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Esophageal squamous cell cancer (ESCC) is the eighth most common cancer around

the world. Several reports have focused on somatic mutations and common germline

mutations in ESCC. However, the contributions of pathogenic germline alterations in

cancer susceptibility genes (CSGs), highly frequently mutated CSGs, and pathogenically

mutated CSG-related pathways in ESCC remain unclear. We obtained data on 571

ESCC cases from public databases and East Asian from the 1000 Genomes Project

database and the China Metabolic Analytics Project database to characterize pathogenic

mutations. We detected 157 mutations in 75 CSGs, accounting for 25.0% (143/571)

of ESCC cases. Six genes had more than five mutations: TP53 (n = 15 mutations),

GJB2 (n = 8), BRCA2 (n = 6), RECQL4 (n = 6), MUTYH (n = 6), and PMS2 (n = 5).

Our results identified significant differences in pathogenic germline mutations of TP53,

BRCA2, and RECQL4 between the ESCC and control cohorts. Moreover, we identified

84 double-hit events (16 germline/somatic double-hit events and 68 somatic/somatic

double-hit events) occurring in 18 tumor suppressor genes from 83 patients. Patients

who had ESCC with germline/somatic double-hit events were diagnosed at younger

ages than patients with the somatic/somatic double-hit events, though the correlation

was not significant. Fanconi anemia was the most enriched pathway of pathogenically

mutated CSGs, and it appeared to be a primary pathway for ESCC predisposition. The

results of this study identified the underlying roles that pathogenic germline mutations in

CSGs play in ESCC pathogenesis, increased our awareness about the genetic basis of

ESCC, and provided suggestions for using highly mutated CSGs and double-hit features

in the early discovery, prevention, and genetic counseling of ESCC.

Keywords: esophageal squamous cell cancer, cancer susceptibility gene, double-hit, germline mutation,

pathogenicity

INTRODUCTION

Esophageal squamous cell cancer (ESCC) is one of the most common cancers in the world, and it
is especially common in Asian countries, North America, and the eastern corridor of Africa (1). In
China, there are ∼478,000 new cases and ∼375,000 deaths related to ESCC each year (2). Many
factors reportedly have relationships with ESCC; these include smoking, drinking, and dietary
habits (3). However, the hereditary factors involved in ESCC remain unclear. Thus, understanding
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the genetic mutations and molecular events in ESCC might be
pivotal to reduce the incidence and mortality rate of ESCC.

Enormous efforts have been taken to identify somatic
alterations by whole-genome sequencing (WGS) or whole-exome
sequencing (WES) (4, 5), and several studies reveal the complex
process of tumor development (6, 7). Many common germline
single-nucleotide polymorphisms (SNPs) have been identified
by genome-wide association studies (8–16). rs138478634, a
CYP26B1 low-frequency variant, was proved to be involved
in the ESCC development (14). In 2018, several pan-cancer
studies focused on pathogenic germline mutations to explore
hereditary factors in cancers; 871 rare cancer predisposition
mutations and copy number variations (CNVs) were observed in
8% of 10,389 cases, and 7.6% of the 914 patients with pediatric
cancers had tumors that harbored pathogenic mutations in
cancer predisposition genes (17, 18). In 2019, Deng et al. (19)
identified germline profiles in Chinese patients with ESCC and
uncovered the association between genotype and environment
interactions. Additionally, BRCA2 was associated with ESCC
risk in Chinese patients (20). Reflecting a critical part of cancer
susceptibility, the two-hit hypothesis assumes that hereditary
retinoblastoma involves double mutations and that one mutation
is in germline DNA whereas non-hereditary retinoblastoma
involves two somatic mutations (21). On the basis of these
findings, double-hit events in some studies were used to identify
cancer predisposition genes (22, 23). These studies demonstrated
the significance of pathogenic germline mutations and double-
hit events in genetic testing and risk assessment for cancer.
To our knowledge, cancer predisposition genes and molecular
events in ESCC remain poorly understood. Here, we identified
pathogenic/likely pathogenic germline predisposition mutations
and highly frequently mutated CSGs in a large ESCC cohort. We
discovered significantly different pathogenic germline mutations
of TP53, BRCA2, and RECQL4 in ESCC cohorts, and we clarified
the association between double-hit events and diagnosis age in
patients with ESCC. In addition, we identified pathogenically
mutated CSG-related pathways for ESCC to illuminate the
mechanism affected by pathogenic mutations. Results of this
study will improve genetic testing for relatives of patients with
ESCC and facilitate the implementation of organizational or
institutional measures for the ESCC prevention and surveillance.

