affected by the expression levels of 
RRM2 and IL33 (Fig.  6B). The expression of RRM2 not 
only regulates the infiltration of activated mast cells but 
is also related to the infiltration of 19 immunocytes, such 
as CD4 memory T cells, dendritic cells, and macrophages 
(Fig. 6C).

Risk signature and immunotherapy
To explore the role of the risk signature in guiding immu-
notherapy, we identified16 patients with pulmonary 
carcinoma receiving anti-PDL1 immunotherapy in the 
GSE126044 cohort. Additional file  5: Figure S5G shows 
the differences in immunocyte infiltration and response 
to anti-PD-L1 immunotherapy between high-risk and 
low-risk patients. High-risk patients had lower immu-
nocyte infiltration levels, but their response rates to 
anti-PD-L1 immunotherapy were higher. In addition, we 
found that the expression of RRM2 was higher in patients 
who had no response to anti-PDL1 treatment (P = 0.052) 
(Additional file 5: Figure S5F). We then downloaded the 
TIDE and MSI scores of the LUAD cohort from the TIDE 
database, and we downloaded the TMB data of patients 
with LUAD using the R packages ‘TCGAbiolinks’ and 
‘maftools’. The Wilcoxon rank sum test revealed signifi-
cant differences between the five immune therapy-related 
scores described above in high-risk and low-risk patients 
(Fig.  6D–H). The patients with LUAD with high TMB 
had worse OS (Additional file  5: Figure S5D). Subse-
quent correlation analysis showed that the risk score was 
positively correlated with TMB (R = 0.23, P = 0.000018) 
(Additional file 5: Figure S5C). The correlation heat map 
in Additional file 3: Figure S3B shows the distribution of 
clinical features in the high-risk and low-risk groups. The 
distribution of TMB, gender, stage, T, and N was signifi-
cantly different in the high-risk and low-risk groups.

To study the relationship between the seven-gene risk 
signature and immunotherapy, we counted the muta-
tions of seven key genes in patients with LUAD. As 
shown in the waterfall diagram in Additional file 5: Fig-
ure S5E, ALOX12B had the highest the mutation prob-
ability (18%), followed by RRM2 and IL33, and missense 
mutation was the most common form. To further explore 
the relationship between the expression of the seven risk 
genes and immunocyte infiltration, we conducted a cor-
relation analysis, as shown in Fig. 7A, B. The expression 
level of RRM2 positively regulated the infiltration abun-
dance of activated mast cells (R = 0.12) and activated 
CD4 memory T cells (R = 0.41), and the infiltration level 
of resting mast cells was significantly negatively corre-
lated with the expression level of ALOX12B (R =  −0.13) 
(Additional file  3: Figure S3F). When the ssGSEA 

algorithm was used to analyze the scores of immune-
related functions or pathways, the scores of the check-
points between high- and low-risk LUAD samples were 
significantly different. The checkpoints were divided into 
high and low groups using the average, and the Kaplan–
Meier curve showed significant differences in survival 
(Fig.  7C). Next, we analyzed the expression levels of 49 
common immune checkpoints in high-risk versus low-
risk patients, as shown in the box plot in Fig.  7D. The 
expression levels of ALK, ROS1, CD44, and other 27 
checkpoints were different. As shown in Fig.  7E, F, the 
expression levels of ALK and ROS1 decreased as the 
risk score increased. Furthermore, the correlation analy-
sis showed that ALK and ROS1 were significantly asso-
ciated with key risk genes. The expression of ROS1 was 
positively correlated with that ofIL33 and negatively cor-
related with that ofSLC7A5, TRIB3, and RRM2 (Fig. 7G). 
The expression of ALK was positively correlated with the 
expression of IL33 and CAV1and negatively correlated 
with the expression of ALOX12B, SLC7A5, and TRIB3 
(Fig. 7H). The expression of two additional checkpoints, 
PD-1 and PD-L1, were also significantly correlated with 
multiple prognostic FRGs (Additional file 5: Figure S5H, 
I).

