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Our study aimed at elucidating which genetic alterations tend to form a network and could be applied as molecular markers of larynx
squamous cell carcinoma (LSCC). A panel of genes involved in tumorigenesis was investigated. To search for the possible
mechanisms of gene silencing, loss of heterozygosity (LOH) was analysed followed by testing DNA methylation and protein
expression for those genes found with the highest frequency of LOH (CDKN2A (55.4%), MLH1 (46.0%), RB1 (35.7%)). A correlation
of both LOH and hypermethylation with the loss of expression for CDKN2A and MLH1 was found. Disrupted Rb pathway (loss of
expression of RB1 and/or of CDKN2A) in 55.9% of analysed cases confirmed the hypothesis that RB1 pathway is altered in head and
neck squamous cell carcinomas, with CDKN2A (45%), rather than RB1 (11.8%) being more frequently inactivated. In LSCC, LOH
tends to occur together in gene pairs or triplets. The pair MLH1/CDKN2A and triplets MLH1/TSG on 8p22/CDKN2A and MLH1/
CDKN2A/RB1 are related to staging and grading. LOH in MLH1 correlates with lower and LOH in CDKN2A with higher grades of
LSCC. It can be concluded that MLH1 and CDKN2A play an important role in LSCC development and progression.
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Squamous cell carcinomas of the head and neck (HNSCC) are
frequently occurring cancers with a mean incidence of around 5%
of all cancers diagnosed worldwide annually. Despite intense
efforts to develop early detection methods, as well as effective
therapy in HNSCC, the overall 5-year survival rate of 50% remains
among the lowest for the major cancers (Papadimitrakopoulou,
2000; Crowe et al, 2002). In the aetiology of HNSSC, both
environmental and genetic factors are involved. Here, not only the
cancer genes such as oncogenes, tumour suppressor genes (TSGs),
mutator genes but also genes that modulate the individual
susceptibility to environmental carcinogens, for example, genes
involved in xenobiotic metabolism and DNA repair are involved in
HNSCC development (Sturgis and Wei, 2002). This makes the
genetics of HNSCC extremely complex (Fan, 2001). The situation
becomes increasingly complicated since the definition of HNSCC
covers a variety of tumours, which differ both in terms of their
location within the upper aerodigestive tract and also in
histopathology. Successive publications revealed the involvement
of a variety of genes in the development and progression of
HNSCC, such as oncogenes, for example, MYC, RAS, ERBB2, BCL2,
INT2 and TSG, for example, TP53, CDKN2 (Voravud et al, 1997). It
was also shown that a poor clinical course of HNSCC is linked to

loss of heterozygosity (LOH) in multiple loci (Gleich et al, 1999),
especially to allelic loss at 3p, 8q, 13q and 17p (Li et al, 1994;
Scholnick et al, 1996; El-Naggar et al, 1997), while LOH at
9p21 and 17q31 is related to a high incidence of recurrent
tumours (Matsuura et al, 1998). The karyotypes in HNSCC were
shown to be complex with breakpoints underlying chromosomal
alterations located mainly at 1p, 1q, 3p, 3q, 4q, 8p, 8q, 9p, 10p,
10q, 11q, 13p, 14p, 15p and 15q. Nonrandom patterns of
chromosomal aberrations in the progression of HNSCC have been
suggested (Jin et al, 1990; Van Dyke et al, 1994; Soder et al, 1995).
Isochromosomes 8q, deletion 3p and homogenously staining
regions at 11q13 were most often observed among the recurrent
structural chromosomal aberrations (Van Dyke et al, 1994;
Soder et al, 1995; Bergamo et al, 2000). The application of
comparative genomic hybridisation (CGH) permitted the
identification of chromosomal imbalances (Kujawski et al, 1999;
Bergamo et al, 2000). The gains were observed mainly in 3q and
8q, while losses occurred in 3p and 22q. Also, a correlation
between some clinical data and chromosomal alterations was
reported, such as association between the gains of 1q and 2q and a
refractory clinical response (Bergamo et al, 2000), and more
frequent losses at 13q, 8p and 9q in metastatic than in primary
tumours (Kujawski et al, 1999).

