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Abstract

Visual perceptual decoding is one of the important and challenging topics in cognitive

neuroscience. Building a mapping model between visual response signals and visual

contents is the key point of decoding. Most previous studies used peak response sig-

nals to decode object categories. However, brain activities measured by functional

magnetic resonance imaging are a dynamic process with time dependence, so peak

signals cannot fully represent the whole process, which may affect the performance

of decoding. Here, we propose a decoding model based on long short-term memory

(LSTM) network to decode five object categories from multitime response signals

evoked by natural images. Experimental results show that the average decoding

accuracy using the multitime (2–6 s) response signals is 0.540 from the five subjects,

which is significantly higher than that using the peak ones (6 s; accuracy: 0.492;

p < .05). In addition, from the perspective of different durations, methods and visual

areas, the decoding performances of the five object categories are deeply and com-

prehensively explored. The analysis of different durations and decoding methods

reveals that the LSTM-based decoding model with sequence simulation ability can fit

the time dependence of the multitime visual response signals to achieve higher

decoding performance. The comparative analysis of different visual areas demon-

strates that the higher visual cortex (VC) contains more semantic category informa-

tion needed for visual perceptual decoding than lower VC.
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1 | INTRODUCTION

Exploring how the brain represents visual information from our daily

visual experiences is such a meaningful and challenging task that it

has attracted many neuroscientists. To date, the ways our brain

responds and encodes the visual world have been widely studied, and

many neural mechanisms have been elucidated. With the rapid devel-

opment of some good noninvasive technologies that measure brain
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activity with reasonable spatial and temporal resolution, such as func-

tional magnetic resonance imaging (fMRI) and electroencephalogram

(EEG), researchers have tried to figure out whether brain activity can

be used to identify what people see or perceive. This process is called

visual perceptual decoding or “brain-reading” (Cox & Savoy, 2003;

Gallagher et al., 2000; Güçlütürk et al., 2017; Norman, Polyn, Detre, &

Haxby, 2006; Schurz, Radua, Aichhorn, Richlan, & Perner, 2014).

Recent studies have developed lots of methods to classify or

identify visual stimuli from evoked fMRI/EEG responses. These

category-based visual perceptual decoding researches explored the

perceived categories of natural images (Behroozi & Daliri, 2014;

Behroozi, Daliri, & Shekarchi, 2015; Carlson, Schrater, & He, 2003;

Cox & Savoy, 2003; Haxby et al., 2001; Jafakesh, Jahromy, &

Daliri, 2016; Jahromy & Daliri, 2017; Kamitani & Tong, 2005; Kay,

Naselaris, Prenger, & Gallant, 2008; Song, Zhan, Long, Zhang, &

Yao, 2011; Tafreshi, Daliri, & Ghodousi, 2019; Taghizadeh-Sarabi,

Daliri, & Niksirat, 2015; Torabi, Zareayan Jahromy, & Daliri, 2017), real

inner thoughts (Yang et al., 2014), imagined categories (Naselaris,

Olman, Stansbury, Ugurbil, & Gallant, 2015) and categories occurring

in dreams (Horikawa, Tamaki, Miyawaki, & Kamitani, 2013), and so

on. These studies strove to improve the decoding performance of

their research fields from different experimental protocols and

methods. So far, from the aspect of fMRI, since the research of

category-based decoding is affected by many factors, such as the low

signal-to-noise ratio of fMRI signals and limited sample size due to the

constraints of fMRI data collection, better data processing methods,

and decoding models are demanded for further explorations.

Most traditional category-based visual decoding methods attempt

to establish a mapping relationship between the peak response of fMRI

signals and the object category (Carlson et al., 2003; Haxby et al., 2001;