MATERIALS AND METHODS

Sample Acquisition
We collected 592 ESCC samples from published studies
and The Cancer Genome Atlas (a total of nine projects)
(Supplementary Table 1), and we excluded poor-quality samples
and hypermutant samples (4, 5, 24–29). The clinical information
is listed in Supplementary Table 2. The WGS and WES data
from the same studies came from distinct patient cases.
The quality control analysis uncovered an average sequencing
depth of 55×∼161× for WES samples and 30×∼65× for
WGS samples (Supplementary Figure 1A), the 10× average
coverages were more than 90% in most WES and WGS samples
(Supplementary Figure 1B). Moreover, the relationship between
10× average coverages and average sequencing depths showed a

positive correlation (Supplementary Figure 1C), suggesting that
the qualities of most samples were proofed. The mean depth of
our data and the public databases we used as controls were able
to provide enough variants to execute the downstream analysis
(30). The study protocol was reviewed by the institutional review
board of the Beijing Genomics Institution.

Data Processing and Mutation Calling
The fastq data from 571 samples (38 WGS samples and 533 WES
samples) were trimmed and filtered using SOAPnuke (v1.5.6 with
default parameters, except where -n 0.1 -l 11 -q 0.5 -G -T 1) (31).
Data from ESCC-P006 was transformed from bam files using
the GATK SamToFastq (v4.0.6.0 with default parameters) (32).
The high-quality reads were aligned to the hg19 human reference
genome with a Burrows-Wheeler Aligner (v0.7.17-r1194-dirty
with default parameters, except where -o 1 -e 50 -m 100,000
-i 15 -q 10 -a 600) (33). MarkDuplicates GATK (version as
above with default parameters, except where -CREATE_INDEX
true, -reportMemoryStats true, -VALIDATION_STRINGENCY
SILENT) was used to mark duplicated reads. BaseRecalibrator
(version as above with default parameters) and ApplyBQSR
(version as above with default parameters, except where -create-
output-bam-index true) were performed to base quality score
recalibration (32). Germline variants were joint-called using
GenotypeGVCFs (version as above with default parameters,
except where -ignore-variants-starting-outside-interval true)
after CombineGVCFs (version as above with default parameters)
and annotated with the Variant Effect Predictor (VEP v98.3)
(32, 34). The calling germline variants of nine projects are
shown in Supplementary Figure 1D. Samples with fewer than
80,000 variants were filtered out. Somatic variants were detected
by GATK MuTect2 (version as above with default parameters
except where -af-of-alleles-not-in-resource 0.0000025, -native-
pair-hmm-threads 1, -add-output-vcf-command-line false), and
Oncotator (v1.9.9.0) was used for annotation (32, 35). Loss of
heterozygosity (LOH) and other somatic CNVs (SCNVs) were
detected with FACETS (v0.5.14) and Pathwork (v1.0) for 533
WES and 38 WGS samples, respectively (36, 37).

CSG Sets
We curated CSGs from published papers and the Catalogue of
Somatic Mutations in Cancer (COSMIC, V92) database (38); we
included cancer predisposition genes from three papers (17, 18,
39) and genes with recorded germline associations in COSMIC
(Supplementary Table 4). After we removed duplicated genes,
the CSG set included 260 genes. CSGs were divided into three
groups according to the literature (17, 40–42); these groups were
tumor suppressor genes (TSGs; n = 139), oncogenes (n = 36),
and non-classified genes (n= 85).