Although abundant molecular and cytogenetic data on HNSCC
have been collected, neither critical genes nor a generally accepted
genetic model of HNSCC development and progression have been
described. The first model suggested for HNSCC combines, as an
early event, multiple LOH with allelic loss at 9p, 3p, 17q, 4q and
13q. LOH at 18q and 8p are considered late genetic events
(Califano et al, 1996). On the basis of already published cytogentic
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data, two main genetic pathways in HNSCC were suggested
(Höglund et al, 2001) by using the two principal components of
genomic imbalance (gains and losses): one with �1p, �1q and �7q
as an early event followed by �8p and �4p, and another starting
with þ 7q, and subsequently followed by þ 11pq, þ 8q and
þ 1pq. Both then converge to a common set of imbalances: �3p,
�9p and �11q. In the recently published ‘oncogenic trees’
for HNSCC progression, three subsets of tumours, which
differed in their localisation (pharyngeal, laryngeal and oral
squamous cell carcinoma), were analysed separately by using
CGH (Huang et al, 2002). The authors proposed that generally,
þ 3q/�3p is the most important chromosomal event in the genetic
aetiology of HNSCC, which then may be followed by other
chromosomal imbalances, occurring with various frequencies
depending on cancer location.

Despite the lack of precise genetic information, it seems clear
that HNSCC results from the accumulation of changes in genes
controlling genomic stability, proliferation, apoptosis and inva-
sion, and that these changes tend to form a functional network.
Therefore, we decided to investigate the interconnections of genes
involved in different pathways, which were observed to be most
often altered in cancers. The rationale underlying the choice of
genes to be tested was based on recently published results. Our
collection consisted of tumour suppressors such as HPC1, APC,
unknown TSG on 8p22, TP53, TFF1, TFF2, cell cycle controlling
(RB1, CDKN2A) and mismatch repair genes (MLH1, MSH2), as
well as ‘metastasis’ genes NME1, NME2 and NME3 (Scholnick et al,
1996; Gallo et al, 1997; Seifert et al, 1997; Matsuura et al, 1998;
Ransom et al, 1998; Grati et al, 2000; Oba et al, 2001; Carvalho et al,
2002; Tsuda et al, 2002).

To search for possible changes leading to gene silencing, we
started with LOH analysis. Then we evaluated the methylation
status and finally the protein expression for genes showing the
highest frequency of LOH. All genetic analyses were performed
with a homogenous set of 62 larynx squamous cell carcinoma
(LSCC), which represents the most common type of HNSCC.

The aim of our study was to establish which of the analysed
genes are likely to be critical in LSCC and which genetic alterations
tend to occur together to form a network of molecular events and
then could be applied as molecular markers of clinical outcome.

MATERIALS AND METHODS

Samples

To analyse the homogeneous set of primary LSCC, cancer tissues
and matched blood samples were obtained from 62 patients
diagnosed with the primary LSCC in the Department of
Otolaryngology, Wroclaw Medical University, Poland. All the
tumours were diagnosed histopathologically according to the
World Health Organisation’s criteria as carcinoma planoepitheliale
keratodes (33 cases), akeratodes (25 cases) and keratoblasticum
(four cases). Biological material for molecular analysis was
collected before chemotherapy and/or radiotherapy. Cancer tissues
for molecular analyses were dissected from the central part of
tumour. None of the patients had a history of hereditary cancer. A
clinicohistopathological characterisation of patients is summarised
in Table 1.

