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Abstract

We create a network model to study the spread of an epidemic through physically proximate

and accidental daily human contacts in a city, and simulate outcomes for two kinds of

agents—poor and non-poor. Under non-intervention, peak caseload is maximised, but no

differences are observed in infection rates across poor and non-poor. Introducing interven-

tions to control spread, peak caseloads are reduced, but both cumulative infection rates and

current infection rates are systematically higher for the poor than for non-poor, across all

scenarios. Larger populations, higher fractions of poor, and longer durations of intervention

are found to progressively worsen outcomes for the poor; and these are of particular con-

cern for economically vulnerable populations in cities of the developing world. Addressing

these challenges requires a deeper, more rigorous understanding of the relationships

between structural poverty and epidemy, as well as effective utilization of extant community

level infrastructure for primary care in developing cities. Finally, improving iniquitous out-

comes for the poor creates better outcomes for the whole population, including the non-

poor.

1. Introduction

In the wake of the novel coronavirus Covid-19 pandemic that is currently sweeping the planet,

nations across the world have responded in many different ways. Non-pharmaceutical inter-

ventions (NPIs) to combat Covid-19 cover the entire spectrum of what is termed physical dis-

tancing—which is a set of methods to reduce frequency and closeness of contact between

people to contain the spread of disease [1]. Some nations have issued advisories advocating

that people maintain a minimum distance between each other as daily life goes on largely

uninterrupted, while others have banned all large gatherings and enforced distancing norms

more strictly, and yet others have even gone into ‘lockdown’ mode, requiring people to stay

home and only allowing them to venture out to get basic supplies [2]. The spread of Covid-19

is being termed a pandemic, but most outbreaks are much more restricted to specific geo-

graphical locations, particularly in urban areas with greater contact density [3]. From the
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perspective of developing nations, therefore, attention needs to be focused on the impact of

epidemics on those that are most vulnerable—the urban poor.

Prior work on understanding the link between poverty and epidemics indicates strong posi-

tive correlation between poverty and the fractions of population with communicable diseases

across nations [4, 5]. While poverty is often considered to be a driver of disease, the nature of

the relationship between poverty and communicable diseases does not suggest one-way causal-

ity, but rather a more complex relationship based on positive feedback [6, 7]. Poverty is found

to create conditions for the spread of infectious diseases by forcing high density living and pre-

venting access to medical infrastructure and care, which in turn means that diseases spread

more easily in these communities and contributes to an exacerbation of poverty due to illness

induced job losses, health costs, and mortality risks [6]. Infectious diseases have been found to

have systematically affected economic development, with increasing burden of infectious dis-

eases driven by falling biodiversity [7]. While these studies suggest that poverty and infectious

disease reinforce each other, the relationship is largely explored at the level of nations. How-

ever, we are concerned about the spread of disease at finer-grained levels, specifically in cities

of the developing world where a substantial proportion of the population is poor. In this con-

text, the poor are characterized by a lack of sufficient economic resources that manifests in

inability to meaningfully follow norms of distancing and contact reduction, or lack of access to

the health services and pharmaceutical interventions; while the non-poor are able to follow

norms and access health services.

In this work we attempt to model epidemic spread in an urban system (city) and estimate

the differential impacts on poor and non-poor populations. We create a simple network model

to propagate the stochastic dynamics of the spread of infection through a population consist-

ing of two kinds of agents—poor and non-poor—and estimate the differential impacts on

these populations. We explore model dynamics under various scenarios of intervention, and

quantify the difference in outcomes across the two categories of agents during the course of

the epidemic.

2. Model definition and specifications

We model a network of a city consisting of N agents, each a node in the network that repre-

sents the city. While the structure of social ties are well known to be approximated by power-

law degree distributions [8], there remains considerable debate on the appropriate network

structures to model the stochasticity inherent in the brief, physically proximate, and essentially

accidental day-to-day encounters able to transmit an influenza-like infection [9, 10]. Given

our interest in studying differential outcomes for poor and non-poor, and in the absence of

data on networks of spread in developing cities, we propose to explore the dynamics of trans-

mission on two different idealized network structures—an uncorrelated random Erdős–Rényi

network [11] and a scale-free Barabási-Albert network [12].

In the Erdős–Rényi (ER) graph, each edge is generated at random with probability plink,
and is independent of all other edges. Essentially, a node’s neighbours on the network repre-

sent their daily contacts—those they come into close contact physically (at home, at public

conveniences, in transit, at work etc.) during the course of a day—and given the inherent ran-

domness in many of these proximate contacts, the ER network is arguably a reasonable repre-

sentation of this reality. A given value of plink yields an average of q = (N − 1) plink neighbours

for a random node in the network, resulting in an approximately Poisson degree distribution

(as N!1 and Nplink is constant) that is indicative of the lack of clustering in the network

and homogeneity of node-level network properties.
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For the Barabási-Albert (BA) network, a graph with N nodes is obtained by attaching new

nodes with m neighbours, based on preferential attachment. The degree distribution for such a

network follows a power-law, meaning that the average degree of a node in the network hides

significant heterogeneity—many nodes have a smaller number of connections, but a few have

much larger numbers of connections. Such highly connected super-spreader nodes are now

considered critically important in the context of the dynamics of disease transmission [13, 14].

At the outset, when time t = 0 days, each node is randomly designated as being poor or

non-poor for the duration of the dynamics based on Eq 1:

SðniÞ ¼
0; w:p: ppoor
1; w:p: 1 � ppoor

(

; ð1Þ

where S(ni) is the status of node i. Each time increment in the dynamics represents a single

day.