Haynes & Rees, 2005; Kamitani & Tong, 2005). However, the visual

response signals evoked by visual stimuli have a delay (Cox &

Kable, 2014; Zong, Kim, & Kim, 2012) from human brain activity mea-

sured by fMRI. Because fMRI indirectly reflects the neural activities of

the cerebral cortex by measuring changes in blood oxygen concentra-

tion (Lippert, Steudel, Ohl, Logothetis, & Kayser, 2010), when viewing

natural images, the fMRI activities of the cerebral cortex are distributed

over a period of time. Temporal decoding methods for EEG and MEG

have offered the potential to utilize the temporal dynamics in object

decoding (Barragan-Jason, Cauchoix, & Barbeau, 2015; Carlson,

Hogendoorn, Kanai, Mesik, & Turret, 2011). However, few the fMRI-

based decoding studies use the time dependence of response patterns

to improve the decoding performance (Contini, Wardle, &

Carlson, 2017). The main reason may be that, when the visual stimulus

presents, due to the response delay, hemodynamic response arises first

and then falls down gradually. The peak signal of hemodynamic

response function (HRF) shows the strongest response to the stimuli,

and the signals before and after the peak contain weaker response and

more noise than the peak ones. In our opinion, although the fMRI sig-

nals before and after the peak are not as strong as the peak ones, they

still contain lots of stimuli-related neural activities which can be used

for decoding although the accuracy of prepeak or postpeak signals may

be lower than that of peak ones. Our result shown also proved that

prepeak signals can also be used for decoding to a certain degree. Here,

we reasonably deduce that the dynamic process of fMRI may help

improve decoding performance if appropriate methods are adopted to

make full use of the time-dependence signals. As we know, long short-

term memory network (LSTM) (Hochreiter & Schmidhuber, 1997) is a

good approach to handle dynamic changes of the time-dependence sig-

nals. Therefore, we proposed a LSTM-based decoding model to mine

the multitime visual response signals evoked by the natural images, so

as to achieve the better decoding of object category. We managed to

apply the LSTM-based decoding model to classify the multitime visual

response signals evoked by five types of natural images (horses, build-

ings, flowers, fruits, and landscapes). The experimental results show

that the decoding accuracy using multitime visual response signals is

significantly higher than that using single-time or shorter time visual

response signals.

In addition, the decoding performances of the five object catego-

ries by different methods are fully compared. These decoding methods

are divided into neural nets and traditional models. Neural nets include

LSTM, recurrent neural network (RNN), and gated recurrent unit (GRU).

Traditional models include Naive Bayes (NB), k-nearest neighbor (KNN),

adaboost (Ada), random forest (RF), and support vector machine (SVM).

The experimental results show that the multitime visual response sig-

nals evoked by the natural images contain more semantic category

information, and the LSTM-based and GRU-based decoding model can

efficiently utilize the time dependence of fMRI, yielding better

decoding performance. Finally, to investigate the function of different

visual areas in brain decoding, we also compared the decoding accura-

cies of different visual areas signals. The results show that the higher

visual cortex (VC) shows higher decoding accuracy than the lower

VC. Consistent with the current understanding of the visual processing

hierarchy, higher-level visual features dominate decodable semantic

categories (Horikawa & Kamitani, 2017).

2 | MATERIALS

2.1 | Subjects

Five healthy volunteers (three males and two females, 23–27 years) took

part in the experiment. All subjects were neurologically healthy, right-

handed, and had normal or corrected-to-normal vision. All subjects pro-

vided written informed consent before the experiments, and protocols

were approved by the Institutional Review Board of the Institute of Bio-

physics, Chinese Academy of Sciences. In the experiment, all subjects

were asked to keep their heads and body still and look at the center of

the screen.

2.2 | Visual stimulus and experimental design

The 2,750 natural images were taken from ImageNet (Deng

et al., 2009). These natural images are from five categories, namely,

“horse,” “building,” “flower,” “fruit,” and “landscape,” with 550 images
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in each category. Each image is a color image with a resolution of

256 × 256. The visual stimulus program was created with the e-prime

programming software. Visual stimuli were rear-projected onto a

screen placed in the scanner cavity using an LCD projector. Two types

of experimental sessions were performed to measure the response

signals: (a) the bar retinotopic mapping session in Figure 1a, and

(b) the natural image session in Figure 1b.