DNA amplification and LOH analysis

DNA was isolated from cancer tissue and corresponding peripheral
blood lymphocytes following standard procedures. Extracted DNA
(3mg) was DOP-amplified (Degenerate Oligonucleotide Primed-
PCR2 with the NRich-kit, Genpak, UK) following the manufac-
turer’s guidelines. To test for genes important in carcinogenesis, a
panel of microsatellite markers was applied: D1S2883, D2S123,

D3S1611, D5S346, D8S254, NME1, NME2, NME3, TP53, TFF1,
TFF2, D9S171 and RB1. The sequences for all primers are listed in
the Genome Database (http//gdbwww.gdb.org). The LOH was

Table 1 Clinicohistopathological characteristics of group of patients with
LSCC

Age Sex Histopathology Grading T N M Staging

59 M k 2 3 2 0 4a
48 F k 3 4 0 0 4a
54 M k 2 4 0 0 4a
54 M k 2 3 2 0 4a
57 M k 2 4 0 0 4a
59 M k 1 4 0 0 4a
64 M k 2 4 1 0 4a
50 M ak 2 3 0 0 3
62 M k 1 4 1 0 4a
66 M k 2 4 0 0 4a
65 M ak 2 3 0 0 3
45 M ak 2 4 1 0 4a
61 M k 1 1 0 0 1
63 M k 2 3 0 0 3
60 M k 3 4 0 0 4a
67 M k 2 3 0 0 3
62 M k 2 3 0 0 3
64 M ak 1 3 0 0 3
56 M ak 3 3 0 0 3
68 M ak 3 4 3 0 4b
54 M ak 2 4 0 0 4a
71 M kb 2 4 1 0 4a
60 M k 3 3 0 0 3
50 F ak 2 4 0 0 4a
59 M k 1 3 0 0 3
69 M ak 3 1 0 0 1
51 M k 2 3 0 0 3
44 M k 2 2 0 0 2
57 M ak 2 3 0 0 3
61 M ak 3 3 0 0 3
48 M kb 2 3 1 0 3
61 M ak 3 3 2 0 4a
69 F ak 3 4 2 0 4a
56 M ak 2 3 2 0 4a
43 M ak 2 3 0 0 3
50 M ak 2 3 0 0 3
67 M kb 2 3 0 0 3
58 M ak 3 3 0 0 3
63 M kb 2 4 0 0 4a
71 M ak 3 1 0 0 1
60 M k 2 1 0 0 1
71 M k 2 4 0 0 4a
50 M k 1 3 0 0 3
49 M k 1 2 0 0 2
69 M ak 3 4 0 0 4a
61 M k 2 3 1 0 4a
60 M ak 2 3 0 0 3
49 M ak 1 4 1 0 4a
61 F k 3 3 0 0 3
51 M ak 3 4 2 0 4a
60 M ak 3 3 0 0 3
46 M ak 2 3 0 0 3
57 F ak 2 2 0 0 2
48 M k 2 3 0 0 3
51 M k 2 4 0 0 4a
61 M k 1 3 0 0 3
64 M k 2 4 1 0 4a
51 M k 2 4 2 0 4a
49 M k 1 4 0 0 4a
55 M k 1 4 0 0 4a
52 M k 1 4 0 0 4a
56 F k 2 4 0 0 4a

F¼ female; M¼male; k¼ carcinoma planoepitheliale keratodes; ak¼ carcinoma
planoepitheliale akeratodes; kb¼ carcinoma planoepitheliale keratoblasticum;
LSCC¼ larynx squamous cell carcinoma.
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studied in larynx carcinoma DNA and in matched constitutional
DNA from the original series. PCR was performed according to the
standard protocol in a PTC-200 thermocycler (MJ Research, USA).
Fluorescent PCR products were pooled and resolved on a 4%
polyacrylamide gel supplemented with 7 M urea in an ABI-377
sequencing device. Cold PCR amplification of TFF1 and TFF2 was
performed as described previously (Carvalho et al, 2002). Sizes and
quantity of marker alleles were evaluated by a semiautomated
analysis using GENESCAN software, version 3.1, and the
GENOTYPER software package, version 2.0 (Applied Biosystems,
USA). Allelic loss was defined as a more than 70% reduction in the
tumour peak area compared to the peak area of corresponding
normal tissue (Karnik et al, 1998).