We model the epidemic using the classic Kermack-McKendrick three-compartment Sus-

ceptible-Infected-Recovered (SIR) model [15]. The SIR model and its variants are commonly

used to understand the progression of an epidemic and its impact on the health system. We

use this construct instead to focus attention on the differential nature of impact of the epi-

demic on underlying populations of the poor and non-poor.

When t = 0, there is one randomly infected node and N − 1 susceptible nodes. Given that

the transmission probability from an infected to a susceptible node is p, at each iteration t, an

infected node with contact rate k causes, on average, β infections. β is the daily transmission

rate and is given by (Eq 2):

b ¼ pk ð2Þ

Once the transmission dynamics for an iteration are completed, each infected agent that

has spent 1/γ days being infected, moves into the recovered compartment. A recovered agent

is inert, in that it is neither susceptible nor infective. Model dynamics are propagated a period

of t = Tf iterations (days).

The base reproductive number R0 is a measure of the number of infections caused by an

infected individual, given that the population has no immunity from past exposures or vacci-

nation, nor any deliberate intervention in disease transmission [16] and is given by (Eq 3):

R0 ¼ b=g; ð3Þ

The effective reproduction rate, Re(t), at any time t during the spread of infection depends

on the contact rates and transmission probabilities at that time, and these variables co-evolve

with the numbers of susceptible, infected, and recovered individuals in the system. This co-

evolution is impacted by the nature and extent of both pharmaceutical and non-pharmaceuti-

cal interventions [17] implemented to contain spread of disease. We study the evolution of

outcomes for the poor and non-poor under three scenarios of intervention:

1. Non-intervention: a scenario where we assume that no measures are taken to combat trans-

mission and contact, and the epidemic infects the population and runs the entire course of

dynamics with constant transmission probability p and an unchanged network of

connections.

2. Transmission rate reduction: this intervention refers to strategies such as pharmaceutical

interventions including medicines as well as non-pharmaceutical norms such as physical

distancing or masking to reduce transmission. However, given the constraints of the poor

in accessing or implementing these strategies, we see differential transmission probabilities
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for the poor and non-poor. Essentially, the transmission probability from non-poor nodes

to all other nodes (poor and non-poor) reduces to pnp−np = pnp−p = pnp (pnp< p), indicating

their ability to access or follow the intervention strategy. Meanwhile, transmission probabil-

ity between poor and non-poor nodes also decreases to pnp−np = pnp (pnp< p), because the

non-poor are still able to implement the intervention and protect themselves, but the trans-

mission probability from poor nodes to other poor nodes is pp−p = pp (pnp< pp� p), reflect-

ing the difficulties and constraints faced by the poor in accessing requisite medication or

medical care. Overall, while effective transmission rates of both the non-poor and poor

nodes decrease under this intervention, the effect is smaller for the poor nodes vis-à-vis

non-poor nodes.

3. Contact rate reduction: this scenario refers to stronger interventions such as lockdown or

highly stringent distancing norms, that alter the network of daily proximate contacts of

individuals by reducing connectivity in the network, and thus containing spread. Again, the

poor are not able to reduce contacts as effectively as the non-poor because of structural con-

ditions such as living conditions as well as being employed in essential sectors such as

health and sanitation. We model the differential impact on the poor and non-poor by

reducing the average number of contacts from a non-poor node to any other (poor or

non-poor) node to a proportion: qnp−p = qnp−np = qnp (qnp< 1) of its neighbours prior to

intervention. The contact rate from a poor node to a poor node is reduced to a proportion

qp−p = qp (qnp< qp� 1) of its neighbours prior to intervention, indicating the greater diffi-

culty of poor agents in reducing contacts. The contact rate of a poor node to a non-poor

node is also reduced to qp−np = qnp, on account of the non-poor nodes reducing their con-

tacts with the poor.

We test outcomes across all these scenarios for both network types under consideration.

Table 1 provides the complete set of parameter values and initial conditions for the

simulations.

The choice of these base parameter values (Table 1) for network structure, p, and γ yields

R0 = 2.5. This regime (R0 > 1) simulates an epidemic propagating through the network,

enabling us to explore dynamics of spread. However, we vary these assumptions in alternative

simulations of the model by changing γ (0.05� γ� 0.2), thus yielding 1.25� R0� 5, and

enabling assessment of model sensitivity to R0. We also vary the system size across 3 orders of

magnitude (1000� N� 100,000) and the proportion of poor significantly (0.25� ppoor�
0.75) to estimate the robustness of our findings. Finally, we test the model by varying the start

time and duration of intervention. Outcomes of these various alternative parametrizations of

the model are discussed in Section 5.

Fig 1 depicts representative structures of the ER and BA graphs used in this model, portray-

ing scaled-down networks of connections with 100 nodes (instead of 10,000) for the sake of

visual clarity. As is apparent, there is much lesser variance in the degree distribution of nodes

in the ER (Fig 1a), while the BA graph has a dense core (darker shade of edges representing

greater connectedness) containing a small set of nodes with much higher degree than the aver-

age degree for nodes in the network (Fig 1b). These networks represent an equal number of

poor (yellow nodes) and non-poor (purple nodes), with no systematic bias in degree distribu-

tion based on poverty status.

We are interested in two sets of outcomes—one is the current infectious caseload at any

given time t, and the other is the cumulative infections over time. We measure both these out-

comes not only for the overall population, but also the poor and non-poor populations dis-

tinctly so as to assess the differential impact of the epidemic and interventions applied. If, at a

given time t, fl(t), fl(p, t) and fl(np, t) are the fractions of overall, poor and non-poor

PLOS ONE Poverty in the time of epidemic: A modelling perspective

PLOS ONE | https://doi.org/10.1371/journal.pone.0242042 November 10, 2020 4 / 16

https://doi.org/10.1371/journal.pone.0242042


Table 1. Parameter values and initial conditions.

