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ABSTRACT
Traditional methods for detecting genes that affect complex diseases in humans or animal models, milk

production in livestock, or other traits of interest, have asked whether variation in genotype produces
a change in that trait’s average value. But focusing on differences in the mean ignores differences in
variability about that mean. The robustness, or uniformity, of an individual’s character is not only of great
practical importance in medical genetics and food production but is also of scientific and evolutionary
interest (e.g., blood pressure in animal models of heart disease, litter size in pigs, flowering time in plants).
We describe a method for detecting major genes controlling the phenotypic variance, referring to these as
vQTL. Our method uses a double generalized linear model with linear predictors based on probabilities of
line origin. We evaluate our method on simulated F2 and collaborative cross data, and on a real F2 in-
tercross, demonstrating its accuracy and robustness to the presence of ordinary mean-controlling QTL. We
also illustrate the connection between vQTL and QTL involved in epistasis, explaining how these concepts
overlap. Our method can be applied to a wide range of commonly used experimental crosses and may be
extended to genetic association more generally.

QUANTITATIVE trait locus (QTL) analysis has
traditionally focused on detection of major

genes controlling the expected mean of a phenotype.
But there is substantial evidence that not only the mean
but also the variance, that is, the stochastic variability of
the phenotype about its average value, may itself
be under genetic control. The identification of such
variance-controlling loci, which we call vQTL, can be
helpful in a variety of contexts, including selection of
livestock for uniformity, evaluating predictability of
response to medical treatment, identification of key bio-
molecular stabilizers, and assessment of population re-
silience in ecology and evolution.

One way of interpreting an increase in variability is as
a decrease in stability. Waddington (1942) described
the concept of canalization, whereby natural selection
favors the relative constancy of some attributes, for ex-
ample, well-formed organs and limbs, and thereby leads
to the evolution of heritable architectures that buffer
the impact of environmental or background genetic
variation that would otherwise cause development to
go astray. These architectures create virtual “canals”
down which developmental programs flow. For a cana-

lized phenotype, which modern usage expands to include
nondevelopmental traits, the “zone of canalization” is the
range of underlying liability over which potentially dis-
ruptive variation may be absorbed without serious con-
sequence to the expressed trait value (Lynch and
Walsh 1998). A well-studied example of a stabilizing
architecture is that provided by heat-shock protein 90
(Hsp90), which buffers genetic and stochastic variation
in the development of plants and flies (Rutherford
and Lindquist 1998; Queitsch et al. 2002; Sangster
et al. 2008).
But in absorbing variation, such stabilizing architec-

tures also hide it from view, and a sensitizing change in
the stabilizer that shifts liability outside the zone of
canalization can have a dramatic effect on the pheno-
type. Such shifts release the combined effects of pre-
viously “cryptic” genetic variation: now decanalized,
the phenotype is more sensitive to internal (including
genetic) and external environment, and as a result
varies more greatly between individuals (Dworkin

2005; Hornstein and Shomron 2006). In this vein,
decanalization has been proposed to explain why the
genetic architectures of some diseases in human popu-
lations seem more amenable than others to genetic dis-
section through genome-wide association (Gibson and
Goldstein 2007). Specifically, whereas some disease
phenotypes in homogeneous populations may be
heavily canalized and thereby harder to dissect, others
may have been decanalized by modern living conditions
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(e.g., inflammatory diseases) or modern admixture,
while yet others are simply too recent in evolutionary
history for buffering networks to have evolved (e.g., re-
sponse to HIV).

Increased variability can also be adaptive. In natural
populations disruptive selection favors diversity, with
increased “capacitance” (Rice 2008) or “bet-hedging”
(Beaumont et al. 2009) spreading risk over a variable
fitness landscape. Feinberg and Irizarry (2010) re-
cently proposed a heritable and selectable mechanism
for this based on stochastic epigenetic variation. In
controlled populations, variability can be increased
through directional selection. For example, in a Dro-
sophila selection experiment Clayton and Robertson
(1957) reported increased bristle number variance,
which is consistent with the idea that genotypes associ-
ated with higher environmental variance have a greater
chance of being selected under directional selection
(Hill and Zhang 2004). Moreover, genetic differences
have been observed for phenotypic variability in body
weight for chickens (Rowe et al. 2006) and snails (Ros
et al. 2004) and litter size in rabbits (Ibanez-Escriche
et al. 2008), sheep (Sancristobal-Gaudy et al. 1998),
and pigs (Sorensen and Waagepetersen 2003).

In natural populations with stabilizing selection we
should expect to find alleles minimizing variance for
fitness traits (Lande 1980; Houle 1992), whereas di-
rectional selection during domestication will favor
alleles that increase variance. One may therefore ex-
pect to find vQTL in experimental crosses between
wild and domestic animals (see Andersson 2001).
Nonetheless, genetic buffering that leads to pheno-
typic robustness need not require an evolutionary ex-
planation to be observed, nor to be useful in medicine
and agriculture. Plainly, detecting vQTL and inferring
how they arose are separate questions; here we con-
centrate on the first.

Table 1 lists some sources of phenotypic variability in
relation to the genetic groups studied. Unless otherwise
qualified, we use “phenotypic variance” to describe the
observed marginal variance of the phenotype in the
population and distinguish “phenotypic variability” as

the residual variance after controlling for main effects
of QTL and other anticipated or manipulated environ-
mental covariates. Phenotypic variability is thus the by-
product of unmodeled interactions. Identifying major
factors that influence variability requires defining
groups between which variances would be contrasted
(rows of Table 1). Our goal is to identify loci associated
with differences in variance between such groups. For
generality we concentrate on groups defined by the first
row in Table 1, but note that the groupings defined in
the remaining rows allow increasingly specific charac-
terizations of vQTL effect. For instance, experimental
crosses having multiple individuals within inbred lines
will produce genetically identical individuals and the
differences in phenotypic variability within each line
are due to both environmental sensitivity and temporal
fluctuation, but not epistasis.

Few studies have explicitly looked for vQTL. Among
the more recent, Ordas et al. (2008) studied morpho-
logical traits and flowering time in maize. They
detected vQTL by contrasting the residual variance
between genotypes in replicates of recombinant in-
bred lines (RILs; see second row, Table 1). The ef-
fects were substantial, with alleles associated with
a 30–40% increase over the average residual variance.
Wittenburg et al. (2009) examined the sample vari-
ance of birth weight within pig litters as a gamma-
distributed trait among 3914 sows, estimating a heritability
of 0.1 for this trait using a generalized linear mixed
model. Sangster et al. (2008) used Levene’s test for
detection of variance-controlling genes. In that test,
the absolute values of the residuals are used as a re-
sponse in an ANOVA (e.g., Faraway 2004). Mackay

and Lyman (2005) studied Drosophila bristle number
and found substantial differences in the coefficient of
variation (CV) between inbred lines, comparing CV
also using ANOVA. The methods used in these last
two studies have the limitation of not being able to
model confounding effects in the mean. Using resid-
uals (as in Sangster et al. 2008; Wittenburg et al.
2009) can potentially incorporate covariates but in-
volves conditioning on unknowns. There is thus

TABLE 1

Types of variance contributing to between-group differences in phenotypic variability

Sources of phenotypic variability

Variance groupa
Decanalization

(epistasis)
Environmental

sensitivity
Temporal
fluctuation

Measurement
error

Genetically distinct individuals with same allele
at a vQTLb

• • • •

Genetically identical individuals • • •
Same individual at different times • •
Same individual at the same time •

aThe group in which variance is assessed, and between which variance is compared.
bThe variance groups compared here.
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considerable utility in a method that simultaneously
estimates means and variances, flexibly accommodates
covariates, applies to a wide range of experimental
crosses, and is robust and fast enough for genome-wide
analyses.

