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Abstract

Background: Bovine endometrial epithelial cells (BEECs) undergo regular regeneration after calving. Elevated cortisol
concentrations have been reported in postpartum cattle due to various stresses. However, the effects of the
physiological level of cortisol on proliferation in BEECs have not been reported. The aim of this study was to investigate
whether cortisol can influence the proliferation properties of BEECs and to clarify the possible underlying mechanism.

Methods: BEECs were treated with different concentrations of cortisol (5, 15 and 30 ng/mL). The mRNA expression of
various growth factors was detected by quantitative reverse transcription-polymerase chain reaction (qPCR),
progression of the cell cycle in BEECs was measured using flow cytometric analysis, and the activation of the Wnt/β-
catenin and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways was detected with Western
blot and immunofluorescence.

Results: Cortisol treatment resulted in upregulated mRNA levels of vascular endothelial growth factor (VEGF) and
connective tissue growth factor (CTGF); however, it had no influence on transforming growth factor-beta1 (TGF-β1).
Cortisol (15 ng/mL) accelerated the cell cycle transition from the G0/G1 to the S phase. Cortisol upregulated the
expression of β-catenin, c-Myc, and cyclinD1 and promoted the phosphorylation of PI3K and AKT.

Conclusions: These results demonstrated that cortisol may promote proliferation in BEECs by increasing the
expression of some growth factors and activating the Wnt/β-catenin and PI3K/AKT signaling pathways.
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Background
The mammalian uterus exhibits a unique regenerative
ability as it undergoes the cyclic program of degener-
ation and regeneration. During the period of parturition,
bovine endometrial epithelial cells (BEECs) are partially
destroyed [1]. Subsequently, the damaged endometrium
is effectively repaired without remaining scar tissue or
loss of function [2]. This repair is essential to prepare
for another pregnancy and to form natural defense bar-
riers against various pathogenic microorganisms.
Cortisol acts as an endogenous glucocorticoid, which

can be raised in the organism by stress [3]. The blood
levels of cortisol increase in parturients. A previous
study showed that glucocorticoids inhibited cell

proliferation due to their cytotoxic effects and their in-
duction of cell-cycle arrest and apoptosis [4]. However,
an increasing number of studies have shown that gluco-
corticoids can promote proliferation in a variety of cell
types [5–7]. It has been demonstrated by Petersen et al.
that low dose dexamethasone treatment led to a moder-
ate increase in the proliferation of cultured human lens
epithelial cells [7]. Komiyama et al. reported that cortisol
suppressed apoptosis of luteal cells to maintain bovine
corpus luteum function at the early and midluteal stage
[8]. These studies explain why a low concentration of
cortisol is added into some culture media as a growth
enhancer [9]. The effect of glucocorticoids depends on the
differentiation status of the cells [10]. Glucocorticoid treat-
ment reduced undifferentiated cell proliferation, while it
promoted differentiation cell survival [11]. Ciliberti et al.
proved that a physiological cortisol concentration can pro-
mote peripheral blood mononuclear cell proliferation after
stress [12]. Many other studies have reported that cortisol
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can regulate female reproductive functions in cattle [13–
15]. Lee et al. showed that cortisol may act as a luteoprotec-
tive factor because it can inhibit basal and TNFα-induced
PGF2α production in bovine endometrial stromal cells [16].
Duong et al. found that the function of the bovine corpus
luteum was positively influenced by cortisol, which led to
higher rates of embryo implantation and higher rates of
pregnancy in heifers [17]. However, fewer studies have
shown the effect of cortisol on the proliferation of BEECs.
After shedding of the allantochorion, the slough of the