The bar retinotopic mapping session was used to delineate

the borders between visual cortical areas. The bars are made up

of a checkerboard pattern (spatial length: 20�; spatial width: 20�;

temporal frequency: 10 Hz) with 100% contrast. Four bar orienta-

tions and two different motion directions were generated for a

total of eight different bar configurations within a given scan

(Dumoulin & Wandell, 2008). Each bar configuration contained

22 equidistant spatial positions. The bar retinotopic mapping ses-

sion included four repeated runs, and each run had 176 trials.

Each stimulus trial flashed 2 s followed by the next stimulus trial.

Extra rest periods were added at the beginning (12 s) and the end

(12 s) of each run. Each bar run lasted (12 s + 176

trials × 2 s + 12 s = 6 min 16 s).

In the natural image session, each run had 50 stimulus trials.

For each trial, one natural image flickered for 2 s (spatial length:

20�; spatial width: 20�; temporal frequency: 5 Hz) followed by a

random 4–8 s (probability random integer; mean, 6 s) intervening

rest period. Extra rest periods were added at the beginning (12 s)

and the end (8 s) of each run. Each run lasted (12 s + 50

trials × [2 s + 6 s] + 8 s = 7 min). In each stimulus trial, a natural

image was presented on a gray background with a white fixation

cross (0.8� × 0.8�). Fifty-five runs were executed, and a total of

2,750 nature images were presented to each subject. Each run ran-

domly selected 10 images from every category of the natural image

dataset (flowers, fruits, horses, buildings, and landscapes). The

50 images of each run were presented to subjects in pseudorandom

order. During the experiment, the subjects were instructed to fixate

the small white cross at the center of the images without moving

their bodies. In addition, they were asked to focus attention and try

to understand the images. Each subject performed a total of 59 runs

(4 bar retinotopic runs and 55 natural image runs) in the experi-

ment. The scanning went for 8 days in 2 weeks for each subject.

The 4 bar retinotopic runs finished in 1 day, and the 55 runs fin-

ished in 7 days, among them, 8 runs for each day of the first 6 days,

and 7 runs for the last day. The 59 runs and fMRI data in the experi-

ment are available on http://www.neuro.uestc.edu.cn/vccl/data/

Huang2020_Article_Perception-to-ImageReconstruct.html.

2.3 | MRI scanning parameters and data
preprocessing

MRI data were acquired with a 3-T Prismafit scanner (Siemens,

Erlangen, Germany) at the Institute of Biophysics, Chinese Academy

of Sciences using a 20-channel head–neck coil. An interleaved

multiband T2*-weighted gradient-echo echo-planar imaging

(Auerbach, Xu, Yacoub, Moeller, & U�gurbil, 2013; Moeller

et al., 2010) scan was performed to acquire functional images to

cover the entire occipital lobe (TR, 1,000 ms; TE, 31.2 ms; nominal

flip angle, 50�; field of view [FOV], 194 × 194 mm2; voxel size,

1.8 × 1.8 × 1.8 mm3; slice gap, 0 mm; multiband, 4; number of slices,

48). T1-weighted magnetization-prepared rapid-acquisition gradient-

echo fine-structural images of the whole-head were also acquired

(TR, 2,300 ms; TE, 3.49 ms; TI, 1,050 ms; flip angle, 8�; FOV,

256 × 256 mm; voxel size, 1.0 × 1.0 × 1.0 mm3). The cortical surface

was reconstructed at the white/gray matter border and rendered as

a smoothed 3D surface. The first 12-s scans of each run were dis-

carded to avoid MRI scanner instability. The acquired fMRI data

underwent slice-timing correction and three-dimensional head

motion correction by SPM8 (Penny, Friston, Ashburner, Kiebel, &

Nichols, 2011). These data were then coregistered to the sliced

high-resolution anatomical images and then reinterpolated to

3 × 3 × 3-mm voxels.