Values Values

(Erdős–

Rényi)

(Barabási-

Albert)

Parameters

Population–number of network nodes, N 10,000 10,000

Edge probability, plink (Erdős–Rényi) 0.005

Number of edges from new node to extant nodes, m (Barabási-Albert) 50

Probability of agent being poor, ppoor 0.50 0.50

Transmission probability, p 0.005 0.005

Recovery rate, γ 0.10 0.10

Number of iterations (days) in one simulation of model, Tf 200 200

Number of simulations 100 100

Scenarios

Transmission probability from poor to poor under intervention II, pp−p 0.005 0.005

Transmission probability from poor to non-poor under intervention II, pp−np 0.003 0.003

Transmission probability from non-poor (to both poor and non-poor) under

intervention II, pnp
0.003 0.003

Contact rate for poor to poor under intervention III, qp−p 0.8 0.8

Contact rate for poor to non-poor under intervention III, qp−np 0.4 0.4

Contact rate for non-poor (with both poor and non-poor) under intervention III,

qnp
0.4 0.4

Start of intervention (tint) 40 15

Duration of intervention (tdur) 60 30

Initial Conditions

Number of susceptible nodes, S(0) 9,999 9,999

Number of infectious nodes, I(0) 1 1

Number of recovered nodes, R(0) 0 0

https://doi.org/10.1371/journal.pone.0242042.t001

Fig 1. Representative structures of ER and BA graphs. a: Erdős–Rényi (ER) graph with 100 nodes and link

probability of 0.1. b: Barabási-Albert (BA) graph with 100 nodes and 10 edges attached from each new node to existing

nodes. The purple nodes represent non-poor agents and the yellow nodes represent poor agents.

https://doi.org/10.1371/journal.pone.0242042.g001
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populations that have ever been infected, then Differential Impact (DI) is defined as the ratio

of the cumulative fraction of poor infected to non-poor infected (Eq 4).

DI ¼ fIðp;Tf Þ=fIðnp;Tf Þ ð4Þ

3. Analytical description of dynamics

Given the model in Section 2, we present an analytical treatment of the dynamics. It is impor-

tant to highlight at the outset that this analytical mean-field description is only suited to

approximate the dynamical outcomes from the ER graph because of its underlying homogene-

ity, and not for the heterogenous network structure obtained in the BA model.

The total population of the system is N, and based on the edge probability plink, each node

has, on average, q = (N − 1)plink neighbours; this is the average contact rate of a node in this

network. The probability of transmission of disease from an infected individual to a susceptible

individual is p; therefore, the average number of infections caused by an individual per day is

β = pq. Also, given ppoor, we have, on average, a fraction fp of the population that is poor and a

corresponding fraction fnp = 1 − fp that is non-poor. At the end of a time interval t, fractions

fS(t) of the overall population, fS(p, t) of the poor population, and fS(np, t) of the non-poor pop-

ulation, are still susceptible (S).

In the non-intervention scenario, where transmission in a random network is uncontained,

on average, fS(p, t) fS(np, t) = fS(t). The effective transmission rate from an infected individual

at time t, Re(t), taking into account the current state of the network is given by (Eq 5):

ReðtÞ ¼ pfSðt � 1Þq=g ð5Þ

Using Eq 2, we have (Eq 6):

ReðtÞ ¼ bfSðt � 1Þ=g ð6Þ

At t = 0 and in the limit N!1, Re(0) = R0 = β/γ. The susceptible fraction of the population

is (Eq 7):

fSðtÞ ¼ 1 � fIðtÞ; ð7Þ

where fl(t) is the fraction of the overall population (N) that has ever been infected, and is given

by (Eq 8):

fIðtÞ ¼

1

N
; for t ¼ 0

fIðt � 1Þ þ ðbfIðt � 1Þð1 � fIðt � 1ÞÞ; for 1 � t < 1=g

fIðt � 1Þ þ ðb fIðt � 1Þ � fI t �
1

g

� �� �

ð1 � fIðt � 1ÞÞ; for t � 1=g

8
>>>>><

>>>>>:

ð8Þ

Given that fS(p, t) = fS(np, t) in unconstrained transmission, the effective transmission rate

for poor nodes Re(p, t) and non-poor nodes Re(np, t) are, on average, equal (Eq 9):

Reðp; tÞ ¼ Reðnp; tÞ ¼ ReðtÞ ¼ bfSðt � 1Þ=g ð9Þ

Next, we consider the scenario of transmission rate reduction. Under this intervention, we

need to compute appropriate β for different kinds of connections—non-poor to non-poor

(np! np), non-poor to poor (np! p), poor to non-poor (p! np), and poor to poor (p! p).
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Here, β changes in accordance with changes in p, keeping q constant (Eq 10).

b ¼

bnp� np ¼ pnp� npq ¼ pnpq ¼ bnp; if np! np

bnp� p ¼ pnp� pq ¼ pnpq ¼ bnp; if np! p

bp� np ¼ pp� npq ¼ pnpq ¼ bnp; if p! np

bp� p ¼ pp� pq ¼ ppq ¼ bp; if p! p

8
>>>><

>>>>:

ð10Þ

Given fp and fnp, we can estimate the transmission probability (Eq 11).

p ¼ f 2

np

bnp

q
þ fnpfp

bnp

q
þ fpfnp

bnp

q
þ f 2

p

bp

q
¼ ðf 2

np þ 2fpfnpÞ
bnp

q
þ f 2

p

bp

q
ð11Þ

And the effective transmission rate Re(t) is (Eq 12):

ReðtÞ ¼ ððf
2

np þ 2fpfnpÞbnp þ f 2

p bpÞðfnpfSðnp; t � 1Þ þ fpfSðp; t � 1ÞÞ=g ð12Þ

Re(t) estimates the overall effective transmission rate, but we would also like to understand

effective transmission rates of poor nodes Re(p, t) and non-poor nodes Re(np, t) respectively

(Eqs 13 and 14).