Regression-based models (Haley and Knott 1992;
Martinez and Curnow 1992) have proven to be fast
and powerful at detecting QTL controlling the mean of
a complex trait in experimental crosses and flexible
since they are straightforwardly extended to include epis-
tatic effects and interactions (Carlborg and Haley

2004). Mott et al. (2000) developed the haplotype re-
construction method HAPPY and its associated regres-
sion model, which allows for a variable number of
strains and may therefore be applied to vQTL mapping
in, e.g., heterogeneous stocks (HS; Valdar et al. 2006b)
and multiparent advanced generation inbred cross re-
source populations (MAGIC lines; Cavanagh et al.
2008) such as the collaborative cross (CC; Churchill
et al. 2004; Broman 2005; Valdar et al. 2006a; Chesler
et al. 2008) and the Arabidopsis recombinant inbred
lines of Kover et al. (2009).

Our aim is to develop a regression model for de-
tection of major genes controlling phenotypic variance
that can be applied genome wide. The estimation uses
double generalized linear models (DGLMs; Smyth
1989) and its parameterization is based on the HAPPY
formulation of inferred haplotypes. The method fits
ordinary QTL and vQTL simultaneously in the same
model. We apply it to simulated data from an F2 and
the CC and real data from an F2 intercross of partially
inbred lines.

MODELS AND METHODS

The standard regression model for interval mapping
of a QTL uses the probability of line origin at a locus to
describe its genetic state (Haley et al. 1994). In the
simple case of mapping a single QTL in individuals
arising from an F2 intercross of inbred founder lines
A and B, the model is

yi 5m1 xTi b1 qTi a1 ei ; ei � N
�
0;s2�; (1)

where yi is the phenotype of individual i, xi is the ith
row in a design matrix of suitable nongenetic covariates,
qi represents the genetic state at the QTL, ei is the re-
sidual with variance s2, and m, b, and a are parameters
estimated by the model. The QTL genotype gi is typi-
cally unknown but, thanks to information from linked
markers M, its underlying haplotype pair is available
indirectly as a probability distribution pi ¼ (pi1, pi2, pi3),
where pi1 ¼ P(gi ¼ AAjM), pi2 ¼ P(gi 2 {AB, BA}jM),
and pi3 ¼ P(gi ¼ BBjM). The regression predictor qi in
Equation 1 may therefore be formulated in terms of pi.
For the additive genetic models considered here, qi ¼

(qiA, qiB), where qiA ¼ 2pi1 1 pi2 and qiB ¼ 2pi3 1 pi2
correspond to the expected “doses” of haplotypes A
and B respectively, and a corresponds to their esti-
mated “dosage effects” on the phenotypic mean. In
practice, to obviate the dependence induced by qiB ¼
2 – qiA, the regression model is fitted using qi ¼ qiA,
leading to a scalar effect a ¼ a that estimates the dos-
age effect of A relative to B. The predictor qi may be
alternatively formulated to accommodate more general
effects, e.g., as qi ¼ pi, or represent observed or imputed
genotypes of known variants (e.g., Yalcin et al. 2005;
Zheng et al. 2011). The QTL scan is usually summarized
as a plot of the LOD score, F-statistic or, –log 10(P-value)
(hereafter, log P), at each tested position along the
genome. Chromosomal regions harboring QTL affect-
ing the trait mean are located by the highest values of
the test statistic above a suitable significance threshold
(e.g., Broman and Sen 2009).
QTL regression model for detection of major loci

controlling phenotypic variability: We consider the
regression

yi 5m1 xTi b1 qTi a1 ei ; ei � N
�
0;s2expðzTi g1 qTi uÞ

�
; ð2Þ

where zi contains nongenetic covariates affecting the
residual variance of the model, g is their corresponding
effects vector, and u is the dosage effect of each line
on the residual variance, i.e., the additive vQTL ef-
fect. All other variables are defined as in Equation 1.
The regression in Equation 2 is thus equivalent to Equa-
tion 1 but with ei � N(0, s2

i) and logðs2
i Þ 5

logðs2Þ1zTi g1qTi u; describing a model with separate
effects for mean and variance.
Regression-based mapping of QTL (including vQTL)

using Equation 2 assumes that

1. there are two founder lines,
2. the genetic state of the QTL is predicted accurately

by marker data,
3. there is a single major QTL,
4. the QTL is fixed within each founder line,
5. the phenotype is Normally distributed, conditional

on the QTL and covariate effects, and
6. the observed values yi are exchangeable, conditional

on the QTL and covariate effects.

We present a fitting procedure for Equation 2 based
on these assumptions and, thereafter, relax the assump-
tions one at a time to investigate the possibility of using
Equation 2 for vQTL detection in empirical studies. In
this article we assess Assumptions 1–4 using both simu-
lations on F2 and the CC, and empirical results from
a chicken F2 cross. We give theoretical solutions for how
to relax Assumptions 5 and 6 and discuss these in the
discussion. Our fitting procedure is based on DGLMs
(see Appendix A) and uses the dglm package (Dunn and
Smyth 2009) in R (R Development Core Team 2009).
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Significance testing: A general method for calculating
P-values applicable to different trait distributions is avail-
able in dglm. The R code to extract the P-values from the
dglm(.) function is given in the supporting information
(File S1). We calculated 5% chromosome-wide signifi-
cance thresholds by simulating chromosomes under
a null model with no mean- and no variance-controlling
QTL effects.

Estimation of line dosages:We estimated line dosages
at each putative QTL using probabilities estimated by
the haplotype reconstruction program HAPPY (Mott

et al. 2000). Given genotype data on individual i and
its h founders, HAPPY uses a hidden Markov model
(HMM) to infer probabilistically the haplotype pair un-
derlying the genotypes at each marker. For every inter-
val between adjacent pairs of markers, it then calculates
the expected diplotype composition: that is, the average
proportion of diplotype AA, AB, etc., that would be
expected across the interval, given the interval’s length
and its descent either side. The diplotype composition
is reported as an h · h matrix Di for each individual i,
and the expected line dosages are calculated as the h-
vector qi ¼ 1T(Di 1 Di

T). Because qiT1 ¼ 2 always, qi has
h 2 1 degrees of freedom and so we typically omit the
hth element during model fitting.