Overexpression of RRM2 in tumor tissues
To detect the expression of RRM2 in normal lung tis-
sues and lung cancer tissues, we performed immuno-
histochemical experiments for comparison. The results 
showed that the expression of RRM2 in tumor tissues 
was higher than that in normal lung tissues (Fig. 8).

Silencing RRM2 induced ferroptosis in lung cancer cells
Ferroptosis is a recently discovered form of cell death 
characterized by lipid peroxidation accumulation and 
iron dependence. Further study on the specific mecha-
nism of ferroptosis is expected to bring new prospects 
for cancer treatment. To determine the clinical rele-
vance of RRM2 expression, we detected RRM2 expres-
sion in a normal lung cell line (BEAS-2B) and seven 
lung cancer cell lines (H1299, A549, H460, H23, H838, 
PC-9, and H1975). Western blotting showed that RRM2 
protein was highly expressed in H1975 cells. In addi-
tion, we detected the expression of 4HNE and ACSL4 
in different lung cancer cell lines. The results showed 
that 4HNE and ACSL4 were highly expressed in H1975 
cells (Fig. 9A), indicating that H1975 cells may be more 
sensitive to ferroptosis. Therefore, we used H1975 
cells for subsequent experiments. After H1975 cells 
were transfected with RRM2siRNA for 48 h, cell death 
was detected by flow cytometry. The results showed 
that silencing RRM2 could induce cell death (Fig. 9B). 
To further study the effect of silencing RRM2 on 
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ferroptosis, Western blotting was used again to detect 
the expression of several proteins in H1975 cells with 
RRM2 siRNA transfected. The results showed that the 
expression of RRM2 in the silencing group was signifi-
cantly decreased, indicating that silencing RRM2 was 
successfully. In the meantime, the expression of ferrop-
tosis-related indicators like SLC7A11 and GPX4 were 
decreased, while ACSL4 were increased in H1975 cells 

after silencing RRM2 (Fig. 9C). Then, we continued to 
detect the levels of ferrous ion and lipid peroxidation 
in lung cancer cells after silencing RRM2. The results 
showed that silencing RRM2 could induce an increase 
in ferrous ion level (Fig.  9D) and lipid peroxidation 
accumulation (Fig.  9E) in H1975 cells. Ultimately, we 
demonstrated that silencing RRM2 induced ferroptosis 
in H1975 cells.

Fig. 7  FRGs regulate the level of immunocytes infiltration and immune checkpoint expression in LUAD patients. A, B The change trend of the 
infiltration level of Mast-cells and T cells CD4 memory activated with the expression of RRM2. C Different Check-point levels represent different 
LUAD OS. D 27 common checkpoint genes are differentially expressed between high and low risk groups. E, F The expression of ROS1 and ALK 
change with risk score. G, H Correlation of the expression of ROS1 and ALK with 7 key FRGs
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Screening drugs for high‑risk FRGs
To predict effective therapeutic drugs for patients 
with high-risk LUAD, we constructed a ridge regres-
sion model to predict the drug IC50using the GDSC 
cell line expression profile and TCGA gene expression 
profile; we screened six antitumor drugs with signifi-
cantly lower IC50 in high-risk LUAD: bosutinib, dasat-
inib, gefitinib, tipifarnib, docetaxel, and JNK inhibitor 
VIII (Additional file 6: Figure S6A–F). These six antitu-
mor drugs could kill tumor cells in patients with high-
risk LUAD. In addition, we compared the risk genes 
with the reference data set of the CMap database and 
obtained the correlation of 1309 drugs according to the 
enrichment of risk genes in the reference gene expres-
sion profile. With P < 0.05 as the standard, 158 drugs 
were found to be significantly enriched in high-risk 
genes; of these, 86 drugs promoted the expression of 
high-risk genes, and 72 drugs inhibited the expression 
of high-risk genes. Medrysone, phenoxybenzamine, 
vorinostat, thioguanosine, apigenin, and chrysin were 
selected as the six drug candidates enriched with more 
prominent inhibitors of high-risk gene expression, and 
their chemical structures were found in the PubChem 
database (Additional file 6: Figure S6G-L). The detailed 
information on these six drugs is shown in Table 2.