PCR with methylation-specific primers (MSP-PCR) was used to
assess the promoter methylation of the CDKN2A. Genomic DNA
was bisulphite treated followed by amplification performed by cold
PCR as described previously using the following primers: forward,
50-attagtggagattattgttttaga-30; reverse, 50-aaaaaaaacataccttacctatct-
30 (Herman et al, 1996). Cycling conditions were 30 s at 941C, 30 s
at 551C and 30 s at 721C for 35 cycles. Methylation of the MLH1
promoter regions was examined using previously described
digestion protocols with some modifications. Normal and tumour
DNA were digested using HpaII and MspI enzymes. The MLH1
promoter region was analysed using two pairs of specific primers:
MLH1-881 and MLH1-1219 or MLH1-881 and MLH1-1470
described elsewhere. (Papadimitrakopoulou, 2000; Rainho et al,
2001; Fiedler et al, 2002) PCR products were separated in
nondenaturated 6% PAA gels, stained in ethidium bromide and
directly visualised by UV illumination.

Immunostaining

Immunostaining for MLH1, P16 and RB was performed using the
streptovidin– biotin peroxidase method according to standard
procedures. The samples were immunostained using the following
monoclonal antibodies: MLH1 IgG1 (clone G168-15, BD Bios-
ciences, Germany), P16 IgG2a (clone F-12, sc-1661, Santa Cruz
Biotechnology Inc., USA) and RB IgG1 (clone RB1 1F8, Dako,
Denmark) in the dilution 1 : 400, 1 : 50 and 1 : 100, respectively.
Specimens were counterstained with haematoxylin and analysed in
a light microscope. Normal human laryngeal tissue was used as a
negative control. The number of positive cells per high field was
assessed. The immunoreactivity results were recorded as positive
when at least 20% of nuclear cells were stained positively, and any
reduction below 20% in the number of stained cells was considered
as an abnormal pattern.

Statistical analysis

The Spearman’s correlation coefficient was used to analyse
associations between LOH at two loci. In order to find associations
between LOH at three loci, a data mining method was applied
(Mannila, 1997). First, we found triplets of loci such that LOH
occurred at all three loci often. Such triplets were said to be
associated if for each of the three possible pairings of loci in the
triplet, the following condition is satisfied: the probability of LOH
occurring at the locus where LOH was less common, given that
LOH occurred at the other locus, was above a given threshold. The
threshold chosen ensured that LOH at any of the three loci is
positively correlated with LOH at the remaining loci for all the
associated triplets. In order to investigate the effect of the
explanatory variables on the clinical variables observed, the
Mann– Whitney rank test was used. In addition, Student’s t-tests
and ANOVA tests were used to test the effect of the explanatory
variables on grading, which had a bell-shaped distribution.

RESULTS

The LOH analysis was performed by using 13 polymorphic
microsatellite markers, on the DNA isolated from the 62 LSCC
and corresponding normal tissue. All cases were informative
(heterozygous) in at least 60% of analysed loci. Loss of
heterozygosity was most frequently observed in the loci linked to
the genes: CDKN2A (55.4%), MLH1 (46.0%), TSG on 8p22 (38%),
RB1 (35.7%) and NME1 (21%). According to the definition
that LOH can be accepted as specific if occurring in given
loci in no less than 20% of analysed cases (Ah-See et al, 1994;
Li et al, 1994; Nawroz et al, 1994), the above-mentioned genes
were chosen for further studies with the exception of metastasis-
related gene NME1, because in the analysed group of patients
no distant metastases were observed. Further, molecular analysis
was not performed for TSG on 8p22 because the critical gene
in this region is not yet specified (Fujiwara et al, 1995; Scholnick
et al, 1996).