F IGURE 1 Sequence of visual stimuli. (a) The bar retinotopic mapping session. (b) The natural image session
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3 | METHODOLOGY

3.1 | Population receptive field model

In the bar retinotopic mapping session, the method of estimating the

neuronal population receptive field (pRF) in the human VC was based

on a previous study (Dumoulin & Wandell, 2008). For each voxel, a

two-dimensional simple gaussian pRF, g(x, y), is defined by three

parameters, x0, y0, and σ,

g x,yð Þ= e−
x−x0ð Þ2 + y−y0ð Þ2

2σ2

where (x0, y0) is the center and σ is the Gaussian spread (SD). For

visual stimulus s(x, y, t), the pRF response rt for a single voxel is calcu-

lated by the following formula:

r tð Þ=
X
x,y

s x,y,tð Þg x,yð Þ

Then, the predicted BOLD signal p(t) is obtained by convolving r

(t) with a model of the HRF (h(t)) using the following formula,

p tð Þ= r tð Þ⋇h tð Þ

Assuming a linear relationship between the predicted BOLD sig-

nal and the fMRI signal y(t) can be described as:

y tð Þ= p tð Þβ + ε

where β is a scaling factor and ε is a noise. The goodness-of-fit is esti-

mated by computing the residual sum of squares (RSS) between the

prediction p(t) and the data y(t). We calculated this error term allowing

for a scale factor β that accounts for the unknown units of the fMRI

signal,

RSS =
X
t

y tð Þ−p tð Þβð Þ2

The optimal pRF parameters were found by minimizing the RSS

using a coarse-to-fine search. A previous study contained more details

(Dumoulin & Wandell, 2008).

3.2 | Definition of visual areas

After preprocessing the fMRI data from the bar retinotopic experiment,

SamSrf (SamPenDu, 2017) was used to perform retinotopic analysis.

Occipital lobe is defined by SamSrf as the entire VC. Visual cortical

boundaries were depicted on the spherical surface to visualize and label

the visual region of interest in Figure 2. The eccentricity and the polar

maps were mapped to the spherical surface. V1 contained a full hemi-

field map and was located fairly accurately within the calcarine sulcus

(Brewer, Liu, Wade, & Wandell, 2005; Fishman, 1997). Thus, it spanned

from a green stripe on the cuneus (dorsal bank of calcarine) through the

blue in the depth of the calcarine to a red stripe on the lingual gyrus

(ventral bank). V2 and V3 were both segregated into two quadrant field

maps, one in the ventral cortex and the other in the dorsal cortex

(Burkhalter, Felleman, Newsome, & van Essen, 1986). Therefore, V2d

ran from the green stripe of the V1 border to the middle of the blue

stripe. V3d then ran from the blue stripe to the next green stripe. Con-

versely, V2v ran from the red stripe of the V1 border to the blue stripe,

and V3v ran from the blue strip to the next red stripe (Dougherty

et al., 2003; Hubel & Wiesel, 1965). The divided V1, V2, and V3 are

projected to volume space in Figure 3. Then, V1, V2, and V3 are com-

bined as the lower VC (LVC). The remaining area of VC removing LVC

is defined as the higher VC (HVC). The number of voxels in each VC is

displayed in Supplementary Table S1.

3.3 | LSTM network

Neural networks in fully connected form do not handle the dynamic

process very well. To enable the neural networks in fully connection

to process sequence data at multiple time points, Waibel et al. pro-

posed the time-delay neural network model (Werbos, 1990). Subse-

quently, an RNN was developed, and a back-propagation through

time algorithm was derived theoretically to train the model. When

using an RNN to process sequence data, the gradient of the loss func-

tion needs to be back-propagated through time. A large number of

researchers have shown that when the sequence is very long, there

will be problems with gradient disappearance or gradient explosion

(Hochreiter & Schmidhuber, 1997). LSTM networks have been devel-

oped to solve this problem. Compared with the RNN, the key point of

the LSTM model is to introduce a gating mechanism to control the

flow of information. At time t, three gates are introduced for the input

information, the memory information, and the output information,

namely, the input gate (it), the forgot gate (ft), and the output gate (ot),

respectively. The elements of the three gates are numbers between

[0, 1]. At time t, LSTM is updated as follows:

it = σ Wixt +Uiht−1 +Vict−1 + bið Þ
ft = σ W fxt +U fht−1 +V fct−1 + b fð Þ
ot = σ Woxt +Uoht−1 +Voct−1 + boð Þ