Discussion
Recent studies have shown that ferroptosis is closely 
related to many diseases, such as cancer, blood dis-
eases, neurological diseases, kidney diseases, and local 
ischemia–reperfusion injury [15]. A growing number of 
studies investigating ferroptosis in cancer have revealed 
its potential as an immunotherapy strategy [16]. LUAD 
is the most common pathological type of non-small cell 
lung cancer, and most patients are diagnosed at advanced 
stages, losing their opportunities for surgical treatment. 
Chemotherapy, radiotherapy, and traditional Chinese 
medicine are common treatment choices for patients 
with advanced LUAD. However, the 5-year survival rate 
is only 15% [17]. The benefits of targeted therapy and 
immunotherapy in the treatment of advanced cancer 
patients have begun to change the treatment of can-
cer, providing new treatment methods for patients with 
advanced tumors. In this study, the seven-gene risk sig-
nature we established was closely related to the immune 
microenvironment of LUAD, and the immunocyte infil-
tration and immune function were significantly differ-
ent in the high- and low-risk groups. Moreover, the two 
groups of patients with LUAD with high and low infiltra-
tion (revealed by immunocyte infiltration clustering) had 
different ferroptosis gene clusters and risk scores, which 

Fig. 8  The expression of RRM2 in normal lung tissue and lung cancer tissue was detected by immunohistochemistry. 674, 677, 712, 728, 733 and 
734 are patient numbers. Expression of RRM2 in LUAD tissues was higher than that in normal tissues
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suggests that our seven-gene signature may provide guid-
ance for LUAD immunotherapy. The immunotherapy 
analysis showed that patients with higher risk scores 
were more likely to benefit from immunotherapy. How-
ever, previous results showed that the overall infiltration 
level of immunocytes in high-risk patients was lower, 
perhaps because low immunocyte infiltration levels are 
related to a good prognosis, whereas increased infiltra-
tion levels of activated mast cells and activated CD4 
memory T cells lead to a worse prognosis in patients with 

Fig. 9  Effects of silencing RRM2 on ferroptosis. A Expression level of RRM2,4HNE and ACSL4 in different lung cancer cell lines by Western blotting. B 
The results of cell death level after silencing RRM2 by flow cytometry. C The expression of ferroptosis-related indicators was changed in H1975 cells 
after silencing RRM2. D The fluorescence intensity of cells after silencing RRM2 was evaluated using a rotating disk super-resolution laser confocal 
microscope. E Detection of cell lipid peroxidation level after silencing RRM2 by flow cytometry

Table 2  Six small molecule drugs for high-risk LUAD patients 
slected from CMAP database

Rank CAMP name Enrichment P-value

5 Phenoxybenzamine −0.924 0.00004

8 Thioguanosine −0.914 0.0001

9 Apigenin −0.906 0.00014

19 Medrysone −0.73 0.00073

22 Chrysin −0.913 0.00116

23 Vorinostat −0.51 0.00192
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LUAD. Ultimately, patients with LUAD with lower infil-
tration levels were identified as high-risk by the seven-
gene signature. Immunotherapy drugs can also activate 
the immune system to a greater extent; increase the infil-
tration of immunocytes related to a good prognosis and 
inhibit the activation of mast cells, CD4 memory T cells, 
and dendritic cells; and eventually improve the response 
rate to immunotherapy. These results show that FRGs 
regulate the tumor microenvironment of LUAD and 
influence the efficacy of immunotherapy. Gene mutation 
analysis in LUAD samples showed that seven FRGs had 
some degree of mutations; RRM2 and ALOX12B muta-
tions were the most significant. Further analysis also 
found that the expression level of RRM2 was strongly 
correlated with the level of immunocytes in LUAD. In 
addition, we found that silencing RRM2 promoted ele-
vated ferrous ion levels and lipid peroxidation accumu-
lation and induced ferroptosis in LUAD. Therefore, we 
suggest that RRM2 may play a key role in LUAD (Fig. 10).