Reðp; tÞ ¼ ðbnpfnpfSðnp; t � 1Þ þ bpfpfSðp; t � 1ÞÞ=g ð13Þ

Reðnp; tÞ ¼ bnpðfnpfSðnp; t � 1Þ þ fpfSðp; t � 1ÞÞ=g ð14Þ

In this case, fraction of susceptible nodes are given as (Eq 15):

fSðtÞ ¼ 1 � fIðtÞ; fSðp; tÞ ¼ 1 � fIðp; tÞ; fSðnp; tÞ ¼ 1 � fIðnp; tÞ ð15Þ

And the infected node fraction is estimated by (Eq 16):

fIðtÞ ¼ fpfIðp; tÞ þ fnpfIðnp; tÞ ð16Þ

The fraction of poor and non-poor infected nodes, on average, are given as (Eqs 17 and 18):

fIðp; tÞ ¼

1

N
; for t ¼ 0

fIðp; t � 1Þ þ bfpfIðp; t � 1Þð1 � fIðp; t � 1ÞÞ þ bfnpfIðnp; t � 1Þð1 � fIðnp; t � 1ÞÞ; for 1 � t <
1

g

fIðp; t � 1Þ þ ðbfp fIðp; t � 1Þ � fI p; t �
1

g

� �� �

ð1 � fIðp; t � 1ÞÞ þ bfnp fIðnp; t � 1Þ � fI np; t �
1

g

� �� �

ð1 � fIðnp; t � 1ÞÞ; for 1=g � t � tint � 1 and t � tint þ tdur

fIðp; t � 1Þ þ ðbpfp fIðp; t � 1Þ � fI p; t �
1

g

� �� �

ð1 � fIðp; t � 1ÞÞ þ bnpfnp fIðnp; t � 1Þ � fI np; t �
1

g

� �� �

ð1 � fIðnp; t � 1ÞÞ; for tint � t < tint þ tdur

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð17Þ

fIðnp; tÞ ¼

1

N
; for t ¼ 0

fIðnp; t � 1Þ þ bfpfIðp; t � 1Þð1 � fIðp; t � 1ÞÞ þ bfnpfIðnp; t � 1Þð1 � fIðnp; t � 1ÞÞ; for 1 � t < 1=g

fIðnp; t � 1Þ þ ðbfp fIðp; t � 1Þ � fI p; t �
1

g

� �� �

ð1 � fIðp; t � 1ÞÞ þ bfnp fIðnp; t � 1Þ � fI np; t �
1

g

� �� �

ð1 � fIðnp; t � 1ÞÞ; for 1=g � t � tint � 1 and t � tint þ tdur

fIðnp; t � 1Þ þ ðbnpfp fIðp; t � 1Þ � fI p; t �
1

g

� �� �

ð1 � fIðp; t � 1ÞÞ þ bnpfnp fIðnp; t � 1Þ � fI np; t �
1

g

� �� �

ð1 � fIðnp; t � 1ÞÞ; for tint � t < tint þ tdur

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð18Þ

where t = tint indicates the time when the intervention begins and t = tint + tdur is the time

when the intervention ends.

Finally, we consider the contact rate reduction scenario, where the number of contacts of an

agent is differentially reduced across rich and poor. Here, β changes in accordance with

PLOS ONE Poverty in the time of epidemic: A modelling perspective

PLOS ONE | https://doi.org/10.1371/journal.pone.0242042 November 10, 2020 7 / 16

https://doi.org/10.1371/journal.pone.0242042


changes in q, keeping transmission probability p constant (Eq 19):

b ¼

bnp� np ¼ pqnp� np ¼ pqnp ¼ bnpq; if np! np

bnp� p ¼ pqnp� p ¼ pqnp ¼ bnpq; if np! p

bp� np ¼ pqp� np ¼ pqnp ¼ bnpq; if p! np

bp� p ¼ pqp� p ¼ pqp ¼ bpq; if p! p

8
>>>><

>>>>:

ð19Þ

The effective transmission rate under this scenario is (Eq 20):

ReðtÞ ¼ ððf
2

np þ 2fpfnpÞbnpq þ f 2

p bpqÞðfnpfSðnp; t � 1Þ þ fpfSðp; t � 1ÞÞ=g ð20Þ

We estimate the effective transmission rates of poor and non-poor nodes (Eqs 21 and

22):