ct = ft
J

ct−1 + it
J

tanh Wcxt +Ucht−1ð Þ
ht = ot

J
tanh ctð Þ

0
BBBBBB@

1
CCCCCCA

The input gate (it), the forgot gate (ft), and the output gate (ot) are

determined by three factors, input (xt), hidden status (ht − 1), and cell

status (ct − 1), where σ denotes the logistic sigmoid function. Then, the

hidden state and the cell state at the current moment are updated

according to the three gates (it, ft, ot) at the current moment, the hid-

den state (ht − 1) and the cell state (ct − 1) at the previous moment. In

short, the input gate controls how much new information is added;

the forget gate controls the extent to which the previous state is for-

gotten; and the output gate controls how much of the current state is
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filtered out. Compared with feed-forward neural networks, the LSTM

model can better simulate the temporal series problem. Compared to

RNN, the LSTM model alleviates the problem of gradient disappear-

ance and gradient explosion to some extent. fMRI is an indirect mea-

surement of neural activity through the changes in blood flow.

Because blood flow change follows the HRM, which is time depen-

dent, so the fMRI signal is also time dependent. The fMRI peak signal

is delayed approximately 4–6 s relative to the stimulus (Miyawaki

et al., 2008; Szaflarski et al., 2010). In this paper, based on the capabil-

ity of LSTM in processing dynamic changes of the time-dependence

signals, the LSTM model is used to decode the response signals at

multiple time points when viewing natural images.

3.4 | The LSTM-based decoding model

From the 55 natural image sessions, five verification sessions and five

test sessions were randomly selected. The remaining 45 sessions were

used as the training session. Each session contained 50 natural images

and corresponding fMRI response signals in the VC. The total sample

set was divided into a training subset, a verification subset, and a test

subset. The sizes of the three subsets were 2,250; 250; and

250, respectively. There are approximately 30,000 voxels throughout

the occipital cortex, but not all of them encode visual image stimuli.

Therefore, a rough voxel selection within the VC was performed first.

An F-score feature selection algorithm was used to calculate the F-

value of each voxel (Chen & Lin, 2006; Huang et al., 2018; Polat &

Güneş, 2009). The higher the F-value of the voxel, the better the abil-

ity to discriminate visual perceptual category. Five VCs are defined:

V1, V2, V3, LVC, HVC, and VC. The number of voxels is different for

different subjects and different visual areas. In order to facilitate sub-

sequent calculations, the number of voxels in each VC from different

subjects is unified to the same number 2,000. The VC (V1, V2, or V3)

which contains less than 2,000 voxels was upsampled by nearest

neighbors to 2,000 voxels. The VC (LVC, HVC, or VC) with more than

2,000 voxels was performed by the F-score feature selection

F IGURE 2 Process of dividing visual
areas
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algorithm and the first 2,000 voxels were chosen. Here, the number

2,000 is determined by the precalculation performance from Subject

1 with VC signals. We tested the decoding performance (Subject 1)

with different numbers of voxels by LSTM. The precalculation results

show that the decoding accuracy increases as the number of voxels

increases from 100 to 2,000. However, the accuracy does not

improve obviously when the number of voxels increases from 2,000

to 5,000. Therefore, we chose 2,000 as the number of voxels. Note

that feature selection is performed only on the training subset.

The 2–6 s visual response signals measured by fMRI after the

appearance of the natural image are selected as input to the LSTM-

based decoding model. The LSTM-based decoding model includes

two fully connected layers and a double-LSTM-layer module. Each

layer consists of 5,000 units. The LSTM-based decoding model is illus-

trated in Figure 4. First, the LSTM-based decoding model maps the

2,000–5,000 units of the first fully connected layer. Then, the output

of the first fully connected layer is processed by the double-LSTM-

layer and the last fully connected layer. Finally, the output of the

F IGURE 3 A typical volunteer's lower visual cortex (V1, V2, and V3) spatial location in volume space

F IGURE 4 The long short-term
memory (LSTM)-based decoding
model
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LSTM-based decoding model is five category units. The softmax

nonlinear mapping function is applied to the 5 units in the output

layer to obtain the probability distribution of visual perceptual cate-

gory. The cross entropy between the prediction label and the real

label of the natural image is calculated, and the Adam (Kingma &

Ba, 2014) optimization algorithm is used to optimize the LSTM-based

decoding model. We determined the optimal hyperparameters based

on the performance of the verification set. In brief, the crucial hyper-

parameters of the LSTM-based decoding model include the number

of units in the first fully connected layer (5,000), the number of units

in the last fully connected layer (5), the number of hidden units within

double-LSTM layer (5,000), the parameter settings of Adam optimizer

(β1 = .9, β2 = .999, ε = 10−8), and the learning rate (0.0001).