The analysis of the CDKN2A gene showed altered methylation in
37.5% and a decrease of protein expression in 45% of cases. For the
MLH1 gene, altered methylation was observed in 22.6% and
downexpression in 27.5% of cases. For the RB1 gene, decrease in
protein expression was noted only in 11.8% of cases (seven out
of 59); therefore, the promoter methylation status was not
evaluated. The results are summarised in Table 2. The analysis
of correlation of both LOH and aberrant methylation with the loss
of protein expression for CDKN2A and MLH1 genes showed

Table 2 Results of analysis of LOH, methylation and protein expression in LSCCa

LOHb Aberrant methylation Decreased expression

Gene Chromosomal localisation No. of cases (%) No. of cases (%) No. of cases (%)

MLH1 3p22 23/50 46.0 14/62 22.6 14/51 27.5
TSG c 8p22 21/55 38.0
RB1 13q14 20/56 35.7 7/59 11.8
CDKN2A HPC1 9p21 31/56 55.4 21/56 37.5 27/60 45
APC 1q24 6/44 13.6
MSH2 5q21 10/60 16.6
TP53 2p16 7/49 14.2
NME1 17p13 4/51 7.8
NME2 17q21 12/57 21.0
NME3 17q21 4/43 9.3
TFF1 17q21 7/54 12.9
TFF2 21q22.3 2/19 10.5

aThe percentage was calculated for the informative cases. bLOH, loss of heterozygosity; LSCC¼ larynx squamous cell carcinoma. cTSG (unknown tumour suppressor gene on
8p22).
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a significant value (Po0.01, Spearman’s test). However, no
statistical significance was discernible between the LOH and loss
of protein expression for the RB1 locus. The following correlations
of LOH, methylation and loss of protein expression with tumour
grading were observed: negative for MLH1 and positive for
CDKN2A (Table 3).

To search for genetic alterations that tend to occur together to
form a network of molecular events, Spearman’s test and
association analysis were applied. We noted that LOH in the
following genes tends to occur in pairs: TSG on 8p22/NME1,
MLH1/CDKN2A (Po0.01, Spearman’s test) and with lower
statistical significance in TSG on 8p22/MLH2, TSG on 8p2/NME3,
MSH2/NME2, MSH2/APC (Po0.05, Spearman’s test; Table 4).
Analysis of the LOH pairs mentioned above and clinicohisto-
pathological features of disease showed a positive correlation for
only one pair: MLH1/CDKN2A and staging (Po0.05, ANOVA) and
grading (Po0.01, ANOVA). For this pair, LOH in MLH1 correlates
negatively but LOH in CDKN2A correlates positively with grading
(Po0.01, ANOVA). Further application of association analysis for
triple parameters indicated a correlation for the following sets:
MLH1/CDKN2A/TSG on 8p22 and MLH1/CDKN2A/RB1 (Table 4).
Detailed statistical analysis showed that in both triplets, LOH in
MLH1 correlates with lower, and in CDKN2A with higher grading
(Po0.01, ANOVA), but LOH in TSG on 8p22 and RB1 gene are not
directly linked to tumour grading.

DISCUSSION

Analysis of allelic loss (LOH) is widely applied in searching for
tumour suppressor genes involved in the process of neoplastic
transformation. The analysis of LOH indicated the involvement of
a variety of genes in the development and progression of LSCC
(Rainho et al, 2001; dos Reis et al, 2002; Fiedler et al, 2002; Gunduz
et al, 2002). It is hypothesised that LSCC develops after the
accumulation of six to 10 independent genetic events (Renan,
1993). Therefore, our study focused on searching for alterations in
a chosen panel of genes reported to be frequently altered in
manifold cancers. In our series of LSCCs, LOH was most frequently
observed in microsatellites linked to the following genes: CDKN2A
(55.4%), MLH1 (46.0%), TSG on 8p22 (38%), RB1 (35.7%) and
NME1 (21%). The function of some of them in tumorigenesis is
well known. CDKN2A and RB1 play an important role in the cell
cycle control (in RB pathway) (Sherr, 1996; Yokoyama et al, 1996).
MLH1 belongs to the group of genes controlling mismatch repair
(Deng et al, 1999; Wheeler et al, 1999; Arzimanoglou et al, 2002).
However, the location of putative genes on 8p and their association
with the development and progression of HNSCC are still disputed
(Li et al, 1994; Nawroz et al, 1994; Fujiwara et al, 1995).