Pathogenicity Evaluation
We first leveraged an in-house pathogenicity database to match
germline variants; the rest of the germline variants were
evaluated using InterVar (InterVar_20190327) as a supplemental
method to find germline pathogenic/likely pathogenic mutations
(43). Germline pathogenic or likely pathogenic variants are
hereafter referred to as pathogenic mutations. The pathogenicity
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database included ClinVar, the Human Gene Mutation Database,
mutations collected from papers, and mutations we assessed
according to consensus guidelines by the American College
of Medical Genetics and Genomics and the Association for
Molecular Pathology (17, 44–46). We filtered for pathogenic
variants with an allele frequency of 0.5% or lower in the Genome
Aggregation Database (gnomAD version v2.1) (47). Pathogenic
mutations in 260 high-interest CSGs (Supplementary Table 6)
were selected for analysis and were checked by Deep Variant
(48); manual verification ruled out false-positive results. For
somatic nonsilent variants, with the exception of frameshift, non-
sense, and splice-site mutations, three silico tools SIFT (49),
Polyphen2_HDIV (50), and CADD (51) were used to predict
pathogenicity. If a variant was predicted as damaging in any two
silico tools (SIFT: D, Polyphen2_HDIV: D/P, CADD score >15),
the variant was categorized as deleterious (39, 52).

Identification of potential Double-Hit
Events
According to the two-hit hypothesis, potential double-hit events
are identified after two or more hits have been found in the same
CSG; in this study, we set rigorous standards for determining
hits. Pathogenic germline mutations were considered hits.
Effective somatic variations were defined as hits if they met
the following requirements: frameshift, non-sense, splice-site
mutations, or deleterious missense and in-frame variants and
SCNVs that caused allele loss. Copy-neutral LOH, duplication
LOH, homozygous deletion, and hemizygous deletion were
assumed to be linked to allele loss and were termed allele loss
SCNVs (53, 54). Integrative Genomics Viewer software was used
to examine the authenticity of biallelic events (55). For double-
hit events comprised of germline hits and allele loss SCNVs, we
calculated SNP average depths and variant allelic frequency in
normal and tumor tissues of ESCC to further validate allele loss
SCNV events. Samples with variant allele frequencies <0.5 in
tumors were removed.

Statistical Analyses
To evaluate the correlations of the clinical features and genetic
events, we used the two-sided Student’s t-test. We conducted the
two-sided Fisher’s exact test to assess the gene-based association
analysis and pathway enrichment. We also performed a burden
test to determine the exact relationships between pathogenic
mutations in CSGs and ESCC (56); p < 0.05 was defined as
statistically significant.

RESULTS

Population Characteristics
Overall, 469 of 571 patient cases were Asian (424 Chinese,
41 Vietnamese, one Canadian, one Brazilian, and two without
country information), 41 were Caucasian, 58 were Black or
African American, and the rest were Brazilian without ethnicity
information. The entire population consisted of 105 women, 465
men, and one patient without gender information. The average
diagnosed age for 567 patients (the rest had no information)
was 58.81 years (the minimum diagnosed age was 24 years, and

the maximum diagnosed age was 93 years). About 35 patients
had family histories of ESCC, and the average age of patients
with ESCC with a family history [mean age (SD) was 56.80
(9.3) years; range: 41–82 years]. This average was lower than the
age of patients with ESCC without a family history [mean age
(SD): 60.00 (8.2) years; range: 36–78 years; t-test p = 0.059; 95%
CI, −6.511 to 0.121) (Supplementary Figure 2). The average
survival for 399 patients (the rest had no information) was 879.8
days (minimum survival, 3 days; maximum survival, 2,580 days).
In this study, 347 patients had a smoking history, and 215 patients
had histories of alcoholism. With regard to disease grade, 334
patients had disease with pathological grade 2 or lower, and 86
patients had disease with pathological grade >2; the pathological
grade information was missing for 151 patients. All patients
were diagnosed with disease stages I (n = 72), stage II (n =

207), stage III (n = 203), and stage IV (n = 7); 82 patients
were not assigned disease stages for this study (their information
was lost).

Pathogenic Germline Mutations in CSGs
Overall, 2,484 pathogenic germline mutations were identified,
including 1,973 SNPs and 511 insertions or deletions
(Supplementary Table 5). Each sample had an average of
4.4 pathogenic mutations. After filtration by CSGs, 157
pathogenic mutations (113 SNPs and 44 insertions or deletions)
were discovered from 25.0% (143/571) of the population
(Supplementary Figure 3). Although each sample had an
average of 1.1 pathogenic mutation in CSGs, only 12 (2.10%)
of the 571 patients harbored one or more pathogenic mutation
in CSGs (Figure 1, Supplementary Table 6). The frequency
of most mutations was rare in the gnomAD noncancer
database and in the China Metabolic Analytics Project
(ChinaMAP) database (47, 57), indicating the sparsity of
these deleterious mutations in the general population. As
expected, most of the frequently mutated CSGs belonged to
TSGs, and they were involved in biological processes, such as
DNA repair.