necrotic superficial endometrial drives the loss of the
endometrial surface epithelial covering, so the growth of
BEECs is required for the repair process. New blood vessel
formation is typical for the endometrium, and the blood
vessels supply oxygen to new tissue and transport immune
cells to inhibit infection and inflammation [18]. VEGF is a
specific mitogen of endothelial cells that plays an import-
ant role in normal and pathological angiogenesis [19]. It
can also regulate normal endometrial angiogenesis. CTGF
is a multifunctional growth factor that is expressed in a
variety of cells and tissues, such as epithelial and secretory
cells, the liver parenchyma, and vascular cells. During
wound repair, CTGF expression is obviously elevated to
promote wound healing, connective tissue cell prolifera-
tion and cell adhesion [20, 21]. The TGF-βs can regulate
proliferation and differentiation in a variety of cell types
[22]. TGF-β1 has an important function in endometrium
growth. It has been reported that TGF-β1 functions as a
strong upstream inducer of CTGF [23, 24].
Wnt signaling is connected with repair processes in

many organ systems [25]. In primate and mice, it has
been demonstrated that the Wnt/β-catenin signaling
pathway is involved in the process of endometrial repair,
which shows dynamic changes in the endometrium dur-
ing the regeneration of endometrial epithelium [26, 27].
In the resting state, β-catenin is localized in the cyto-
plasm, where it combines with a destruction complex
(Axin, adenomatosis polyposis coli, glycogen synthase
kinase 3β and casein kinase 1α). Once the Wnt/β-ca-
tenin signaling pathway is activated, the resultant signal
is transduced to the destruction complex to prevent β-
catenin phosphorylation and degradation [28]. Then, free
cytosolic β-catenin enters the nucleus to bind the T-cell
factor/lymphoid enhancer factor (TCF/LEF) family and
regulate the expression of downstream target genes, such
as c-Myc and cyclinD1, which are closely involved in
proliferation and the cell cycle [29, 30]. Accumulating
evidence has confirmed that the PI3K/AKT signaling
pathway is an important intracellular signaling pathway in
the regulation of numerous cellular functions, including
proliferation, adhesion, migration, invasion, metabolism
and survival [31–33]. PI3K is the main upstream molecule
that activates AKT, and then AKT induces cell growth
and survival.

The aim of this study was to investigate the proliferative
effect of cortisol on BEECs and to clarify the possible
mechanisms of the effects. Our study was designed to de-
tect changes in the mRNA levels of growth factors (VEGF,
CTGF and TGF-β1), the cell cycle, and the critical pro-
teins of the Wnt/β-catenin and PI3K/AKT signaling path-
ways after treatment with different concentrations of
cortisol, and we assessed whether cortisol could promote
BEEC proliferation in vitro.

Methods
Isolation and culture of endometrial epithelial cells
Bovine uteri with no gross evidence of genital disease or
microbial infection were collected from an abattoir and
kept on ice until further processing at the laboratory.
Postpartum uteri were discarded due to contamination
of the uterus, damage to the endometrium and local in-
flammation. The uterus was collected at days 1–4 of the
estrous cycle (day 1 represents the ovulation day), with
ovarian stage I used for cell culture because at that point
[34], peripheral plasma progesterone concentrations are
similar to those of a postpartum bovine [1]. In brief, the
uterine horn was cut into 3–4 cm long sections. Tissues
were digested with 0.1% protease from Streptomyces gri-
seus (P5147, Sigma, USA), 200 units/mL penicillin and
200 μg/mL streptomycin dissolved in DMEM-F12 (D8900,
Sigma, USA). After an 18-h incubation at 4 °C, the uterine
horn was incised longitudinally to expose the epithelium.
The endometrium was scraped gently using surgical blade
and ophthalmic tweezers. Harvested endometria were
centrifuged at 100×g for 5min and then washed twice
with PBS. Then, the cell pellet was collected. Cells were
seeded into 25 cm2 flasks in Dulbecco’s modified Eagle’s
medium/nutrient mixture F-12 containing 15% fetal
bovine serum (FBS, Gibco, USA), 50 U/mL penicillin/
streptomycin and cultured at 37 °C with 5% CO2. The
medium was changed every 1–2 days until the cells
reached approximately 90% confluence. The purification
of BEECs was determined by detecting CK-18 using im-
munohistochemistry, and the proportion of epithelial cells
was determined to be greater than 99%. The BEECs were
seeded and treated until they reached 80% confluence.
The BEECs were isolated and cultivated independently.
Each set of cultured cells was from a single uterus and
represented a uterus in the experiment. The cells of each
independent experiment were from a single uterus.