Reðp; tÞ ¼ ðbpqfpfSðp; t � 1Þ þ bnpqfnpfSðnp; t � 1ÞÞ=g ð21Þ

Reðnp; tÞ ¼ bnpqðfpfSðp; t � 1Þ þ fnpfSðnp; t � 1ÞÞ=g ð22Þ

We use Eq 15 to estimate the susceptible fractions of population, based on the infected frac-

tions and Eq 16 to estimate the infected fraction of overall population. Infected fractions of

poor and non-poor categories are given by (Eqs 23 and 24):

fIðp; tÞ ¼

1

N
; for t ¼ 0

fIðp; t � 1Þ þ bfpfIðp; t � 1Þð1 � fIðp; t � 1ÞÞ þ bfnpfIðnp; t � 1Þð1 � fIðnp; t � 1ÞÞ; for 1 � t <
1

g

fIðp; t � 1Þ þ ðbfp fIðp; t � 1Þ � fI p; t �
1

g

� �� �

ð1 � fIðp; t � 1ÞÞ þ bfnp fIðnp; t � 1Þ � fI np; t �
1

g

� �� �

ð1 � fIðnp; t � 1ÞÞ; for 1=g � t � tint � 1 and t � tint þ tdur

fIðp; t � 1Þ þ ðbpqfpðfI p; t � 1Þ � fI p; t �
1

g

� �� �

ð1 � fIðp; t � 1ÞÞ þ bnpqfnp fIðnp; t � 1Þ � fI np; t �
1

g

� �� �

ð1 � fIðnp; t � 1ÞÞ; for tint � t < tint þ tdur

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð23Þ

fIðnp; tÞ ¼

1

N
; for t ¼ 0

fIðnp; t � 1Þ þ bfpfIðp; t � 1Þð1 � fIðp; t � 1ÞÞ þ bfnpfIðnp; t � 1Þð1 � fIðnp; t � 1ÞÞ; for 1 � t < 1=g

fIðnp; t � 1Þ þ bfp fIðp; t � 1Þ � fI p; t �
1

g

� �� �

ð1 � fIðp; t � 1ÞÞ þ bfnp fIðnp; t � 1Þ � fI np; t �
1

g

� �� �

ð1 � fIðnp; t � 1ÞÞ; for 1=g � t � tint � 1 and t � tint þ tdur

fIðnp; t � 1Þ þ bnpqfp fIðp; t � 1Þ � fI p; t �
1

g

� �� �

ð1 � fIðp; t � 1ÞÞ þ bnpqfnp fIðnp; t � 1Þ � fI np; t �
1

g

� �� �

ð1 � fIðnp; t � 1ÞÞÞ; for tint � t < tint þ tdur

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð24Þ

4. Simulated results and dynamics

When we study the current infected caseload over time on the ER graph in the non-interven-
tion scenario, we find the classic exponential curve described the by the dynamics in Fig 2a, as

expected in the SIR model [15]. Essentially, this means that there is an exponential increase in

infected caseloads, with the potential to significantly impact and even overwhelm the health

system. We also explore the difference in proportions of poor and non-poor agents (in terms

of their respective populations) that form this caseload, and find that both sections of the pop-

ulation are similarly impacted (Fig 2a). This is brought into sharper relief when we study the

cumulative proportions of poor and non-poor affected over time and find that the temporal

progression of the proportions of both populations follow exactly the same trajectory (Fig 2b).

At the end of the outbreak ~82% of the overall population has been infected, with the exact
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same proportion reflected in both poor and non-poor categories. The analytical description of

the model indicates reasonable correspondence with these simulation results (Eqs 6–8), esti-

mating that ~87% of the population is infected, with the same levels of infection across both

categories. Given that we have a random network and unconstrained spread, this result is in

line with expectations. Qualitatively similar behaviour is observed with the exponential rise

of infections in the BA network leaving both poor and non-poor equally affected (Fig 2c and

2d)—though the overall outcomes are much worse than on the ER graph, both in terms of

peak caseloads and cumulative population infected. The peak of the epidemic yields signifi-

cantly higher infections at ~69%, and while this means that the epidemic runs its course much

quicker, it also affects ~96% of the overall population. This difference in outcomes compared

to the ER network is attributable to the role of nodes with higher connections being infected

and, in turn, spreading the infection widely in the network.

We now turn our attention to the transmission probability reduction scenario. In terms of

overall trends, we find, as expected, that the peak infection rate (25%) and cumulative popula-

tion infected (73%) in the ER graph under this scenario are lower than in the non-intervention

scenario (36% and 82% respectively), because at time t = 41, the intervention that reduces the

effective transmission rate begin to take effect (Fig 3a and 3b). Similar trends are apparent in

the BA network as well with reduced peak infection rate (55%) and cumulative infections

(87%) under this intervention when compared to non-intervention (69% and 96% respec-

tively) (Fig 3c and 3d). However, we now begin to observe the differential impacts of the inter-

vention on poor and non-poor populations, which show distinctive paths post t = 40, when

intervention is initiated. In the ER graph, we see that the poor population shows a higher

infected caseload peak at 27% occurring at t = 49 (against 23% for the non-poor population

occurring at t = 47), as a result of having a higher effective transmission rate post intervention.

Consequently, we also see that the cumulative population infected in the case of the poor is

Fig 2. Simulated system outcomes in non-intervention scenario. Yellow line represents overall population; dashed

blue line represents poor population; and dashed green line represents non-poor population. a: Current proportion of

population infected over time on ER graph. Depicts the current infected caseload (as of each day) as a proportion of

the population. All sections of the population contribute proportionally to caseloads. b: Cumulative proportion of

population infected over time in ER graph. Depicts the temporal evolution of cumulative populations infected. All

sections of the population display the same trend in cumulative infection rates. c: Current proportion of population

infected over time in BA graph. Shows exponential growth and decay with a much higher peak than in the ER graph. d:

Cumulative proportion of population infected over time in BA graph. Fractions of population affected are exactly the

same across poor and non-poor categories, though much higher than in ER graph. Overall, in this non-intervention

scenario, both categories of the population are similarly affected, per expectation, across all network types.

https://doi.org/10.1371/journal.pone.0242042.g002

PLOS ONE Poverty in the time of epidemic: A modelling perspective

PLOS ONE | https://doi.org/10.1371/journal.pone.0242042 November 10, 2020 9 / 16

https://doi.org/10.1371/journal.pone.0242042.g002
https://doi.org/10.1371/journal.pone.0242042


higher at 76%, as against 69% of non-poor (Fig 3b), making clear the unequal impacts of the

intervention on different sections of the city’s population. Correspondingly, in the BA graph,

we see the peak caseload for the non-poor population to be 53% as against 58% for the poor

population, and cumulative proportions of populations infected to be 89% and 86% respec-

tively (Fig 3c and 3d).