In general, the CSGs detected more than five times were
TP53 (n = 15 mutations), GJB2 (n = 8), BRCA2 (n = 6),
RECQL4 (n = 6), MUTYH (n = 6), and PMS2 (n = 5).
TP53 was the most frequently mutated CSG, with pathogenic
germline mutations in 2.63% (15/571) of patients with ESCC
(Figure 1, Supplementary Table 6, Supplementary Figure 4).
The result was the same as TP53 pathogenic mutations in
a study of osteosarcoma (39). In our study, 86.7% (13/15)
of TP53 mutations were non-synonymous single-nucleotide
variations. c.A1073T (rs773553186; in 0.35%, or 2/571) and
c.C742T (rs121912851; in 0.18%, or 1/571) were recorded
in the International Agency for Research on Cancer TP53
database (58). All TP53 pathogenic mutations were found in
Chinese patients, except c.A1073T (one each in a Chinese and
a Caucasian patient) (Supplementary Figure 4). Three of the
TP53 mutations, c.C742T, c.C586T, and c.C817T, have been
reported in osteosarcoma (39), and TP53 c.C742T has also been
identified in low-grade glioma (17) (Supplementary Figure 4).
Pathogenic mutations in GJB2 represented the second most
frequently mutated CSGs (Figure 1); their detection rate was
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FIGURE 1 | The frequency and distribution of cancer susceptibility genes (CSGs) with more than one pathogenic/likely pathogenic germline mutation detected in

patients with esophageal squamous cell cancer (ESCC). Only tumor suppressor genes with more than five mutations are shown. Upper bars represent the cumulative

mutation numbers of each sample. Bottom bars represent the clinical information (race, gender, age, and survival/death) about the patients. The left table presents the

frequency of mutations shown in the non-cancer Genome Aggregation Database (gnomAD) and the China Metabolic Analytics Project (ChinaMAP) database. Right

bars represent the mutation counts. The classification of the CSG is next to the mutation name (gene name + reference SNP number or gene name + chromosome

position + nucleotide change).

Frontiers in Oncology | www.frontiersin.org 4 April 2021 | Volume 11 | Article 637431

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Zeng et al. Germline Mutations and Double-Hit Events

1.40% (8/571). The c.235delC (rs80338943) mutation, a common
pathogenic frameshift deletion mutation in East Asian (EAS)
populations, has been detected in six Asian (Chinese) patients
with ESCC (59). Because this mutation has not been detected
in other populations, rs80338943 may be specific to Chinese or
Asian populations.

Non-synonymous single-nucleotide variations occupied
>50% of pathogenic germline mutations in BRCA2, RECQL4,
and MUTYH (Supplementary Table 6). In the upstream
region, we detected a pathogenic splice mutation, BRCA2
c.-39-1_-39delGA (rs758732038), in a patient, and the
mutation was reported in ClinVar as likely pathogenic (46).
The mutation has also been reported in patients with breast
cancer and medulloblastoma (60–62). RECQL4 pathogenic
mutations were only detected in Asian (Chinese) patients
in our study, and RECQL4 c.C2272T has been reported in
ovarian cancer/Rothmund–Thomson syndrome. In our study,
MUTYH c.C1178T (rs36053993) and c.C458T (rs762307622)
were detected three times (0.53%, or 3/571) and two times
(0.35%, or 2/571), respectively. rs36053993 only detected in
Caucasian patients and rs762307622 only detected in Asian
(Chinese) patients. From gnomAD, rs36053993 in a homozygous
state was found in three non-Finnish Europeans; this mutation
may have been caused by founder events (63, 64). Pathogenic
mutations in PMS2 were detected five times in five patients in
our study (0.88%), and c.2192_2196delAGTTA (rs63750695)
was observed in only four patients, who were all African.
The rs63750695 mutation has also been discovered in Lynch
syndrome, colorectal cancer, and ovarian carcinoma (65–67);
however, it was rare in non-cancer gnomAD and ChinaMAP,
for which frequencies were 1.15 × 10−5 and 0, respectively
(Figure 1). rs63750695 is possibly specific to African ethnicity
in ESCC.