Relaxing Assumption 1: More than two founder lines:
For experimental crosses with h . 2 founder lines, the
predictors qi, a, and u in Equation 2 expand to have h –
1 elements each.

Relaxing Assumption 2: Uncertain genotype states:
Uncertainty about the QTL genotype is most naturally
modeled using a mixture distribution. When modeling
QTL affecting the mean only, the marginal likelihood
for observation i (omitting covariates) is the mixture
Li 5

P3
j51pijNðrja;s2Þ, where pi ¼ (pi1, pi2, pi3) is de-

fined as above for two founder lines, N(.) is the normal
density, and r ¼ (–1, 0, 1). This is the likelihood used
for maximum-likelihood (ML) estimation in interval
mapping (Lander and Botstein 1989). The regression
approach to interval mapping (Equation 1) treats pi as
if it were an observed outcome, and as a result over-
estimates the residual variance for each observation by
vi 5 a2ðpT

i ðrÞ22ðpT
i rÞ2Þ (Xu 1995; Xu 1998; Feenstra

et al. 2006). When modeling mean- and variance-
controlling QTL on the basis of Equation 2, the mar-
ginal likelihood is

Li 5
X3
j51

pijN
�
rja; exp

�
rju

�
s2�: (3)

The regression approach for this model overesti-
mates residuals further, by v*i 5 vi 1 expðuÞ ðpT

i expðrÞ2
expðpT

i rÞÞ (File S1). Although we could obtain ML
estimates of the vQTL model using an EM-algorithm
(Appendix B), as is done for interval mapping, we
contend that the DGLM regression may be more use-

ful. In particular, the EM-algorithm applied to this
marginal likelihood is computationally slow, a mar-
ginal likelihood gives biased ML estimates for var-
iances, and the regression approximation confers
additional flexibility for modeling different distribu-
tions for the phenotype as well as different mean-variance
relationships.

Relaxing Assumptions 1 and 2: Uncertain genotype
states with more than two founders: Uncertainty about
line origin probability when there are multiple lines can
produce multicollinearity among the genetic predictors
in the regression framework. We overcome this techni-
cal problem using the dimension reduction approach
described in Valdar et al. (2009), whereby the matrix
of line dosage estimates from HAPPY is replaced by its
informative eigenvectors.

Quantifying the effects of genotype uncertainty:
Regressing on expected dosages incorrectly models
uncertainty in the predictors. At a mean-controlling
QTL, individuals with less certain pi will be less well
predicted by the mean part of the model, which could
lead to inflated estimates of s2

i and, possibly, a false
vQTL signal. We investigated this phenomenon empir-
ically by monitoring the relationship between locus un-
certainty and the proportion of false-positive vQTL in
simulations of the CC. At each marker interval in each
individual we quantified the uncertainty in line origin
using the scaled selective information content (SIC),
defined as follows. If P(gi ¼ j) is the prior probability
that individual i is in genetic state j given no marker
information, and P(gi ¼ jjM) is the posterior given
marker data M, as estimated by the HAPPY HMM, then
a measure of the information provided by M about the
locus is the Kullback–Leibler divergence,

I ðM ; iÞ5
XJ
j51

P
�
gi 5 j jM�

log
P
�
gi 5 j jM�
P
�
gi 5 j

� ;

summed over all J possible states, with 0 log(0) [ 0. If
we represent the states of the F2 cross as all possible
phased founder diplotypes (i.e., AA, AB, BA, and BB
for the cross of strains A and B) and of the CC as the
set of homozygote diplotypes (i.e., AA, BB, . . . , HH;
denoting founders by A–H), then P(gi ¼ j) ¼ J 21, "j.
Rescaling as SIC ¼ I(M, i)/log( J ), the (scaled) selective
information content at a locus for individual i ranges
from 0, denoting equiprobable diplotypes and minimal cer-
tainty, to 1, denoting one diplotype with complete certainty.

Relaxing assumption 3: Multiple QTL: Multiple QTL
can be fitted by including additional predictors in Equa-
tion 2. Linked QTL may, however, affect the analysis if
not included in the model. We therefore assessed, by
means of simulations, the influence of additional inde-
pendent and interacting (epistatic) QTL.

Relaxing assumption 4: QTL variation within lines:
Model 2 assumes that both the mean- and variance-
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controlling QTL have been fixed within the founder
lines, which is reasonable for crosses from highly inbred
lines but not necessarily for divergent outbred lines. It is
possible that nonfixation of a mean-controlling QTL
may be detected as a spurious vQTL. We illustrate this
phenomenon for the Growth 2 QTL on chicken chro-
mosome 1, which was found not to have been fixed in
a divergent F2 cross (Kerje et al. 2003; Rönnegård
et al. 2008).

SIMULATIONS AND DATA

We assessed the performance of our method by
applying it to simulated F2 and CC populations, and
to a real Red Jungle Fowl · White Leghorn F2 data
set. Simulations were generated with software used for
Valdar et al. (2006a) and Valdar et al. (2009) (see File
S2).

Simulated F2 intercross: Our simulated F2 population
included 800 individuals each comprising a single 100-cM
chromosome with 10 evenly spaced fully informative
SNP markers. QTL, when simulated, were positioned
midway between markers, at 45 cM. The simulated pop-
ulation size of 800 was chosen to reflect a typically sized
F2 design such as the Red Jungle fowl · White Leghorn
F2 cross described further below.

Simulated collaborative cross: The CC is a panel of
RILs descended from eight inbred founder strains: A/J,
C57BL/6J, 129S1SvImJ, NOD/LtJ, NZO/H1LtJ, CAST/
EiJ, PWK/PhJ, and WSB/EiJ (Churchill et al. 2004;
Chesler et al. 2008). In keeping with previous simula-
tions of this population (Valdar et al. 2006a), we sim-
ulated 1000 RIL individuals each generated from
a separate breeding funnel. CC individuals comprised
a single 100-cM chromosome with 1000 SNP markers
drawn from the Mouse Diversity Genotyping Array (Yang
et al. 2009; see http://cgd.jax.org/tools/diversityarray.
shtml) and chosen to be roughly equally spaced and in-
formative among the 8 founders. QTL, when simulated,
were positioned at 28 and 68 cM, each midway between
markers and in regions containing relatively informative
markers.

Detection of QTL in F2 and CC with regression on
known QTL genotypes: We simulated QTL in the F2
and CC under four scenarios.