The inhibition of RRM2 reduces the level of dNTP, 
which is the basis for stable senescence-related cell 

growth arrest induced by oncogenes [18].Knocking down 
RRM2 significantly decreased proliferation during the S 
phase of the cell cycle [19, 20].Interestingly, researchers 
found that RRM2 regulated the expression of BCL-2 (a 
key determinant of cell apoptosis).Rahman et  al.’s study 
found that RRM2 consumption significantly reduced 
the expression of Bcl-2 protein [21], and Jin et al. found 
that by overexpressing RRM2, the activity of the Bcl-2 
signaling pathway was increased and the activity of the 
p53 signaling pathway was decreased [22]. These find-
ings suggest that RRM2 plays an important role in the S 
phase during DNA replication, which may have potential 
therapeutic significance. Zhong et al. and Li et al. studied 
the potential of RRM2 as a therapeutic target for gastric 
cancer and glioblastoma [23, 24]. Another study found 
that human papillomavirus E7 oncoprotein increased the 
expression of RRM2 to promote angiogenesis in cervical 
cancer and that inhibiting RRM2 activity may be a new 
therapeutic strategy for human cervical cancer [25]. Most 
importantly, treatment methods related to RRM2 have 
greatly improved. Shao et al. found that RRM2 inhibitor 

Fig. 10  The flowchart of this study
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could treat breast cancer [26, 27]. Another study showed 
that using gambogic acid to reduce the expression of 
RRM2 could improve the efficacy of gemcitabine in pan-
creatic cancer; gambogic acid caused pancreatic can-
cer cells to become sensitive to gemcitabine in vitro and 
in  vivo by inhibiting the activation of the ERK/E2F1/
RRM2 signaling pathway [28].

To date, few studies have explored the role of RRM2 
in lung cancer. RRM2, which is highly expressed in lung 
cancer and related to a poor prognosis, regulates the 
immune microenvironment of LUAD, which is consist-
ent with our results [10]. Cai et  al. detected significant 
changes in RRM2 methylation in patients with non-small 
cell lung cancer using bioinformatics and found a signifi-
cant correlation between RRM2 expression and multiple 
immunocyte infiltration [29]. Knockdown of RRM2 sup-
pressed tumor growth in xenograft tumor models, and 
RRM2 deficiency increased CD8 + T cells in tumor tis-
sues and the spleen [30].Bufu Tang et al. found that the 
expression level of RRM2 was positively correlated with 
neutrophil and macrophage infiltration in LUAD tissue, 
suggesting that RRM2 promoted lung cancer progres-
sion and affected macrophage infiltration, stimulated M1 
phenotype polarization, and inhibited the M2 phenotype 
[10].

Our research has several limitations. First, our risk sig-
nature was built and validated using TCGA and the GEO 
database; no further external validation was performed 
with real-world prospective LUAD RNA-seq cohorts. 
Second, when analyzing the efficacy of immunotherapy, 
the LUAD sample size of the GSE126044 cohort was 
relatively small. Although positive results were obtained, 
their accuracy remains unclear. Therefore, we are 
attempting to find or establish a better and larger immu-
notherapy cohort of patients with LUAD. Third, although 
we identified a key role of RRM2 in LUAD using bioinfor-
matics technology, we have not yet verified how RRM2 
affects the development of LUAD by regulating mast cells 
and CD4 memory T cells or other mechanisms. Fourth, 
we screened drugs for high-risk patients with LUAD 
through the CMap and GDSC databases, but the specific 
efficacy and mechanism need to be further explored by 
cellular and animal experiments as well as clinical trials. 
Overall, more clinical samples and prospective experi-
ments are necessary to study the mechanism by which 
RRM2 influences the LUAD immune microenvironment 
and immunotherapy.