The total number of pathogenic germline mutations and the
frequency of mutations were relatively lower in oncogenes and
non-classified genes compared with TSGs. TSHR and MPL were
oncogenes that were mutated in two patients with ESCC; other
oncogenes occurred in just one patient. SLC25A13 was one of the
non-classified genes with the most pathogenic mutations.

We also investigated our pathogenic germline mutations in
a previous pan-cancer study (17). Nine mutations were spread
over 22 samples with diverse cancers (Supplementary Table 9).
SLC25A13 c.852_855delCATA (n = 7), GJB2 c.235delC
(n = 7), and PALB2 c.C2257T (n = 2) were the variants
observed more than once across cancers. We detected
multiple susceptibility loci (31/47), also identified in
previous genome-wide association studies, in our patients
with ESCC (Supplementary Table 10) (8–16). Of those
genes with susceptibility loci, pathogenic mutations PDE4D
c.T108A and RUNX1 c.61+1delG were found in two patients
separately (Supplementary Table 5). We also confirmed from
the COSMIC database that 87.3% (137/157) of pathogenic
mutations in CSGs had non-silent somatic mutations in
the same or a nearby (within five) amino acid position
(Supplementary Table 6). Among 137 mutations, 107 mutations
were observed in TSGs, representing 89.2% (107/120) of
all mutations. T
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Pathogenic Germline Mutations Frequency
in ESCC Cases vs. Controls
To reveal the relationships between highly frequent mutated
CSGs and ESCC, we chose the Chinese patients to continue
the study, to leverage the most population data and avoid any
ethnicity-specific effect. We conducted gene-based association
analyses by comparing various germline mutation data from
individuals with ESCC vs. a 1000 Genomes Project EAS
population and ESCC vs. a ChinaMAP population separately (57,
68). We also conducted rare variant burden tests on the ESCC
individuals and the 1000 Genomes Project EAS population (68).
Through the same pathogenicity evaluation pipeline, pathogenic
mutations were identified in two public database populations.
Analysis of results identified significantly higher pathogenic
mutations in Chinese patients with ESCC vs. public population
databases (including 1000 Genomes Project EAS and ChinaMAP
data), as reflected by odd ratios (ORs) of pathogenic mutations
in TP53 from the Chinese ESCC populations compared with the
1000 Genomes Project EAS populations (OR = 4.26; 95% CI,
1.33–17.91; Fisher’s exact test p = 7.359 × 10−3) and compared
with the ChinaMAP populations (OR = 10.59; 95% CI, 5.21–
20.45; Fisher’s exact test p = 1.851 × 10−9); in BRCA2 from the
Chinese ESCC populations compared with the 1000 Genomes
Project EAS populations (OR = infinity; 95% CI, 1.09–infinity;
Fisher’s exact test p= 0.0197) and compared with the ChinaMAP
populations (OR = 2.68; 95% CI, 0.83–6.75; Fisher’s exact test p
= 0.0489); and in RECQL4 from the Chinese ESCC populations
compared with the 1000 Genomes Project EAS populations (OR
= 7.21; 95% CI, 0.87–332.23; Fisher’s exact test p = 0.0519) and
compared with the ChinaMAP populations (OR = 3.69; 95%
CI, 1.27–8.81; Fisher’s exact test p = 0.0089) (Table 1). Likewise,
in the burden analyses (Table 1), the numbers of pathogenic
mutations from TP53 (14/424, or 3.30%; burden test p = 3.050
× 10−3), BRCA2 (5/424, or 1.18%; burden test p = 0.015),
and RECQL4 (6/424, or 1.14%; burden test p = 0.035) in our
Chinese ESCC cohort were higher than those observed in the
1000 Genomes Project EAS group.