We now explore the temporal evolution of the effective transmission rate Re(t) based on the

analytical description of the model, and compare it to simulated outcomes on the ER graph

(Fig 4). As per Eq 12, the effective transmission rate at t = 41 would be Re(t = 41) = 1.4, as

Fig 3. Simulated system outcomes in transmission probability reduction scenario. Yellow line represents overall

population; dashed blue line represents poor population; dashed green line represents non-poor population; and thin

black line represents non-intervention scenario for comparison. a: Current proportion of population infected over

time on ER graph. Peak overall caseload is lower than non-intervention scenario, but poor population has a higher

peak than non-poor. b: Cumulative proportion of population infected over time on ER graph. Cumulative infected is

lower than under non-intervention, but the poor suffer a higher cumulative infection rate than the non-poor (76% v.

69%). c: Current proportion of population infected over time on BA graph. As in the case of the ER graph outcomes,

peak caseload is lower than non-intervention scenario, but with a higher peak for the poor. d: Cumulative proportion

of population infected over time on BA graph. Overall infected is lower than under non-intervention, with poor having

an overall higher cumulative infection rate (89% v. 86%).

https://doi.org/10.1371/journal.pone.0242042.g003

Fig 4. Evolution of mean-field effective transmission rate under transmission rate reduction scenario. Until the

intervention begins, effective transmission rate of all sections of the population follow the same trajectory, but then

show differing paths with transmission rates for poor higher during the period of intervention. Post-intervention,

again, the trajectories merge and effective transmission rate remains flat, under 1.

https://doi.org/10.1371/journal.pone.0242042.g004
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against a value of Re(t = 41) = 2.0 in the case of non-intervention (Eq 6). This means that dis-

ease transmission becomes slower and there is a lower peak at t = 48, compared to the later

and higher peak at t = 51 for the non-intervention case (Fig 2a), but that now the overall dura-

tion of the infection is more spread out. We find that our mean field estimates (Eqs 12–14) of

the point in time when effective transmission rates for all population categories start declining

just below 1 are in broad concurrence with attainment of peak caseloads observed in simula-

tions—they occur at time period t ~ 50 for overall population (48 in simulations), at t ~ 46 for

non-poor (47 in simulations), and at t ~ 53 for poor (49 in simulations) (Fig 4). The analytical

model also estimates that after the end of intervention at tint + tdur, the effective transmission

rate shows an increase (but is still below 1) because transmission probability and contact rates

are now back to pre-intervention levels, but given the state of the system in terms of numbers

of recovered agents (who are now immune) and the remaining susceptible population, there is

no further increase in infections.

Finally, we consider the outcomes under the contact rate reduction scenario. On the ER net-

work, we find that peak caseload is significantly lower than the non-intervention scenario

(21% v. 36%), but just like in the case of the transmission probability reduction scenario, the

poor have a higher peak than the non-poor (23% v. 20%) (Fig 5a). However, there is a signifi-

cantly larger difference in the cumulative fraction of population infected—it is 61% for the

non-poor against 68% for the poor (Fig 5b). On the BA network, we find that the peak caseload

for the poor is 53% as against 46% for the non-poor (Fig 5c), and the cumulative fraction

infected is also significantly higher for the poor than the non-poor (88% and 81%) (Fig 5d).

An interesting aspect revealed in the dynamics on the ER graph is that once the interven-

tion ends after tdur days, the fraction of current infections starts rising once again resulting in a

smaller second peak of infections, which affects the non-poor worse than the poor (Fig 5a).

This is because at the end of the intervention, there is a non-zero proportion of the population

that remains infected (1.08%), and even this small fraction is enough to cause a rise in

Fig 5. Simulated system outcomes for contact rate reduction scenario. Yellow line represents overall population;

dashed blue line represents poor population; dashed green line represents non-poor population; and thin black line

represents non-intervention scenario for comparison. a: Current proportion of population infected over time on ER

graph. Peak overall caseload is lower than non-intervention scenario with poor population having a higher peak than

non-poor, but we see a second peak post intervention, where non-poor are also affected. b: Cumulative proportion of

population infected over time on ER graph. Cumulative infected is lower than under non-intervention, but the poor

suffer a much higher cumulative infection rate than the non-poor (68% v. 61%). c: Current proportion of population

infected over time on BA graph. Poor have higher peak than non-poor, but overall peak is lower than under non-

intervention. d: Cumulative proportion of population infected over time on BA graph. Poor have much higher

cumulative infection rate than the non-poor (88% v. 81%).

https://doi.org/10.1371/journal.pone.0242042.g005
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infections, which peaks at t ~ 120, beyond which time caseloads decline monotonically. While

the non-poor are worse affected in this relapsed portion of the epidemic, when we consider the

dynamics entirely, the poor are starkly worse off in terms of infection caseloads, with 68% of

the poor having been infected as compared to 61% of non-poor. However, even as the poor

population is worse affected, this scenario serves as a useful reminder that the non-poor cannot

escape the impacts of infectious spread just because they isolate themselves effectively for a

given time period, if indeed the infection is still active in the overall population at the end of

this period.