RNA extraction and quantitative PCR (qPCR)
Our previous study verified that 5 ng/mL (basal physio-
logical level), 15 ng/mL (physiological level at partur-
ition), and 30 ng/mL (supra-physiological levels, such as
at exogenous administration or pathological condition)
concentrations of cortisol have no cytotoxic effects on
BEECs [35]. The BEECs were treated with cortisol (5, 15
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and 30 ng/mL) for 0, 3, 12, and 18 h. After incubation
with cortisol (H0888, Sigma, USA), total RNA was ex-
tracted according to the manufacturer’s instructions using
TRIzol reagent (ET111, TRAN, China). The quantity and
purity analysis of the extracted RNA were checked using a
Nanodrop 2000 spectrophotometer (Thermo, USA). The
ratio of absorption (A260/A280) was determined to be be-
tween 1.8 and 2.1, and then the RNA (900 ng) was con-
verted to cDNA as previously described [35]. The cycling
conditions were as follows: 95 °C for 30 s, 40 cycles of
95 °C for 5 s, 60 °C for 30 s. The reaction system included
12.5 μL of SYBR Green PCR mix, 1 μL of each primer, and
1 μL of cDNA template in a final volume of 25 μL per re-
action (RR820A, Takara, Japan). The 2-△△Ct method was
used to analyze the relative gene expression (target gene
expression normalized to the expression of the endogen-
ous control gene) [36]. The qPCR experiments were
performed in triplicate. The sequences of the primers are
presented in Table 1.

Cell cycling analysis
The BEECs were treated with cortisol (5, 15 and 30 ng/mL)
for 24 h. Then, the cells were collected, washed twice with
cold PBS, and fixed in 70% ethanol at 4 °C for 24 h. Then,
the cells were washed twice with cold PBS and incubated
with RNaseA and propidium iodide (C1052, Beyotime,
China) for 30min in the dark at 37 °C. The stage of the cell
cycle was determined by flow cytometry (LSRFortessa, BD
Biosciences, USA).

Western blot analysis
The BEECs were treated with cortisol as described above,
and the total proteins were extracted and quantified using
a BCA protein assay kit (P0010, Beyotime, China). Proteins
(20–30 μg) were separated by 10% SDS-polyacrylamide gels
and transferred to polyvinylidene difluoride (PVDF) mem-
branes (Millipore, Germany). The membranes were incu-
bated in 5% nonfat milk diluted with TBST (0.1% Tween-
20 in Tris-buffered saline) to block nonspecific binding.
The membranes were incubated with primary antibodies
specific for β-catenin (1:5000 dilution in 5% BSA), p-AKT
(1:2000 dilution in 5% BSA), c-Myc, cyclinD1, p-PI3K,
PI3K, AKT and β-actin (all at 1:1000 dilution in 5% BSA)
at 4 °C overnight, and then they were incubated with HRP-
conjugated secondary antibodies (all at 1:2000 dilution in
5% nonfat milk) at room temperature for 1 h. The

following antibodies were used: β-catenin (ab32572;
Abcam; U.K.), c-Myc, cyclinD1, p-PI3K, PI3K, p-AKT,
AKT and β-actin (#5605, #2978, #4228, #4292, #4060,
#4691, #4970, respectively; Cell Signaling Technology,
USA).

Immunofluorescence staining
The BEECs grew on cover slips in 24-well cell culture
plates. Cells were treated with cortisol at a concentration of
15 ng/mL for 30min. After treatment, cells were fixed with
4% paraformaldehyde for 30min. After washing with PBS,
cellular membranes were permeabilized with 0.1% Triton
X-100 for 10min, and cells were blocked with 5% bovine
serum albumin for 30min at room temperature. After that,
cells were incubated with anti-β-catenin (all at 1:250 in
blocking solution) at 4 °C overnight. After washing with
PBS three times, cells were incubated with a FITC-
conjugated secondary antibody (A0423, Beyotime, China)
for 1 h at room temperature. The cell nuclei were stained
with DAPI (C1005, Beyotime, China). The cells were ana-
lyzed with a fluorescence microscope (Leica TCS SP8; Leica
Corporation, Germany).