Scenario 1: No QTL effects
Scenario 2: Mean-controlling QTL effects
Scenario 3: Variance-controlling QTL effects
Scenario 4: Both mean- and variance-controlling QTL

effects

Phenotypic values (Y ) were generated as mean-
controlling additive QTL effects (Q ) plus a residual
(E): Y ¼ Q 1 E. For mean-controlling effects, Q ¼ 1,
2, and 4 for QTL genotype aa, aA, and AA, respectively.
These effects correspond to a QTL with a moderate

effect explaining �2% of the phenotypic variance. For
the scenarios with no vQTL, E was drawn from N(0, s2)
with s2 ¼ 100. For the scenarios with vQTL, s2 ¼ 100,
125, 156.25 for genotypes aa, aA, and AA, such that the
the A allele had additive effects on the log scale and
increase variance by 25% for each copy. These effects
are moderate in size. Ordas et al. (2008) found
variance-controlling QTL in maize where the allele
effects resulted in an increase of the residual variance
of 30–40%. For each scenario, we generated 10,000 rep-
licates of the F2 simulation and 1000 replicates of
the CC (positioning the QTL at 28 cM only). Model
fitting was implemented using dglm function in R
(R Development Core Team 2009), applying the re-
gression in Equation 2 to the F2 populations and that in
Equation 2 to the CC.
Detection of QTL for F2 and CC with regression on

line dosage: We repeated the simulations above at each
marker interval fitting the DGLM to line dosages inferred
by the HAPPY HMM. The simulations from scenario 1
(no effects) were used to obtain 5% chromosome-wise
empirical significance levels.
Fitting a single QTL in the presence of linked QTL

and epistasis: To study a potential influence of linked
QTL on estimated vQTL effects, we simulated three
scenarios for the CC. DGLM regression was performed
on line dosages as above, with 1,000 replicates simulated
for each scenario.

Scenario E1: A single mean-controlling QTL at 28 cM
Scenario E2: Two linked mean-controlling QTL with
additive effects at 28 cM and 68 cM

Scenario E3: Two linked mean-controlling QTL with
epistatic effects at 28 cM and 68 cM

We generated phenotypes (Y ) as Y ¼ Q 1 E, with
constant residual variance E � N(0, 100) throughout.
For Scenario E1, Q ¼ 0, 2, or 4 for QTL genotype aa, aA,
or AA. For Scenario E2, the additive QTL effects were
calculated as Q ¼ Q 1 1 Q 2, where Q k ¼ 0, 2, or 4 for aa,
aA, or AA at QTL number k. For Scenario E3, QTL with
interaction effects were simulated and Q was assigned
values according to Table 2. For all three scenarios, we
fitted a DGLM with line dosages as predictors for both
mean and variance effects at the first QTL position only
(28 cM).
Red Jungle fowl · White Leghorn F2 cross: a worst-

case scenario for assessing the effects of uncertainty in
QTL genotype and nonfixation of QTL within founder
lines: In an F2 cross between the chicken lines Red Jun-
gle fowl and White Leghorn, Kerje et al. (2003) had
previously detected two QTL affecting body weight at
200 days of age on chromosome 1 around 100 cM
(Growth 1) and 490 cM (Growth 2). This trait was chosen
because the QTL Growth 1 and Growth 2 have been thor-
oughly studied previously (Kerje et al. 2003; Rönnegård
et al. 2008) where Growth 1 has a very large effect and
Growth 2 was not fixed within the founder lines. The
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cross was composed of four founder individuals (two
from each line) and 756 F2 offspring. Although the
QTL Growth 1 is easily shown to have a very strong effect
on the mean (explaining 22% of the variance; Kerje
et al. 2003), the analysis of Growth 2 is complicated by it
being fixed within the Red Jungle fowl founders but vari-
able within the White Leghorn line (Rönnegård et al.
2008), leading to additional uncertainty in the underly-
ing QTL genotype. We use these data to explore the
differences in estimates from the EM-algorithm (Ap-
pendix B), which explicitly takes account of this uncer-
tainty, and the DGLM estimation, which does not, when
there is a very strong mean-controlling QTL and mod-
erate marker information. Furthermore, we study the
effect of a QTL not being fixed within the founder
lines. A sex effect was included as a covariate in both
the mean and variance parts of the model. Line dosages
were calculated as Haley–Knott probabilities (see File S2)
and models were fit as above using the regression in
Equation 2.

RESULTS

Detection of QTL for F2 and CC with regression on
QTL genotypes: For the F2 simulations the average of
the estimated QTL effects was close to those simulated
(Table 3). The false-positive rate was close to 0.05 (Ta-
ble 4) for both F2 and CC, indicating that our DGLM
approach produces the appropriate rate of false posi-
tives (type I error) when applied to known QTL
genotypes.

Detection of QTL for F2 and CC with regression on
line dosage: For the F2 simulations, the 5% chromosome-

wide significance thresholds were log P ¼ 2.02 and log
P ¼ 2.01 for the mean and variance parts of the model,
respectively. Using these thresholds, the proportion of
false positives was close to 0.05 (Table 5) both for Sce-
nario 2 (mean-controlling QTL simulated) and Scenario
3 (vQTL simulated). The power to detect the mean-
controlling QTL at a 5% genome-wide significance level
was 91.7% (Table 5) and the power decreased slightly
when a vQTL was added to the simulations due to the
resulting increase in residual variance. The power to
detect the vQTL was 77.0% (Table 5) and this was not
substantially affected by including a mean-controlling
QTL in the simulations (i.e., Scenario 4). For Scenario
4, with both ordinary QTL and vQTL being simulated,
most QTL detected were positioned within, or close to,
those simulated (Figure 1). The simulations gave simi-
lar results for Scenarios 2 and 3. The accuracy of the
QTL position does not seem to be substantially affected
if either a mean-controlling or a variance-controlling
QTL is simulated vs. the Scenario 4 in which both
effects are simulated (Table 6).

Marker informativeness was small (SIC around 0.1)
for the F2 simulations because markers were spaced
10 cM apart, where these intervals are considerably
larger than in most QTL studies today (see, e.g., Kerje
et al. 2003). For perfect information about QTL geno-
type the line dosage predictor qi is 0, 1, or 2, whereas for
low information it has an attenuated range and is cen-
tered around 1.0. As a result, the regression on line
dosage overestimated QTL effect (a and u) for the F2
simulations. The extent of overestimation depends on
the range of the line dosage (i.e., max(q) 2 min(q)),
which is 2 with complete information but was 0.348 in
the simulations. In Table 3 we therefore report estimates
from the line dosage model after division by 2/0.348 ¼
5.75.