Potential Double-Hit Events
To further survey the genetic predisposition of ESCC, we tried to
identify potential double-hit events in ESCC. First, we identified
49,876 non-silent mutations (Supplementary Table 3) in
protein-coding regions from patients with ESCC. (We filtered the
somatic mutations that overlapped with our own panel of normal
datasets and the Exome Aggregation Consortium database
V1.0.) Then, by integrating pathogenic germline mutations
and effective somatic mutations (Supplementary Table 8) or
allele loss SCNVs, we found 84 potential double-hit events
(Figure 2). To distinguish hits with germline mutations,
the double-hit events were classified as germline/somatic
double-hit events and somatic/somatic double-hit events. We
identified 16 potential germline/somatic double-hit events
(two germline mutations coupled with somatic mutations, and
14 germline mutations accompanied with allele loss SCNVs)
(Figure 2, Supplementary Table 11, Supplementary Figures 5,
6) in 16 patients with ESCC, and we identified 68 potential

somatic/somatic double-hit events (three somatic mutations
accompanied by allele loss SCNVs and 65 double somatic
mutations) (Figure 2, Supplementary Table 12) in 67 cases.
The likelihood of two or more somatic mutations happening
on the same chromosome was very low (52, 69, 70). Therefore,
we assumed that double somatic mutations were likely in the
trans position. Briefly, 83 individuals with ESCC possessed
potential double-hit events, representing 14.5% of the ESCC
cohort (Figure 2). Notably, one patient had two somatic/somatic
double-hit events in different genes.

GJB2 and TP53 were the top two CSGs that found
germline/somatic double-hit events. Germline/somatic double-
hit events were identified in eight CSGs, including BRCA2,
BRCA1, MUTYH, CDKN2A, and ATM. The dominant type of
germline/somatic double-hit events was a germline mutation
accompanied by an allele loss SCNV. In the remaining, germline
mutations were coupled with somatic mutations; these were
only discovered in TP53 and BRCA1, possibly because SCNVs
are relatively abundant in tumors and cover large genome
region. In the somatic/somatic double-hit events, the TP53
gene had the highest frequency, and most of the remaining
genes had one potential double-hit event. Double somatic
mutation was the main type of somatic/somatic double-hit event
(Supplementary Table 12).

When we compared diagnosis ages of patients with different
double-hit events, we found that patients with germline/somatic
double-hit events (with pathogenic germline mutations) had
younger diagnosis ages [mean age (SD), 54.6 (11.2) years; range,
36–71 years] compared with patients in the somatic/somatic
double-hit events [without pathogenic germlinemutations; mean
age (SD), 60.6 (7.8) years; range, 4–80 years; t-test p = 0.056;
95% CI, −12.216 to 0.177] (Figure 3). The comparison was
non-significant, maybe it was due to the limited number of
samples with double-hit events in this comparison. However, the
finding was consistent in the study by Knudson (21). Using the
empirical cumulative distribution function (ecdf) to calculated
the expression percentiles of TSGs in an ESCC-P006 cancer
cohort, two patients with somatic/somatic double-hit events
showed low expression: one in TP53 (5.32%) and one in PTEN
(6.38%) (Supplementary Figure 8) (17). Those results support
the two-hit hypothesis and suggest that genetic screening in
specific TSGs can detect patients with germline/somatic double-
hit events earlier.

Pathway Enrichment
To obtain a more comprehensive understanding of pathogenic
germline genetic mutations affecting pathways, Kyoto
Encyclopedia of Genes and Genomes pathway enrichment
analyses were performed for multiple gene lists. The Fanconi
anemia (FA) pathway was the most significantly enriched in the
analysis of 75 pathogenically mutated CSGs (Fisher’s exact test
p = 6.634 × 10−19) (Figure 4A, Supplementary Table 7). In
addition, 1,226 pathogenic mutated genes and the genes involved
in germline/somatic double-hit events were significantly
enriched in this pathway. The top four pathways for CSGs
involved in somatic/somatic double-hit events vs. for CSGs
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FIGURE 2 | The distribution of pathogenic/likely pathogenic germline mutations, somatic mutations, and allele loss somatic copy number variations (SCNVs) in

esophageal squamous cell cancer (ESCC) cases with potential double-hit events. Upper bars represent the clinical information (age and race) about those patients.

Squares represent somatic mutations, triangles represent germline mutations, and circles represent allele loss SCNVs.

involved in germline/somatic double-hit events differed
significantly (Supplementary Figures 7A–D).