This second peak can be explained using the mean-field analytical description of the model,

where we find that once the intervention period is over, at time tint + tdur, and given the profile

of recovered and susceptible population at that time, this results in an effective transmission

rate Re(tint + tdur)> 1 (Fig 6). Given this Re(t), infections start rising once again, before reach-

ing a peak and declining.

5. Sensitivity, robustness and interpretation

Overall, the outcomes of our model suggest that the poor are worse off—in terms of both peak

caseloads and cumulative infections—than non-poor under scenarios of contact rate reduction

and transmission probability reduction implemented on the ER or BA network. Reducing

either contact rate (k) or transmission probability (p), as we have done, are both mechanisms

that effectively reduce β (because β = pk), meaning that the daily transmission rate declines

under all scenarios of intervention. The decline, though, is differential for the poor and the

non-poor, causing the poor to have worse outcomes. This result also appears robust to chang-

ing the structure of the underlying network of disease transmission. We now turn to exploring

differences in outcomes across various model parameters—simulating dynamics by varying

total population, probability of being poor, recovery rate, and duration of intervention. All

these simulations are done under the transmission probability (p) reduction scenario, because

we have already seen that as long as the effect of the intervention is a reduction in β, the nature

of outcomes remains consistent whether we reduce p or k. Table 2 summarizes the results of

simulations from 12 sets of parameter values for each network type.

Across all scenarios, the poor are worse affected than the non-poor. We also find that differ-

ential impacts are particularly sensitive to changes in certain parameters across both network

Fig 6. Evolution of mean-field effective transmission rate under contact rate reduction scenario. Until the

intervention begins, effective transmission rate of all sections of the population follow the same trajectory, but then

show differing paths with transmission rates for poor higher during the period of intervention. Post-intervention,

again, the trajectories merge and effective transmission rate rises to above 1, meaning that infections are again taking

hold in the population leading to the second, albeit smaller, peak in caseloads.

https://doi.org/10.1371/journal.pone.0242042.g006
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implementations. Specifically, differential impacts are exacerbated—meaning that the impacts

on the poor get progressively worse—with increases in population of the system and increases

in proportion of poor population. It is also possible that differential impacts worsen with

increasing duration of intervention, but this effect is not as obvious.

When we increase population, we keep the average size of an agent’s neighbourhood (q)

unchanged, meaning that each agent, on average, has the same number of contacts even as

population increases an order of magnitude. By the time the intervention is initiated at tint on

the ER graph, when N = 1000, already 59% of the cumulative poor and non-poor populations

have been infected, when compared to 21% for N = 10,000 and 3% for N = 100,000. Therefore,

when N is smaller, there is a smaller fraction of the population post intervention left to be

infected and for differentials to emerge, resulting in increasing differential impacts with

increasing population. Before we can ascribe the rising differential impacts in this context to

increasing population, it is important to unpack the effect of contact rates on this phenome-

non. There are two cases with increasing average contact rate (q) and simultaneously increas-

ing N—one when N increases by a factor of 10 (from 10, 000 to 100, 000) and q by a factor of 5

(from 10 to 50) and the other when N increases by a factor of 10 (from 1,000 to 10,000) and q
by a factor of 2 (from 50 to 100)–and we still find that differential impacts increase with

increasing population in both cases. We simulate one final scenario where both N and q
increase by an order of magnitude—N increases by a factor of 10 (from 1,000 to 10,000) and q
by a factor of 10 (from 10 to 100)–and find that there is an increase in differential impact

despite increasing N and q proportionally. This suggests that increasing population, irrespec-

tive of changes in contact rate, worsens the impact of epidemic spread on poor populations. It

is anticipated that there will be over 40 megacities in the world by 2030 and most will be

located in the developing world [18]. The worsening differential impact on the poor with

increasing fraction of poor population therefore points to a significant public health challenge

for these cities as they grow into the future.

Differential impact also shows a progressive increase with increasing fraction of poor.

Given a random network, the likelihood of contact between two poor agents, on average, is

f 2
p ð1 � fSÞ, and the effective transmission rate between two poor agents, after the intervention

occurs, is f 2
p ð1 � fSÞbp� p. As the fraction of poor, fp, increases (from 0.25 to 0.5 to 0.75 in our

Table 2. Simulation outcomes.

Parameter Type Parameter Value Differential Impact (DI) on ER network [95% CI] Differential Impact (DI) on BA network [95% CI]

Population 100,000 1.109 [1.098 - 1.121] 1.049 [1.047 - 1.051]

10,000 1.101 [1.095 - 1.106] 1.044 [1.042 - 1.046]

1,000 1.040 [1.024 - 1.056] 1.036 [1.030 - 1.043]

Proportion of poor 0.75 1.142 [1.121 - 1.163] 1.059 [1.055 - 1.063]

0.50 1.101 [1.095 - 1.106] 1.044 [1.042 - 1.046]

0.25 1.048 [1.042 - 1.055] 1.028 [1.025 - 1.032]

Recovery rate 0.05 1.017 [1.010 - 1.025] 1.008 [1.007 - 1.009]

0.10 1.101 [1.095 - 1.106] 1.044 [1.042 - 1.046]

0.20 1.072 [1.046 - 1.097] 1.099 [1.087 - 1.112]

Duration of Intervention 30 (ER); 15 (BA) 1.067 [1.063 - 1.072] 1.028 [1.023 - 1.033]

60 (ER); 30 (BA) 1.101 [1.095 - 1.106] 1.044 [1.042 - 1.046]

120 (ER); 60 (BA) 1.086 [1.076 - 1.096] 1.045 [1.041 - 1.050]

Outcomes on cumulative fractions of poor and non-poor infected under different parameter specifications of the model, with 95% Confidence Interval. Each parameter

set is simulated 25 times, and the average outcomes are presented here. The Differential Impact is the ratio of the cumulative infected fraction of poor to non-poor.

https://doi.org/10.1371/journal.pone.0242042.t002
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simulations), the effective transmission rate between poor agents, f 2
p ð1 � fSÞbp� p increases as

well. Due to this, the infection rates of the poor increase with increasing poor population,

resulting in increasing differential impact between poor and non-poor (as βp−p> βp−np, βnp−p,
βnp−np).