For the CC simulations the 5% chromosome-wide
significance threshold for log P was 3.24 and 3.01 for
the mean and variance parts of the model respectively.
The power to detect the mean-controlling QTL at a 5%
genome-wide significance level was 98.2% (Table 5)
and, as above, this decreases slightly when a vQTL is
added owing to the increased residual variance. The

TABLE 2

Simulated epistatic effects for different QTL
genotype combinations

QTL 2 (68 cM)

aa aA AA

QTL 1 (28 cM) aa 0 0 0
aA 0 2 0
AA 0 0 4

TABLE 3

Estimated QTL effects in simulated F2

Regression on QTL genotypes Regression on line dosagesa

Simulated effects Ordinary QTL vQTL Ordinary QTL vQTL

No QTL 0.001 20.003 0.008 0.001
Ordinary QTL 1.997 20.003 2.063 0.023
vQTL 20.010 0.2175 20.004 0.238
Ordinary and vQTL 1.999 0.2173 1.913 0.247

Simulated value for mean-controlling QTL, 2.0; simulated value for variance-controlling QTL, 0.22.
aEstimates from genome scan with regression on line dosages. Correction for shrunken line dosage estimates in HAPPY due to

low marker information contents; corrected values ¼ estimates from genome scan times half the range of line dosages.
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power to detect the vQTL was 80.8% (Table 5) and the
power was not substantially changed when a mean-
controlling QTL was included in the simulations. For
the CC simulations, the proportion of QTL detected
within the correct 60.3 cM was highest for a vQTL when
simulating both mean- and variance-controlling QTL (Ta-
ble 6). The estimated QTL positions were well centered
around the true simulated QTL position (Figure 1).

Fitting a single QTL in the presence of linked QTL
and epistasis: Fitting the DGLM model of Equation 2 to
the simulated CC data with a single mean-controlling
QTL (Scenario E1) resulted in 5.8% of replicates hav-
ing P-values less than 0.05 in the variance part of the
model. This is consistent with the P-values for the vQTL
being robust to the presence of moderate-effect ordi-
nary QTL. Under Scenario E2 (two linked QTL with
additive effects) the proportion of replicates having P-
values less than 0.05 was 4.0%, and the rate of false
positives (type I error) did not seem to be substantially
affected by an additional linked QTL acting additively.
When there were two linked and interacting mean-
controlling QTL (Scenario E3), 17.0% of the replicates
had P-values for the variance submodel ,0.05, indicat-
ing the proportion of false positives is substantially af-
fected by linked QTL that act epistatically. By including
interaction effects, between the two interacting loci, in
the mean part of the model the false-positive rate was
reduced to 5.6%.

By increasing the mean-controlling QTL effect, un-
der Scenario E1, from 2.0 to 20, the empirical type I
(false positive) error increased to 12.7%. Hence, vQTL
detected close to mean-controlling QTL of large effect
should be treated with caution and further analyzed

using, e.g., an EM-algorithm where the effects of marker
uncertainty are accounted for (see Appendix B).
To investigate the effect of marker informativeness

for the CC, we performed further simulations that
repositioned the QTL at different locations in a 5-cM-
spaced ladder between 25 and 70 cM. For these simula-
tions (200 replicates per QTL location), the SIC varied
considerably both within and between the QTL loca-
tions, but there was no clear relationship between SIC
and the log P-values for false vQTL (Figure 2) when an
ordinary QTL was simulated with additive effect of 2.0.
Red Jungle fowl · White Leghorn F2 cross: a worst-

case scenario for assessing the effects of covariate un-
certainty and nonfixation of QTL within founder lines:
In a preliminary model for chicken body weight without
QTL effects, estimation of sex effects in a DGLM gave
highly significant (P , 1026) estimates of 410.0 and
0.509 for mean and variance predictors, respectively.
The estimates being significant and having the same
sign suggests a general mean-variance relationship. This
was confirmed by applying the Box–Cox procedure
(Box and Cox 1964), which suggested a square root
transformation (bl 5 0:55, SE 0.11), and the extended
quasi-likelihood (EQL) procedure of Nelder and
Pregibon (1987), which indicated a linear mean-
variance relationship (bc 5 1:2, SE 0.2) (see File S1).
A chromosome scan using dglm revealed mean-con-

trolling QTL (Figure 3) that were similar to those esti-
mated by homoscedastic regression (Kerje et al. 2003).
There were no large differences between the scans for
ordinary QTL with Box–Cox transformed vs. original
body weight as response. However, there were substan-
tial differences between the chromosome scans for

TABLE 4

Power to detect QTL at a 5% nominal level for regression on QTL genotypes

F2 CC

Simulated effects Ordinary QTL vQTL Ordinary QTL vQTL

No QTL 0.052 0.052 0.054 0.053
Ordinary QTL 0.997 0.051 1.000 0.043
vQTL 0.051 0.966 0.057 0.998
Ordinary and vQTL 0.984 0.963 1.000 0.998

TABLE 5

Power to detect QTL at a 5% chromosome-wide significance level for regression on line dosages

F2 CC

Simulated effects Ordinary QTL vQTL Ordinary QTL vQTL

No QTL 0.050 0.050 0.050 0.050
Ordinary QTL 0.917 0.055 0.982 0.053
vQTL 0.059 0.770 0.046 0.808
Ordinary and vQTL 0.808 0.808 0.928 0.808
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vQTL (Figure 3, middle graph), although no vQTL
reached 5% significance.

A moderate-sized peak was detected for the vQTL at
approximately the same location as Growth 2 (nominal
P-value ¼ 0.02, chromosome-wise P-value ¼ 0.10). This
peak is likely due to the fact that the QTL alleles of
Growth 2 were not fixed within the founder line of do-
mestic White Leghorn hens (Rönnegård et al. 2008).
The reason for this is that, if an F2 individual has an
allele inherited from the domestic leghorn line, then
the residual variance will be greater than if the allele
was inherited from the Red Jungle Fowl line since Equa-
tion 2 assumes that the QTL alleles are fixed within
founder lines. Consequently, the QTL around 490 cM
is not a variance-controlling QTL but rather an effect of
Growth 2 not being fixed within founder lines.

To assess spurious effects of uncertainty in genotype
state, the additive effects for vQTL in Equation 2 were
calculated using an EM-algorithm (Appendix B) and
were subsequently compared with the DGLM estimates
(Figure 4). The estimates are given as percentage
change in residual variance for allele substitutions, i.e.,
100 · ðexpð jbu j Þ21Þ. The estimates are almost identical
except for the positions around 115 cM where there is
a strong mean-controlling QTL and moderate marker
information (log P ¼ 57.3 and SIC ¼ 0.7, Figure 3).
Hence, no major improvement in the QTL detection
was achieved by using the more theoretically correct
EM-algorithm.

DISCUSSION

We have studied the potential of detecting variance-
controlling QTL by fitting a double generalized linear
model via a two-stage procedure to simulated pheno-
type and marker information. The model can detect
QTL that affect both the mean and the variance or QTL
that affect either the mean or the variance. Because we
use line origin probabilities as predictors in the model,
as calculated using the HAPPY HMM (Mott et al.
2000), our approach can be applied to a wide range
of experimental crosses. There are, however, some im-
portant considerations to be emphasized.