Statistical analysis
Uteri were sampled from at least 3 cows. Three replicates
(different sets of culture cells) were used for analysis, and
the same set of culture cells were repeated 3 times within
each group. All data were analyzed as the mean ± standard
error of the mean (SEM). The groups were compared by
one-way ANOVA, which was followed by Dunnett’s test
(SPSS 17.0 software). A p-value of less than 0.05 was con-
sidered statistically significant.

Results
mRNA expression of VEGF, CTGF and TGF-β1 in BEECs is
induced by cortisol
To investigate the potential impact of cortisol on BEEC
proliferation, we examined the mRNA levels of VEGF,
CTGF and TGF-β1 by qPCR. As shown in Fig. 1, at 3 h
and 12 h, the mRNA levels of VEGF were increased (p <
0.05) after 5 ng/mL, 15 ng/mL and 30 ng/mL cortisol
treatment compared to those in the control group. At
18 h, VEGF expression was higher (p < 0.05) than it was
in the control group after 15 ng/mL and 30 ng/mL but
not after 5 ng/mL cortisol treatment. At 3 h, 12 h and 18
h, the mRNA levels of CTGF were significantly

Table 1 The list of primer sequences used for amplification of qPCR

Gene Forward primers Reverse primer Accession number Product size (bp)

β-actin CATCACCATCGGCAATGAGC AGCACCGTGTTGGCGTAGAG NM_173979.3 156

VEGF CCTGATGCGGTGCGGGGGCT TGGTGGTGGCGGCGGCTATG NM_001316992.1 372

CTGF AGCTGACCTGGAGGAGAACA GTCTGTGCACACTCCGCAGA NM_174030.2 139

TGF-β1 CGAGCCCTGGACACCAACTA AGGCAGAAATTGGCGTGGTA NM_001166068.1 137
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upregulated (p < 0.05) after 15 ng/mL and 30 ng/mL cor-
tisol treatment. The mRNA levels of TGF-β1 in the ex-
perimental groups were no different than they were in
the control group at the indicated time points.

Effect of cortisol on the cell cycle in BEECs
To explore the possible roles of cortisol in controlling
BEEC proliferation, we measured the cell cycle distribu-
tion by flow cytometry (Fig. 2). The results demonstrated
that 15 ng/mL cortisol significantly increased (p < 0.05)
the proportion of cells in S phase, and 5 ng/mL and 30
ng/mL cortisol groups also showed a similar tendency.
These data indicated that 15 ng/mL cortisol might pro-
mote BEEC growth by accelerating the G0/G1 to S
phase transition in the cell cycle.

Cortisol activates the Wnt/β-catenin signaling pathway in
BEECs
To determine whether the Wnt/β-catenin signaling path-
way was involved in regulating proliferation in BEECs, the
key proteins in the signaling pathway were detected using
Western blot analysis. The results in Fig. 3a showed that

the protein levels of β-catenin at all time points significantly
increased (p < 0.01) with 15 ng/mL cortisol treatment, and
the expression levels of c-Myc and cyclinD1 also increased
(p < 0.05) at the 15min and 30min time points. The levels
of β-catenin, c-Myc and cyclinD1 proteins reached their
peak at the 30min time point. As shown in Fig. 3b, the β-
catenin protein levels were increased (p < 0.05) in the 15
ng/mL cortisol treatment group compared with the control
group. The expression of c-Myc was increased (p < 0.05)
following cortisol treatment at 5 ng/mL, 15 ng/mL, and 30
ng/mL compared to the control groups. Meanwhile, the
expression of cyclinD1 was increased (p < 0.05) following
cortisol treatment at 15 ng/mL and 30 ng/mL compared to
the control groups. The level of β-catenin in the cell nu-
cleus and cytoplasm was higher in the treated group than
in the control group (Fig. 3c).