Conclusions
We established a risk prediction signature based on 
FRGs and found that it was closely associated with the 
immune microenvironment of LUAD. The key risk gene 
RRM2 influenced the prognosis of LUAD by regulating 

the infiltration of activated mast cells and activated CD4 
memory T cells. Moreover, FRG-based LUAD cluster-
ing was associated with the risk signature and immune 
cell infiltration. In other words, the FRG clustering we 
provided may indicate potential LUAD immune sub-
types. Furthermore, a correlation analysis supported the 
relationship between the signature and LUAD immuno-
therapy. In addition, our results provide a new perspec-
tive that FRGs, including RRM2, influence anti-PDL1 
immunotherapeutic responses by regulating immune 
checkpoint gene expression and infiltration of immune 
cells in the tumor microenvironment. Finally, our results 
suggest that RRM2 is an important biomarker affecting 
the long-term survival of patients with LUAD, and silenc-
ing RRM2 could promote the occurrence of ferroptosis in 
lung cancer cells. Taken together, our results offer novel 
insights into the research and treatment of LUAD.
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Additional file 1: Figure S1. Ferroptosis-related clustering and seven 
FRGs affecting LUAD prognosis. (A, B, C, D) TCGA-LUAD cohort was divided 
into four clusters based on 70 differentially expressed FRGs. (E)Significant 
differences in OS between the 4 FRGs clusters. (F-L) Different expression 
levels of 7 key FRGs represent different OS in LUAD patients.

Additional file 2: Figure S2. Enrichment analysis. (A) KEGG enrichment, 
fluid shear stress and atherosclerosis, HIF-1 signaling pathways, lipid and 
atherosclerosis, and ferroptosis are enriched. (B) GSEA enrichment, small 
cell pulmonary carcinoma, melanoma, cancer pathway, P53 signaling 
pathway, pathogenic Escherichia coli infection were significantly enriched 
in high-risk patients. (C) GO enrichment.

Additional file 3: Figure S3. Clinical correlation heat map and the 
differential infiltration level of immunocytes in LUAD patients. (A)The 
proportion of four clinical stages in high- and low-risk groups. (B)Distribu-
tion of several clinical features between high- and low-risk groups. (C)The 
proportion of risk scores of four FRGs clusters. (D)The infiltration ratio of 22 
immunocytes in each TCGA-LUAD sample. (E)Infiltration of 10 immuno-
cytes in high- and low-risk groups. (F)The change trend of infiltration level 
of Mast cells resting with ALOX12B expression level.

Additional file 4: Figure S4. The infiltration level of immune cells reflects 
the OS of LUAD. (A-L) Kaplan–Meier curve. Different infiltration levels of 
12 immunocytes correspond to different overall survival rates in LUAD 
patients.

Additional file 5: Figure S5. FRGs are involved in immune response and 
regulate the expression of immune checkpoints. (A)The change trend of 
TMB with RiskScore. (B)Different levels of TMB represent significantly dif-
ferent OS in LUAD patients. (C, D) Different ImmunScore and StromalScore 
represent significantly different OS in LUAD patients. (E) Mutation analysis 
of 7FRGs in TCGA-LUAD cohort. (F) The difference of RRM2 expression 
between LUAD patients with two different immunotherapy responses. 
(G)The difference of immunocytes infiltration and response to anti-PDL1 
immunotherapy between high- and low-risk patients. (H)Relation-
ship between PD1 expression and 15 prognostic FRGs. (I) Relationship 
between PDL1 expression and 15 prognostic FRGs.

Additional file 6: Figure S6. Six antitumor drugs with significantly lower 
IC50 and six chemical structures of the top molecules for high-risk LUAD 
patients selected from CMAP database. (A)Bosutinib.(B)JNK.Inhibitor.VIII.
(C)Docetaxel.(D)Tipifarnib.(E)Dasatinib.(F)Gefitinib.(G)Medrysone. (H)phe-
noxybenzamine. (I)Vorinostat. (J)Thioguanosine. (K)apigenin. (L)chrysin.
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