Detecting vQTL can be more challenging in theory,
practice, and subsequent interpretation than detecting
QTL controlling the trait mean. This is unsurprising: at
the most basic level, variances are harder to estimate
than means, typically requiring five times as many
observations to achieve comparable precision (cf.
“Tukey’s rule of 5” in Lee and Nelder 2006). Indeed,
Visscher and Posthuma (2010) demonstrate analyti-
cally that detecting small effect vQTL among unrelated
humans using traditional methods would require sam-
ple sizes in the 10,000s. More insidiously, inferences
about differences in variances can be more sensitive
to distributional assumptions than inferences about
means. Specifically, it is common for raw phenotype
measurements to exhibit a mean-variance relationship
that naturally arises through the data generation pro-
cess: for example, if body length is homoscedastic

TABLE 6

Proportion of QTL that were detected at a 5% chromosome-wide significance level and whose chromosomal position
was estimated accuratelya

F2 CC

Simulated effects Ordinary QTL vQTL Ordinary QTL vQTL

Ordinary QTL 0.462 — 0.452 —
vQTL — 0.318 — 0.262
Ordinary and vQTL 0.442 0.341 0.372 0.272

aThe chromosomal position was defined to be accurately estimated: (i) for the F2 cross if the QTL was detected within the correct
marker interval, (ii) for the CC if the estimated position was within the correct 60.3 cM.

Figure 1.—Distance (cM) between simulated and detected
QTL for F2 (10,000 replicates) and the CC (1000 replicates).
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Gaussian then its square (e.g., body area) will not be. In
the detection of vQTL, it is therefore especially impor-
tant to recognize such relationships at an early stage
and apply suitable normalizations or explore paramet-
ric alternatives to the normal distribution to avoid QTL
affecting the mean appearing also to affect the variance.
In File S1 we illustrate this problem along with an ef-
fective remedy via the Box–Cox transformation. More-
over, we set forth guidelines for how to approach
a conservative vQTL analysis of data that are likely to
be approximately normal but only after an unknown
transformation, and of data that are more suitably
modeled by other members of the exponential family,
e.g., Poisson for count data, for which a known mean-
variance relationship exists. Where it is felt such precau-
tions may be inadequate or are impractical, we suggest
resorting to the overconservative strategy of prioritizing
“pure vQTL,” that is, strong vQTL with negligible mean
effect, subject to all the usual requirements of decon-
founding that apply to the detection of ordinary QTL.

Regression on genotype probabilities or expected
line dosages can lead to inflated estimates of the resid-
ual variance (see models and methods). In File S1, we
describe theoretically the effect of uncertain genotype
states on the risk of detecting false vQTL and conclude
that detected vQTL can be trusted as long as the marker
informativeness is high or, if it is not, that the vQTL is
not close to a mean-controlling QTL. Our simulations
show that the power of detecting a vQTL in genome
scans is largely unaffected by whether the same locus
also affects the trait mean (Table 5), and we note that
this includes our F2 simulation with a modest degree of

informativeness from markers spaced 10 cM apart. In
the analysis of chicken chromosome 1, we found that
a mean-controlling QTL (Growth 1) having a very large
effect (log P ¼ 57.3) together with moderate marker
information (SIC ¼ 0.7) was needed to give any sub-
stantial bias in the vQTL estimation (Figure 4). We
therefore conclude that the effect of inflated residual
variance due to low marker information is not likely to
be a major problem for our model.
We apply our model to populations of individuals

who are genetically distinct and equally related, phe-
notyped in studies where genotype assignment is
exchangeable across unmodeled environmental varia-
tion. A genetic locus whose genotype separates the
population into groups with distinct variances is, by our
definition, a putative vQTL. Table 1 illustrates how an
effect detected in this way could arise from several dif-
ferent sources, each implying a potentially distinct par-
adigm of vQTL action. For example, it could represent
canalizing epistasis, whereby some vQTL genotypes
cushion the impact of genetic variation on the pheno-
type. Our simulations demonstrated that a mean-
controlling QTL under epistatic control may indeed
be detected as a vQTL with our proposed method,
and this result is consistent with recent work by Paré
et al. (2010) and Struchalin et al. (2010). Alternatively,
it could represent a differential sensitivity to environ-
mental variation. Specifically, increased variability un-
der one genotype may manifest as temporally stable
phenotypes varying between individuals, phenotypes be-
ing highly fluctuant within an individual but on average
similar between, little actual variation but a tendency
for increased error of measurement, or some combina-
tion of these. Dissecting the components of the induced
variability could be accomplished by applying our
DGLM framework to a more focused experimental de-
sign, e.g., incorporating replicates of the CC at different
levels (e.g., guided by column 1 of Table 1). In some
cases, further statistical exploration on the same data
may also be helpful. For example, if the mechanism is
epistatic, vQTL detection can be seen as a starting point
for modeling the joint action of multiple interacting
loci, and this is easily accommodated in our regression
framework.
Levene’s test is a popular method for testing equality

of variance. Paré et al. (2010) and Struchalin et al.
(2010) used it to test for different variances between
SNP genotypes. It is capable of modeling group effects
and has the advantage of being quite insensitive to non-
normality. The DGLM approach, however, is far more
flexible: it allows us to model continuous predictors and
more complex general relationships of covariates on
the variance, which Levene’s test cannot. Levene’s test
also does not account for possible imbalance in the data
since the estimated residuals mask varying uncertainty
among groups. The DGLM approach, by contrast,
allows modeling of nongenetic effects in the variance

Figure 2.—Relationship between log P-values for false
vQTL and marker information content (SIC) when simulating
a mean-controlling QTL in a CC population. For each of 200
simulations, ordered along the x-axis by their most significant
vQTL peak, the plot shows the mean and standard deviation
of SIC for 1000 mice. The SIC statistics are stationary, indicat-
ing no apparent tendency for marker uncertainty to produce
false vQTL signals.

Detecting vQTL 443

http://www.genetics.org/cgi/data/genetics.111.127068/DC1/1
http://www.genetics.org/cgi/data/genetics.111.127068/DC1/1


part of the model, which may be important if for in-
stance the variances are different between batches or
contemporary groups in a designed QTL experiment.
Moreover, DGLMs can also be extended to include ran-
dom effects, due to family or polygenic effects, through
hierarchical generalized linear models (Lee and
Nelder 1996; Lee et al. 2006; Rönnegård et al. 2010b)
and double hierarchical generalized linear models (Lee
and Nelder 2006; Rönnegård et al. 2010a). This mod-
eling flexibility is necessary in QTL studies and gives
a more general approach applicable to a wide range of
experimental designs.