4 | RESULTS

4.1 | Performance of the LSTM-based decoding
model

Five categories of natural images, including horse, building, flower, fruit,

and landscape, are selected as stimuli to evoke the functional signals of

VC. Natural image categories are decoded using multitime visual

response signals measured by fMRI. The LSTM-based decoding model

receives the multitime visual response signals and simulates the time

dependence of these signals. To demonstrate that natural images can

be decoded progressively using an LSTM-based decoding model, we

first show the training processes from the five subjects in Figure 5a–e.

This result shows that the decoding accuracy of test and validation data

first increases and then progressively moves into a steady state in the

late iterative process. When the decoding accuracy reaches a steady

state, the accuracies of test data from the five subjects are approxi-

mately 0.60, 0.60, 0.40, 0.60, and 0.46 (the chance level is 0.2), respec-

tively. In addition, the loss curves of training, test, and validation data

from the five subjects are shown in Figure 5f–j. From the accuracy cur-

ves, it can be intuitively seen that the LSTM-based decoding model can

effectively decode the five object categories.

4.2 | Comparison of decoding performance with
different durations

To clearly demonstrate that the LSTM-based decoding model can

make use of the time dependence to improve the decoding perfor-

mance, the decoding accuracy with different durations is compared in

Figure 6. In order to make the visual response pattern of current

image unaffected by the next image, the maximum of time window is

set as 6 s (image 2 s + min rest 4 s). The “2–3 s,” “2–4 s,” “2–5 s,” and

“2–6 s,” respectively, indicate the visual response signals of the

second–third, second–fourth, second–fifth, and second–sixth seconds

from human brain activity after the appearance of the natural images

in the experiment. The yellow, red, green, and blue curves, respec-

tively, represent the decoding accuracy obtained by using the visual

response signals of the second–third, second–fourth, second–fifth,

and second–sixth seconds as the input for the LSTM-based decoding

model. The decoding accuracy curve patterns from the five subjects

are similar across different durations. The performance obtained using

the visual response signals of 2–6 s is better than that using signals of

2–3, 2–4, and 2–5 s. The visual response signal of 2–3 s shows the

lowest decoding accuracy. In addition, we also compared the decoding

accuracies obtained from the visual response signals of 5–6, 4–6, 3–6,

and 2–6 s, shown in Figure 7. Similarly, the performance of 2–6 s is

better than that of 5–6, 4–6, and 3–6 s. However, the difference

between the decoding accuracy of 5–6, 4–6, and 3–6, and 2–6 s is

smaller than that of 2–3, 2–4, and 2–5, and 2–6 s. The result shows

that 2–6 s response signals provide the most semantic category infor-

mation for decoding the five object categories. Besides, the visual

response signals at the sixth second and close to the sixth second

show greater contributions to decoding.

Finally, based on the LSTM decoding model, we compared the

decoding performance of the single-time visual response signals (2, 3,

4, 5 or 6 s) and the multitime response signals (2–3, 2–4, 2–5, 5–6,

4–6, 3–6, or 2–6 s). The results are shown in Supplementary Table S2.

The results show that the decoding accuracy of the multitime response

signals is higher than that of the corresponding single-time signals,

which also proves the positive effect of multitime signals in decoding.

4.3 | Comparison of decoding performance with
different methods

To demonstrate the advantages of the proposed LSTM-based

decoding model in the decoding tasks, five traditional models (NB,

KNN, Ada, RF, and SVM) are used for the comparison. Note that, the

multitime visual response signals are flattened and jointed together as

input for these models. The five traditional models are adopted

directly from the scikit-learn (Pedregosa et al., 2011) package. In addi-

tion, two neural networks (RNN-based and GRU-based) are also used

for the comparison, and their training method is exactly the same as

the LSTM-based decoding model.