Cortisol activates the PI3K/AKT signaling pathway in
BEECs
To study the potential mechanism underlying the prolif-
erative effect of cortisol on BEECs, the activation of the

Fig. 1 Effects of cortisol on the mRNA expression of VEGF (a), CTGF (b) and TGF-β1(c) in bovine endometrial epithelial cells. The bovine
endometrial epithelial cells were treated with cortisol (5, 15 and 30 ng/mL) for 0, 3, 12, or 18 h. RNA was extracted and analyzed by qPCR.
con = control cells without any processing; low = 5 ng/mL cortisol; mid = 15 ng/mL cortisol; high = 30 ng/mL cortisol. Three uteri (different sets of
culture cells) were used for analysis. The data are presented as the means ± SEM. * p < 0.05, ** p < 0.01 vs the control group
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Fig. 2 Effects of cortisol on cell cycle distribution in bovine endometrial epithelial cells. The bovine endometrial epithelial cells were treated with
cortisol (5, 15 and 30 ng/mL) for 24 h. The cell cycle distribution was examined by flow cytometry. Con = control cells without any processing;
low = 5 ng/mL cortisol; mid = 15 ng/mL cortisol; high = 30 ng/mL cortisol. Three uteri (different sets of culture cells) were used for analysis. The
data are presented as the means ± SEM. * p < 0.05 vs the control group

Fig. 3 The effect of cortisol on the activity of the Wnt/β-catenin pathway in bovine endometrial epithelial cells. (a) Cells were treated with
cortisol (15 ng/mL) for 0, 15, 30, 45 and 60min. (b) Cells were treated with cortisol (5, 15 and 30 ng/mL) for 30 min. The β-catenin, c-Myc and
cyclinD1 levels were determined by Western blotting analysis. β-actin was used as the internal control. (c) Cells were treated with cortisol (15 ng/
mL) for 30 min. The β-catenin levels were evaluated by confocal microscopy. Three uteri (different sets of culture cells) were used for analysis. The
data are presented as the means ± SEM. * p < 0.05, ** p < 0.01 vs the control group
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PI3K/AKT signaling pathway was examined by Western
blot analysis.
As shown in Fig. 4a, the phosphorylation level of PI3K

was elevated (p < 0.01) after the 30min cortisol treatment.
Compared to that in the control groups, the phosphoryl-
ation level of AKT was elevated (p < 0.05) after the cortisol
treatment at 15, 30 and 45min. The phosphorylation
levels of PI3K and AKT reached a peak with the 15 ng/mL
cortisol treatment at the 30min time point. The results in
Fig. 4b showed that following the incubation with different
concentrations (5 ng/mL, 15 ng/mL, and 30 ng/mL) of
cortisol, the phosphorylation level of PI3K was signifi-
cantly increased (p < 0.05) compared with that in the con-
trol group. Compared with that in the control group, the
phosphorylation level of AKT was elevated (p < 0.05)
following 5 ng/mL and 15 ng/mL treatments.

Discussion
Cortisol is involved in various complex biological effects
in mammals, such as growth, immune response, and me-
tabolism. In this study, we demonstrated that cortisol
can promote VEGF and CTGF gene expression and ac-
tive Wnt/β-catenin and PI3K/AKT signaling pathways,
which can promote cell proliferation.

Growth factors (VEGF, CTGF and TGF-β1) exert
some regulatory roles in proliferation, differentiation,
matrix repair and remodeling [20, 37, 38]. Our study
showed that cortisol can upregulate the mRNA levels of
VEGF and CTGF, but the mRNA levels of TGF-β1 were
not significantly upregulated. Although it was reported
that cortisol suppressed angiogenesis by increasing the
levels of anti-angiogenic genes [39], this particular effect
might be related to the cell-specific manner and dosage
of cortisol. Bernabé et al. reported that pharmacological
doses of cortisol reduced VEGF production, while corti-
sol could induce a significant increase of VEGF when
administered at the concentration observed during
physiological stress [40]. A similar effect has been re-
ported by Fehrholz et al., in which glucocorticoids were
observed to obviously increase CTGF mRNA levels in
lung epithelial cells, but no effect was detected on TGF-
β1 mRNA expression [41]. Dammeier et al. found that
glucocorticoids induced CTGF mRNA expression inde-
pendent of TGF-β1 [24]. It has been reported that ster-
oid hormones regulate endometrial recovery, that
growth factors (VEGF, CTGF and TGF-β1) are necessary
for tissue formation and angiogenesis [18], and that the
expression levels of these growth factors were increased