There are several possible extensions of our model.
Dominance can be included similarly as in other QTL
regression models (Haley et al. 1994), as can multiple
loci (e.g., Valdar et al. 2009). Because DGLM allows for
any response distribution from the exponential family
(Smyth 2002), our model is straightforwardly extended
to binomial, Poisson, or gamma-distributed traits. In
particular, several studies have focused on QTL control-
ling the CV rather than the variance (e.g., Mackay and

Lyman 2005; Ansel et al. 2008). Traits with a constant
CV, given the explanatory variables, are naturally mod-
eled using a gamma distribution (Mccullagh and
Nelder 1989), and the DGLM method can be adapted
to model such traits by setting the dispersion to
CV2 (see File S1). If we do not know whether to search
for variance-controlling or CV-controlling QTL (i.e.,
whether the trait should be normal or gamma distrib-
uted), we can use the EQL (Nelder and Pregibon
1987) to compare model fits (see File S1). Ideally, dis-
tributional assumptions should always be checked for
a detected QTL using a QQ-plot for the deviance resid-
uals (Mccullagh and Nelder 1989) from the mean
part of the DGLM.

We anticipate identification of vQTL will be of in-
terest in a wide range of genetics studies and applica-
tions. A clear application is in breeding systems, where
vQTL detection could help selection for more robust
livestock production (Mulder et al. 2007; Mulder et al.
2008). We believe there is also substantial scope for
application in the study of animal models of human

Figure 3.—Scan for QTL controlling the mean
(top) and the variance (middle) of body weight
at 200 days of age on chicken chromosome 1
in an F2 cross between Red Jungle Fowl and
White Leghorn with 756 F2 offspring. (Bottom)
Marker information contents (SIC). Genome-
wide significance threshold calculated using
1000 permutations.
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disease. For example, medical diagnosis of hypertension
has traditionally focused on achieving reliable estimates
of the underlying mean blood pressure. However, in-
creasing evidence points to the dangers of temporal fluc-
tuation about the mean (Parati et al. 2006; Brunelli
et al. 2008; Rothwell et al. 2010). Our framework could
be used to detect QTL affecting such variability in animal
models and could be adapted to use in suitably con-
trolled human studies.

In conclusion, we have developed a regression model
for detection of major loci controlling phenotypic
variance, which can be applied on a wide range of
experimental crosses such as backcross, F2, and MAGIC
lines such as the CC. We have studied the robustness of
the model to varying marker information, misspecifica-
tion of the response distribution, linked QTL, and epis-
tasis, proposed recommendations for its use, and
discussed the meaning of detected vQTL and how they
might be further dissected. We expect detection of
vQTL will have wide application in genetics.
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APPENDIX A: DOUBLE GENERALIZED LINEAR
MODEL THEORY

For known genotypes at the QTL, the ML estimates
of the effect parameters b, a, g, u in Equation 2 can be
estimated using Fisher scoring. Smyth (1989) showed
this to be equivalent to predicting the mean effects
using a linear model (Equation 1) and the squared
residuals ðe2i Þ using a generalized linear model
(GLM) with a gamma-distributed response and the
log link.

ML gives biased variance component estimates and
the estimates are also sensitive to influential observa-
tions with high leverages (Verbyla 1993). A restricted
maximum likelihood (REML) approach, implemented
in the dglm package, resolves these issues by incorporat-
ing leverage into the estimation (Smyth 2002; Lee et al.
2006). Specifically, the gamma GLM is used to predict
logðEðdiÞÞ 5 logðs2Þ1zTi g1qiu, where the response is
now the weighted deviance component di ¼ e2i /(1 –
hii). Here, the hii is the leverage of observation i, equal
to the ith diagonal element of the hat matrix
H 5 XallðXT

allV
21XallÞ21XT

allV
21; where Xall is the design

matrix for all fixed effects in the mean submodel and
V 5 diagððs2

1;s
2
2; . . . ;s

2
nÞÞ:

Both the hat matrix and the associated leverages play
an important role in ordinary regression theory (Hoaglin

and Welsch 1978; Faraway 2004) and are used exten-
sively in DGLM theory (Smyth 1989).

APPENDIX B: AN EM-ALGORITHM FOR ESTIMATING
VQTL FOR NORMALLY DISTRIBUTED TRAITS IN

F2 CROSSES

For an observation i, the full likelihood for vQTL with
genotype uncertainty is

Li 5
X3
j51

pijN
�
m1 xTi b1 rja; s2exp

�
zTi g1 rju

��
5

X3
j51

pij fij

with variables other than fij defined as for Equation 3.
Let li ¼ log(Li), gij ¼ log(fij), and c be the parameter
vector, and assume observations are independent given
the parameters such that L 5

Pn
i Li : Then;

@li
@c

5
1
Li

@Li

@c
;

where ð@Li=@cÞ 5
P3

j51pij ð@fij=@cÞ and

@Li
@c

5
X3
j51

pij
@

@c
fij 5

X3
j51

pij fij
@gij
@c

⇒
@li
@c

5
1P3

j51pij fij

X3
j51

pij fij
@gij
@c

:

Here gij is the log-likelihood given the genotypes, so
the gradient and Hessian of gij are those obtained from
the logarithm of the normal density function fij. ML
estimates of c are obtained by iterating the following
EM steps until convergence:

1. Calculate the “weights” given the parameter esti-
mates: wij 5 pij fij=ð

P3
j pij fij Þ

2. Calculate the parameter estimates given wij from:
@l=@c 5

Pn
i51

P3
j51wijð@gij=@cÞ 5 0, which can be

calculated using a Newton iterative method since
we have the gradient and Hessian of gij.
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Supplementary theory to Rönneg̊ard &
Valdar (2011)

1. FUNCTION TO EXTRACT P-VALUES FROM DGLM

Here we give an R function dglm.Pvalues(.) that extracts the P-values for a fitted model

dglm.fit .

dglm.Pvalues <- function(dglm.fit){

P.disp = anova.dglm(dglm.fit)$Adj.P[2]

P.mean = summary(dglm.fit)$coef[2,4]

list(P.mean=P.mean, P.disp=P.disp)

}

Below we illustrate the use of the function with a simple example where the simulated

genetic effects are set to 0.

##An example using dglm.Pvalues(.) with 200 simulated observations

set.seed(123)

require(dglm)

n = 200

a <- rbinom(n, 1, 0.5) ##Covariate for additive genetic effects

sex <- rbinom(n, 1, 0.5) ##Covariate for a non-genetic effect

add.effect = 0

sex.effect = 1

res.var = exp( a*add.effect ) ##Residual variance

y <- 10 + a*add.effect + sex*sex.effect + rnorm(n ,0 , sqrt(res.var))

##The additive genetic effect must be given first in the following formula

d.fit <- dglm( formula = y ~ a + sex, dformula = ~ a )

P.values <- dglm.Pvalues( d.fit )

print( P.values )

This code gives the following output in R:

$P.mean

1

 

 

FILE S1 

Supporting Theory 
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[1] 0.2156352

$P.disp

[1] 0.262968

2. DOUBLE GLM FOR NON-NORMAL TRAITS

For non-normal distributed traits a GLM can be used to model the mean-controlling QTL

and the deviance components from this GLM are subsequently used in eq 3 (in the paper)

instead of the squared raw residuals ε2
i (Smyth 2002; Lee et al. 2006). In the more general

GLM setting, the dispersion term φ is modeled in the second submodel of the double GLM.