The decoding accuracies of the different methods are calculated

using 2–6 s multitime visual response signals from the VC. In order to

compare different methods more reasonably, different parameters of

the traditional methods are adjusted to obtain the best accuracy. The

best decoding accuracies obtained by the eight methods are shown in

Figure 8. The accuracies of the five subjects using the LSTM-based

decoding model are 0.612, 0.608, 0.400, 0.620, and 0.460 (chance

level = 0.2), averagely 0.540 ± 0.092. For the other seven models (NB,

KNN, Ada, RF, SVM, RNN, and GRU), the average accuracies of the

five subjects are 0.322, 0.357, 0.380, 0.433, 0.482, 0.430, and 0.527,

respectively. Paired-sample t test shows that the accuracy of the

LSTM-based and GRU-based decoding model is significantly higher

than that of the five traditional models and the RNN-based method

(p < .05). We found that the LSTM-based and GRU-based model

achieved very close decoding accuracy, because GRU and LSTM share

very similar structures of the network.
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4.4 | Comparison of decoding performance of
different visual areas

Previous studies have shown a hierarchical correspondence between

cortical hierarchy and the levels of visual feature representations

(Dong, Wang, & Hu, 2018; Shen, Horikawa, Majima, & Kamitani,

2019). To investigate the function of different visual areas in brain

decoding of object categories, we also compared the decoding accu-

racies of different visual areas.

According to the retinotopic experiment, V1, V2, V3, LVC, HVC, and

VC are defined. Here, multitime visual response signals of 2–6 s from dif-

ferent visual areas is put into the LSTM-based decoding model for

decoding. The decoding accuracies of the five subjects under different

visual areas are shown in Figure 9. The average decoding accuracy of

V1, V2, V3, LVC, HVC, and VC from the five subjects is 0.287, 0.300,

0.282, 0.322, 0.514, and 0.540, respectively. Paired-sample t test shows

that the decoding accuracy of HVC or VC is significantly higher than that

of the LVC (V1, V2, V3, or LVC) for all subjects (p < .05).

F IGURE 5 The curves of the accuracy and loss over time for the training process with the long short-term memory (LSTM)-based decoding model
in the visual cortex (VC) from five subjects. (a–e) The accuracy curve of the five subjects in the iterative training process. The red curve indicates the
accuracy of the test data. The blue curve indicates the accuracy of the validation data. (f–j) The corresponding loss of the five subjects in the iterative
training process. The red curve, blue curve, and green curve indicate the loss of the test data, validation data, and training data, respectively
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F IGURE 7 Comparison of decoding performance of multitime (fifth–sixth, fourth–sixth, third–sixth, and second–sixth seconds) visual response

signals with the long short-term memory (LSTM)-based decoding model in the visual cortex (VC) from five subjects. (a–e) The accuracy curves of the
five subjects with different durations in the iterative training process. The yellow curve, red curve, green curve, and blue curve indicate the accuracy
of the test data using the fifth–sixth, fourth–sixth, third–sixth, and second–sixth seconds of the visual response signals, respectively

F IGURE 6 Comparison of decoding performance of multitime (second–third, second–fourth, second–fifth, and second–sixth seconds) visual
response signals with the long short-term memory (LSTM)-based decoding model in the visual cortex (VC) from five subjects. (a–e) The accuracy curves
of the five subjects with different durations in the iterative training process. The yellow curve, red curve, green curve, and blue curve indicate the
accuracy of the test data using the second–third, second–fourth, second–fifth, and second–sixth seconds of the visual response signals, respectively
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5 | DISCUSSION

Understanding how the human brain perceives the outside world is an

important goal of neuroscience (Güçlü & van Gerven, 2017). As nonin-

vasive neural detection technology, both fMRI and EEG have advan-

tages and disadvantages in “brain-reading.” fMRI has very good spatial

resolution, which means we can obtain neural signals of thousands of

voxels for each stimuli. However, it is an indirect effect related to the

changes in blood flow that follow the changes in neural activity, show-

ing obvious time dependence (Lin et al., 2009). Although the peak sig-

nal of fMRI represents the strongest neural response for the stimuli,

the signals before and after the peak still contain lots of stimuli-

related neural activities, and they can be useful if properly utilized.