Therefore, we chose CDKN2A, RB1 and MLH1 for a more
detailed molecular analysis. Since promoter methylation following
LOH is frequently involved in the silencing of CDKN2A and MLH1
(El-Naggar et al, 1997; Deng et al, 1999; Wheeler et al, 1999), but
not RB1 (Yokoyama et al, 1996; Gleich et al, 1999), the analysis of
methylation of CDKN2A and MLH1 was also performed. The
positive correlation of both LOH and hypermethylation with loss

of protein expression for CDKN2A and MLH1 genes (Po0.01,
Spearman’s test) confirmed the thesis that these are the most
important mechanisms for silencing the CDKN2A and MLH1 genes
(El-Naggar et al, 1997; Deng et al, 1999; Wheeler et al, 1999). Our
results, showing impaired Rb pathway (loss of expression of RB1
and/or of CDKN2A) in 55.9% of analysed cases confirmed the
hypothesis that RB1 pathway (55.9%) is commonly disrupted in
HNSCC development and progression, with CDKN2A (45%),
rather than RB1 (11.8%) being the frequent direct target for
inactivation (Lang et al, 2002). Despite the fact that in our series
downregulation of MLH1 was observed in 27.5% of cases, analysis
of microsatellite instability (MSI) by using BAT 25, BAT 26 and
BAT 40 markers showed only low-frequency MSI (MSI-L) in three
out of 62 analysed cases (published elsewhere) (Sasiadek et al,
2002). Therefore, we concluded that in LSCC inactivation of MLH1
does not lead to MSI, in contrast to the observation for hereditary
nonpolyposis colon cancer (Wheeler et al, 1999). A similar
observation was reported by Arzimanoglou et al. (2002), who
observed frequent LOH at MLH1 and negligible DNA instability in
ovarian cancer. These results support the hypothesis that
microsatellite stability is controlled by a variety of genes (Giannini
et al, 2002). Statistical analysis of LOH in MLH1, CDKN2A and RB1
genes and clinicohistopathological features of the disease disclosed
that LOH in MLH1 and CDKN2A correlates only with tumour
grading. Our results suggest that LOH in MLH1 is characteristic for
lower, while LOH in CDKN2A occurs in higher grades of LSCC
(Table 3). We searched for the significance of combinations of
LOH in two or three loci taking into account the opinion of Huang
et al (2002) that sole analysis of single genetic alterations may
neglect the important role of a combination of two or more
alterations during the progression of cancer. We found six pairs
and two triplets of genes in which LOH tends to occur together.
The analysis of their correlation with clinicohistopathological
features of the disease proved that one pair (MLH1/CDKN2A) and
both triplets are related to staging and grading. We observed that

Table 3 Results of analysis of LOH, methylation and protein expression of CDKN2A and MLH1 in LSCCa

CDKN2A MLH1

Grading(G) LOHb % Aberrant methylationc % Decreased expressiond % LOHb % Aberrant methylationc % Decreased expressionc %

1 45.5 27.27 50 62.5 33.33 41
2 47.05 32.25 33.33 50 27.7 26.9
3 83.33 57.14 66.66 30 6.6 0

aThe percentage was calculated for the informative cases. bLOH, loss of heterozygosity; LSCC¼ larynx squamous cell carcinoma. cStatistically significant results – Po0.01;
ANOVA. dStatistically significant results – Po0.05; ANOVA.

Table 4 Pairs and triplets of genes in which LOH tends to occur
together in LSCC.

Pairs

TSG a/NME1 Po0.01 (Spearman’s test)
MLH1 /CDKN2A

TSG/MSH2 Po0.05 (Spearman’s test)
TSG/NME3
MSH2/NME2
MSH2/APC

Triplets
MLH1/CDKN2A/TSG Association analysis
MLH1/CDKN2A/RB

aTSG – unknown tumour suppressor gene on 8p22. LSCC¼ larynx squamous cell
carcinoma.
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in each of these cases LOH in MLH1 correlates with lower and LOH
in CDKN2A with higher grades of LSCC. Similar correlations were
observed in the analysis of LOH in single loci. Therefore, it can be
postulated that MLH1 and CDKN2A play an important role in
LSCC development and progression.
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