Fig. 4 The effect of cortisol on PI3K and AKT phosphorylation in bovine endometrial epithelial cells. (a) Cells were treated with cortisol (15 ng/mL)
for 0, 15, 30, 45 and 60 min. (b) Cells were treated with cortisol (5, 15 and 30 ng/mL) for 30 min. The p-PI3K, PI3K, p-AKT and AKT levels were
determined by Western blotting analysis. The total PI3K or AKT protein levels were used as the internal control. Three uteri (different sets of
culture cells) were used for analysis. The data are presented as the means ± SEM. * p < 0.05, ** p < 0.01 vs the control group
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in the activated repair state of BEECs [42]. Thus, cortisol
could increase VEGF and CTGF mRNA levels to pro-
mote BEEC proliferation and growth in vitro.
It is widely accepted that the Wnt/β-catenin signaling

pathway plays an obvious role in the proliferative phase
of wound healing [43]. Chen et al. suggested that Wnts
are vital factors in the development of the uterus and in
embryo implantation [44]. It has been shown that
cyclinD1 and c-Myc are required for the transition of
G1/S and G2/M phases, respectively [45, 46]. In the
present study, we found that the proportion of BEECs in
S phase increased after cortisol treatment. It is a com-
mon phenotype in cancer cells that facilitating G1/S
phase transition can promote cancer cell proliferation
[47]. These results suggested that cortisol promoted
BEEC proliferation. The data showed that compared to
control cells, the levels of β-catenin, c-Myc and cyclinD1
were significantly increased after 15 ng/mL cortisol stimu-
lation with a peak at 30min of treatment, which indicated
an obviously enhanced activation of Wnt/β-catenin that
led to high expression of downstream proteins. Cortisol
increased the protein levels of β-catenin, c-Myc and
cyclinD1 at 30min of treatment, which may be
concentration-related. Wnt/β-catenin pathway activation
had the most dramatic effect with the 15 ng/mL cortisol
treatment. However, whether different concentrations of
cortisol could induce different effects requires further in-
vestigation. In addition, the β-catenin protein levels were
obviously elevated in the nucleus and cytoplasm after the
15 ng/mL cortisol treatment, which further demonstrated
activation of the Wnt/β-catenin signaling pathway. These
results were consistent with previous studies that showed
accumulated β-catenin in the cytoplasm subsequently
translocated to the nucleus to activate its target genes [43,
48]. Taken together, the present study showed that corti-
sol could regulate the Wnt/β-catenin signaling pathway to
increase BEEC proliferation.
A previous study demonstrated that cell proliferation is

regulated by a reduction in apoptosis during early wound
healing [49]. The PI3K/AKT pathway is an important
regulator of cell proliferation, apoptosis and cell cycle [50,
51]. Evidence has shown that the pathway is closely re-
lated to proliferative diseases, such as cancer [52, 53]. Our
results indicated that the phosphorylation levels of PI3K
and AKT peaked at 30min with the 15 ng/mL cortisol
treatment. Furthermore, various concentrations of cortisol
increased the phosphorylation levels of PI3K and AKT at
the indicated time points, with a peak at 15 ng/mL. Similar
to a previous report, glucocorticoids can activate the
PI3K/AKT pathway to protect against apoptosis [54].
These findings suggested that activation of PI3K/AKT was
enhanced and that it participated in multiple downstream
pathways in BEECs induced by cortisol. However, further
investigation should be performed.

Conclusions
The present study demonstrated the proliferative effect
of cortisol on bovine endometrial epithelial cells. This
effect may be achieved by increasing the expression of
growth factors (VEGF and CTGF) and activating the
Wnt/β-catenin and PI3K/AKT signaling pathways.
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