Our result in Supplementary Table S2 shows that the single-time

signal of 2, 3, 4, and 5 s can also realize category decoding to a certain

degree, especially for the fifth second, which is close to the sixth sec-

ond, showing pretty good decoding accuracy although it is not as

good as the sixth second. Therefore, making full use of the multitime

fMRI signals rather than the peak ones can help improve decoding

performance. The comparisons of multitime response signals in Fig-

ures 6 and 7 provide further evidences that 2–6 s response signals

which covered the whole time course from the appearance of stimuli

to the strongest response provide the most semantic category infor-

mation for decoding, achieving higher decoding performance than

single-time or shorter-time signals. These results illustrate the positive

effect of multitime fMRI signals in improving the decoding perfor-

mance. We suggest researchers strive to incorporate the multitime

information as much as possible in future fMRI studies.

Compared with traditional models, neural networks (RNN-based,

LSTM-based, GRU-based) with temporal sequence simulation capabili-

ties can be used to simulate the dynamic process to capture the time

dependence in fMRI data. In this paper, a comprehensive visual

decoding analysis is performed from visual response signals of single

time and multitime. The research shows that the LSTM-based and

GRU-based decoding model can well capture the time dependence of

the fMRI signals evoked by visual stimuli, and their decoding accuracy

significantly exceeds the traditional models without sequence simula-

tion capabilities. In addition, since GRU has a similar network structure

with LSTM, both of them have introduced the gate mechanism, so

there is no significant difference in decoding performance. The

decoding accuracy of the LSTM or GRU based decoding model is also

significantly higher than the RNN-based decoding model. The possible

reason is that the gate mechanism introduced in LSTM or GRU can

better fit the dynamic process of the time-dependence signals. LSTM

and GRU may have an important impetus to the time-dependence

decoding research of the brain in the future.

We not only compared the decoding performance of different

methods, but also compared the decoding performance of different

visual areas. From the multitime visual response signals of different

visual areas (including V1, V2, V3, LVC, HVC, VC), we used the LSTM-

based decoding model to decode the visual perceptual category. Our

result shows that the decoding accuracy of the HVC or VC is signifi-

cantly better than that of the LVC (V1, V2, V3, or LVC). The result

suggests that the HVC plays an important role in decoding task of

object category evoked by natural images. Previous research shows

that the functional topography of the HVC reflects an organized

category-selective map with particular stimulus category eliciting dis-

tinct patterns of cortical activation (Dong et al., 2018; Horikawa &

Kamitani, 2017; Shen et al., 2019). Through the indicators of decoding

accuracy, the results indirectly support the view that the HVC con-

tains more category-selective semantic information than the LVC.

For conclusion, we proposed an LSTM-based decoding model

that makes it possible to classify five categories of the visual stimuli

from brain activity. There are three main contributions of this study:

(a) the time-dependence fMRI signals are used to improve the

decoding performance of five categories of natural images stimulus,

achieving about 0.54 (the chance is 0.2) accuracy, (b) by comparing

F IGURE 8 Comparison of the decoding accuracy of the eight
methods in the visual cortex (VC) from five subjects. The dark dashed
line represents the chance level for classifying the five categories

F IGURE 9 Comparison of the decoding accuracy of different
visual areas with the long short-term memory (LSTM)-based decoding
model from five subjects. The dark dashed line represents the chance
level for classifying the five categories
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the performance of the decoding models constructed by neural nets

and traditional methods, we demonstrate that the LSTM-based and

GRU-based decoding model is more suitable for processing fMRI data

which contains the dynamic response delay, and (c) we proved that

the HVC plays more important role in decoding object category

evoked by natural stimulus, which is consistent with previous investi-

gation (Horikawa & Kamitani, 2017). In short, LSTM shows advan-

tages in processing the spatiotemporal fMRI signals and may have

promising power for helping us decode complex visual experiences.
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