In the tumor-suppressor network, the FA pathway functions
to preserve genomic integrity by repairing DNA interstrand
crosslinks, regulating cytokinesis, and mitigating replication
stress (71, 72). About 33 ESCC samples carried pathogenic
mutations in 13 CSGs included in the FA pathway (Figure 4B).
The homologous recombination pathway and the mismatch
repair pathway described in a previous ESCC project, and
associated with cancer susceptibility, were found in our study
(Supplementary Figure 7A) (19, 73–75). Those pathways were

also reported in pathway enrichments of ovarian cancer and
osteosarcoma (39, 76). We also interrogated the oncogenic
signaling pathways upon which our mutated CSGs converged
(77). The cell cycle pathway was the most enriched, followed
by p53 pathway, the phosphatidylinositol 3′-kinase-Akt pathway,
and the receptor tyrosine kinases-Ras pathway.

DISCUSSION

We reported the profile of pathogenic germline mutations of a
larger ESCC cohort comparing with previous studies (17, 19).
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FIGURE 3 | The two types of double-hit events. (A) The paradigm of double-hit events. (B) The correlation between age and double-hit event type in esophageal

squamous cell cancer (ESCC) cases. The position of line is the median age, and the position of rhombus is the mean age in specific ESCC cohorts. The digits in the

boxes are the numbers of ESCC cases in each category.

We found 157 pathogenic mutations in CSGs from 143 (25.0%)
of 571 patients with ESCC and identified 84 double-hit events
in 83 individuals (14.5%). The double-hit events were found
in almost all projects in our study except ESCC-P008, which
demonstrated that double-hit events are relatively common in
ESCC. As far as we know, there was no report about pathogenic
mutations in GJB2, RECQL4, MUTYH, and PMS2 in ESCC,
however, they were discovered in our study. Overall, TP53, GJB2,
BRCA2, RECQL4, MUTYH, and PMS2 were highly frequently
mutated CSGs. Significant pathways were identified for different
CSGs with pathogenic mutations; the FA pathway appeared to
be a primary pathway for cancer predisposition in ESCC. We
showed that significantly more pathogenic mutations from TP53,
BRCA2, and RECQL4 occurred in patients with ESCC than in
control cohorts, which indicates that these three CSGs may play
vital roles in ESCC. Interestingly, TP53 and RECQL4 have also
been found significantly associated with osteosarcoma (39). The
relationship with diagnosis age was not significant in our study,
but double-hit events may be pivotal in ESCC carcinogenesis.

We found that TP53 had the highest frequency of pathogenic
germline mutations and the most double-hit events in CSGs.
In our study, 80% (12/15) of germline mutations in TP53 were
located in the p53 domain, which functions in DNA binding.
This domain contains four conserved regions that are enriched
for somatic mutation hot spots and are essential for the function
of the TP53 protein as a transcription factor (78, 79). Six
of the 12 mutations were discovered in conserved regions.

Environmental factors and specific DNA sequences drive higher
mutation rates, which may explain why p53 domain was a hot-
spot region (80). Those pathogenic TP53 mutations may disrupt
the p53 transcriptional pathway, which would enhance tumor
progression andmetastatic potential (81). The US Food andDrug
Administration had approved drugs against the pocket in p53
domain (82). These drugs provide treatment options to patients
with tumors that have mutations in the p53 domain. Results of
studies in other cancers contrast with our findings about TP53.
In a renal cell carcinoma study, FH, instead of TP53, harbored the
most double-hit events, and BRCA1 harbored the most in a pan-
cancer study (17, 22). Previous studies have reported that most
double-hit events with TP53 involve a mutation accompanied
by LOH (83, 84). However, in our research, double somatic
mutations were the dominant type of double-hit event. It was
partially due to the lack of researches on TP53 double somatic
mutations before.

BRCA2 and RECQL4 harbored more pathogenic germline
mutations in ESCC than in public population. BRCA2 is known
for its involvement in breast cancer and ovarian cancer via
the homologous recombination pathway, which is essential for
repairing damaged DNA (85, 86). And studies have reported
BRCA2mutations related to ESCC risk in Chinese and Turkmen
populations (20, 87, 88). The double-hit events detected in
BRCA2 in our study were germline/somatic double-hit events;
the germline mutations were accompanied by allele loss SCNVs.
These results were distinct from those reported in pancreatic
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FIGURE 4 | Significantly enriched pathways and networks in esophageal squamous cell cancer (ESCC). (A) The network composed of genes involved in the top 10

pathways in the Kyoto Encyclopedia of Genes and Genomes pathway enrichment. The red dots represent genes, and the purple circles represent pathways. The

larger the area, the higher the degree of enrichment. The different lines represent various categories of pathways; green lines indicate genetic information processing,

and purple lines indicate human disease. (B) The y-axis represents cancer susceptibility genes mutated in the Fanconi anemia pathway; the x-axis represents the

number of patients affected in our cohort. Red font: tumor-suppressor genes.