Increasing differential impact with increase in duration of intervention could occur

because, as just discussed, transmission rates between poor agents is higher than transmission

rates between all other combinations of agent types for the duration of interventions. In longer

interventions, therefore, progressively greater fractions of poor are infected compared to the

non-poor. Therefore, the poor are likely to contend with both the aggravated negative health

and economic consequences of an epidemic at the same time.

Finally, it is apparent that increasing recovery rates indicate decreasing R0, meaning that

the average number of infections per infective declines. Therefore, we would expect that as γ
increases, the caseload of infected decreases. This is the case in both the ER and BA graphs

where we find that as γ increases from 0.05 to 0.1 to 0.2, the overall fraction of infected

decreases—from 0.88 to 0.80 to 0.45 for the ER network, and from 0.99 to 0.93 to 0.76 for the

BA network. The higher corresponding infected fractions for the BA network (for a given

value of γ) reflect the disproportionately important role of ‘super-spreader’ or highly con-

nected nodes in the network of spread. While differential impact increases with increasing γ in

the BA network, it increases from γ = 0.05 to γ = 0.1, but then declines for γ = 0.2 in the ER

network. A likely reason for this discrepancy is the significantly lower fraction of overall infec-

tions in the ER network (0.45), compared to 0.76 in the BA network for γ = 0.2, which poten-

tially mitigates against large differentials emerging in the ER network. We find evidence for

this when we simulate model dynamics for intermediate values of γ (= 0.15, 0.18) and find that

while differential impact is highest for the ER network at 1.123 for γ = 0.15, it declines to 1.079

at γ = 0.18, when the average fraction of total infected is ~45%. This suggests that differential

impact does not monotonically increase with increasing γ, but that it peaks and then declines

when γ corresponds to a certain threshold of total fraction of population infected.

Although the poor are worse off in all the scenarios we have looked at, we cannot afford to

see the problem as confined in relevance to the poor population alone. Fig 6 shows how the

unequal dynamics of the epidemic makes it possible for the disease to linger amongst the poor

and then suddenly be transmitted to the large susceptible population of the non-poor, which

were not infected in the first round of the epidemy. This implies that policies addressing differ-

ential impacts are not just relevant for the poor, but critical for society as a whole.

6. Discussion

Emerging evidence on the Covid-19 pandemic suggests that socio-economic deprivation and

overcrowding are resulting in Black and Asian communities in the UK, slum dwellers in India,

and African-American and Latino individuals in the US, being disproportionately affected

[19–24]. There is concern that the causal mechanism between poverty and susceptibility to

infection includes not only previous medical history, but also the particular social and eco-

nomic contexts of overcrowded accommodations, economic compulsions (making it difficult

to stay at home), increased stress levels, poverty induced comorbidities, and reduced access to

health care [19, 20]. Long term resilience to epidemics therefore requires both pharmaceutical

interventions (such as medicines and vaccines to particular episodes of epidemy) and broader

socioeconomic action on foundational concerns of housing, access to health care, and income

fragility.

Our work finds that increasing populations and increasing fractions of poor population are

likely to exacerbate epidemy outcomes for the poor in urban contexts, and that therefore we
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need to better equip public health systems in such contexts to deal with epidemic outbreaks.

Specifically, in the context of the developing world, where hospital infrastructure is severely

inadequate, it is argued that information, communication, and primary public health infra-

structure could meaningfully be leveraged to contain epidemics [21, 23]. There is a need for

systematic focus on studying the impacts of infectious outbreaks on economically vulnerable

communities so as to more rigorously identify effects of community, health systems, and pol-

icy [21]. Often in low- and medium-income countries, the strengths of health systems lie in

networks of ground-level community level health workers, and it is this network of primary

care providers that can be leveraged for more targeted and meaningful communication, infec-

tion monitoring, and with appropriate training, testing and evaluation [23]. Aspects of such a

strategy were visible in the containment of spread of Covid-19 in Mumbai’s Dharavi slum

[24]. Finally, sustained improvements in the provision of basic drinking water and toilet facili-

ties to the entire urban population will enable creation of healthier urban spaces, which will

also aid in combating spread of infections.

7. Conclusion

We simulate the emergence of differential outcomes for poor and non-poor populations in a

city using a simple network model of epidemic spread. We study the fractions of poor and

non-poor infected in the course of an epidemic under different kinds of intervention, and

across a range of parameter values. Under the non-intervention scenario, we find that peak

infection caseload is maximised, but that there are no differences in infection levels between

the poor and non-poor populations. Once we have an intervention, it serves to reduce peak

caseload in the system, but we find the poor are now consistently worse off than the non-poor

under all intervention scenarios, and irrespective of the underlying network structure. We also

find that increasing the city population, fraction of the urban poor, or duration of intervention

leads to a progressive worsening of outcomes for the poor vis-à-vis the non-poor. Policies

focused on reducing differential impacts of epidemic spread benefit not just the poor, but

improve health outcomes for the entire population. Such policies include the development of a

rigorous understanding of links between poverty and epidemics, as well as leveraging extant

primary care infrastructure in developing countries.
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