acinar-cell carcinomas (89). RECQL4 is a TSG that encodes
RECQL4 helicase, which is involved in DNA replication and
DNA repair. Germline mutations in RECQL4 can cause the
Rothmund–Thomson syndrome and sporadic breast cancer (90).
Although the pathogenic mutations in our ESCC cohort and in
the 1000 Genomes EAS group were not significantly different
(Fisher’s exact test p = 0.0519), the difference between them was
also confirmed by analysis of the ChinaMAP cohort (Fisher’s
exact test p = 0.0089). Importantly, this is the first report, to our
knowledge, that illustrates the role of pathogenic mutations in
RECQL4 in ESCC.

The PMS2 protein is a homolog of the PMS1 protein (91)
and both of them are components of the mismatch repair
system. Common polymorphisms of PMS1 have been positively
associated with ESCC in an African population (92). This finding,
together with the connection between PMS1 and PMS2, suggests
a possible relationship between PMS2 and ESCC. The double-hit
events of mismatch repair genes could result in Lynch syndrome,
as described in several studies (70, 93), but we did not detect
double-hit events in PMS2 in our ESCC cohort. A larger ESCC
cohort study might uncover double-hit events in PMS2, which
would strengthen our understanding about ESCC susceptibility.

The genetic variations in ESCC are complicated. Although
not all ESCC samples carried pathogenic germline mutations
in CSGs, the detection rate of pathogenic mutations was
close to that found in osteosarcoma (39). Because numerous
susceptibility loci reported in genome-wide association studies

were found in this research, we acknowledge that pathogenic
mutations and known susceptibility loci may inform a genetic
basis of ESCC. Our findings of variants and genes shared between
ESCC and other cancers suggests that common hereditary factors
exist in pan-cancer. Given the interplay of common SNPs and
pathogenic mutations reported in breast cancer and colorectal
cancer, the interaction between susceptibility loci and pathogenic
mutations in ESCC suggests a need for future exploration (94).

To better understand the genetic factors causing ESCC
initiation and development, we confirmed the putative germline–
somatic interplay by COSMIC proximity match. The results
not only support the pathogenicity of those germline mutations
but also imply a signal functional relevance between germline
and somatic mutations (76). In addition, we identified potential
double-hit events in 83 patients with ESCC; although the
difference was not significant, the patients with germline/somatic
double-hit events were more likely to be diagnosed at younger
ages. It is possible that pathogenic mutations confer the earliest
genetic hits to TSGs in cells, so a somatic hit alone would cause
loss of function in TSGs (95). As a result of double-hit events,
the cells generate malignancy. Furthermore, enriched pathways
revealed the process of pathogenic mutations that affect ESCC
tumorigenesis and development. In patients without pathogenic
mutations or double-hit events, limited CSG sets, potential
alternations in methylations of a promoter region, germline
CNVs, and gene-environmental or gene–lifestyle interactions are
possible explanations for ESCC development.
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Despite our findings about the genetic characterization of
and double-hit events in ESCC, we still acknowledge limitations
to our study. The first is our inability to obtain detailed
clinical information because of limited access to public databases.
Second, merging different data, such as WGS and WES,
may induce biases in cohort-wide variant processing. Third,
directly adopting variants from different sources may influence
comparisons, because the different sources applied distinct
platforms and variant detection pipelines. Fourth, our sample
size was not large enough for statistical tests, especially for
individual variants.

In sum, we report that ∼25.0% of patients with ESCC
harbored at least one pathogenic germline mutation in
CSGs, and ∼14.5% of ESCC cases could be explained by
a two-hit hypothesis. Significantly enriched pathways also
validated the significance of those pathogenic mutations.
Myriad genome variations occur in patients; our findings
represent, to our knowledge, the largest discovery of rare,
germline predisposition mutations in ESCC so far. These results
strengthen the understanding about genetic factors involved in
ESCC and will help improve prevention, early detection, and
risk management of ESCC for patients. We acknowledge the
shortcomings in the analytical methods and the data sources
used. Additional studies are needed to improve our observations
and results.
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