For the exponential family of distributions the variance of y can be written as (McCullagh

and Nelder 1989):

V ar(y) = φV (μ)

where V (μ) is the “variance function”, which gives the relationship between the variance of

y and the mean μ. For the normal distribution V (μ) = 1 (i.e. the variance does not vary

with the mean) and the dispersion term is the residual variance, φ ≡ σ2
ε . For the gamma

distribution V (μ) = μ2 and since V ar(y)/V (μ) = φ we have that φ ≡ CV 2. Consequently, we

can model the coefficient of variation using a gamma GLM (see chapter 8 in (McCullagh

and Nelder 1989)). This gives a method to fit CV-controlling QTL. Ansel et al. (2008)

referred to such QTL in a gene expression study as “noise QTL”. For these calculations the

dglm package fits a digamma distribution (Smyth 1989).

3. THE EFFECT OF UNCERTAINTY IN GENOTYPE STATE ON THE INFERENCE OF

VQTLS

In a constant variance model, the sampling distribution of phenotype yi of animal i given

the genotype xi = gj at the QTL locus is p(yi|xi = gj) = N(α, σ2) with

E(yi|xi = gj) = αj and V ar(yi|xi = gj) = σ2
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or with xi representing an indicator vector for the genotype and α the genotype effects,

E(yi|xi) = xT
i α and V ar(yi|xi) = σ2

The constant variance model with uncertain genotype When genotype is uncer-

tain, such that p(xi = gj|Data) = pij and pi = [pi1, pi2, ...], then the sampling distribution

conditional on pi is the mixture

p(yi|pi) =
∑

j

pijp(yi|xi = gj)

with p(yi|xi = gj) defined as above. Conditional on pi the expectation is E(yi|pi) = pT
i α,

much as before, but the variance is now

V ar(yi|pi) = V arg(E(yi|gj)|pi) + Eg(V ar(yi|gj)|pi)

=
[
Eg(E(y2

i |gj)) − E2
g (E(yi|gj))

]
+ Eg(V ar(yi|gj))

=

⎡
⎣∑

j

pijα
2
ij −

(∑
j

pijαij

)2
⎤
⎦ + σ2

=
[
pT

i (α2) − (pT
i α)2

]
+ σ2

vi = vextra
i + σ2.

A quick alternative to fitting the mixture by maximum likelihood is the regression model

used for Haley-Knott or HAPPY where it is assumed

pHK(yi|pi) = N(pT
i α2, σ2)

or, as described by Broman and Sen (2009), an “extended Haley-Knott” regression fitted

by ML to provide a closer approximation to the mixture model

pEHK(yi|pi) = N(pT
i α2, vi)

which is slower than the HK model but faster than a full ML fit.
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The vQTL model with known genotype. In the double GLM model, the sampling

distribution of phenotype yi of animal i given the genotype xi = gj at the QTL locus is

p(yi|gj) = N(αj, exp(θj)),

where αj and θj are specific to genotype gj. The expectation and variance of yi are

E(yi|xi = gj) = αj and V ar(yi|xi = gj) = exp(θj)

The vQTL model with uncertain genotype. With uncertain genotype, the mean is the

same as the constant variance model, E(yi|pi) = pT
i α, but the variance is

V ar(yi|pi) = V arg(E(yi|gj)|pi) + Eg(V ar(yi|gj)|pi)

=
[
pT

i (α2) − (pT
i α)2

]
+ pT

i exp(θ)

vi = vextra
i + vvQTL

i

Since we are interested in how xi affects the variance, our only measure of xi is pi and

since vextra
i = f(pi, α) such that vi can potentially change with xi in the absence of a

vQTL effect, there is the potential for genotype uncertainty to mimic the effect of a vQTL.

For low informative markers the dglm approach captures only part of the vQTL effect, as

V ar(yi|pi) = exp(pT
i θ), so that

vi = vvQTL
i + vextra

i + (pT
i exp(θ) − exp(pT

i θ))

A Taylor expansion shows that the last term is small for small to moderate vQTL effects

(θ << 1).This term does not depend on the effects in the mean model (i.e. α). Its contribu-

tion to vi should only reduce the power of the model, whereas the term vextra
i may increase

the Type I error.
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4. TRANSFORMATION AND ASSESSMENT OF MEAN-VARIANCE RELATIONSHIP

Maximum likelihood can be used to estimate the parameter λ in a Box-Cox transformation

(Box and Cox 1964) for the linear model z = Xβ + ε where the response is

z =

⎧⎪⎪⎨
⎪⎪⎩

yλ−1
λ

λ �= 0

log(y) λ = 0

and the residuals ε are assumed normal i.i.d. The function boxcox(.) in the MASS library in

R can be used for this estimation. We can thereby obtain a response z that is approximately

normal. See Pawitan (2001, page 178) for a description of the method. For the case

of a pleiotropic gene controlling both the mean and the variance of a trait, the Box-Cox

transformation of the raw data might be over-conservative by removing large parts of the

vQTL effects. A potential remedy to this problem could be to include the Box-Cox parameter

in the likelihood and to estimate it simultaneously with all other parameters in our model.

A similar solution for mixed effect models has previously been developed using Bayesian

techniques (Yang 2010) but we do not investigate this possibility in our current paper.

For GLM distributions in general, the concept of extended quasi-likelihood (Nelder and

Pregibon 1987) can be used to assess the mean-variance relationship. Using e.g. the eql(.)

function in the EQL package in R, the parameter ψ for the relationship V ar(y) = φμψ with

φ being a constant dispersion parameter. So that for a normal distribution ψ = 0, for a

Poisson distribution ψ = 1, and for a gamma distribution ψ = 2. See Pawitan 2001 for a

recent and clear description of the method.

Below we investigate the use of Box-Cox transformation to remove false vQTL from non-

normal data and thereafter specify guidelines to avoid detecting false vQTL due to scale

effects.

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



L. Rönnegård and W. Valdar 7 SI

Using Box-Cox transformation to remove false vQTL from non-normal data. We

simulated data with a homoscedastic (ie, constant) variance as

y ∼ N(μ + αq, 1)

setting μ = 1, α = 10 and fixing q as a vector of 50 zeros and 50 ones to give 100 observations

in total. For each condition described below we simulated 20 replicates. For each simulated

y we obtained four versions of an “observed phenotype” w. We obtained these versions by

applying four alternative transformations that set w to y (ie, the identity transformation),

y2,
√

y, or 1
y

(as listed in Table A1 below).

The Box-Cox parameter λ was estimated by means of MLE (see, eg, page 178 in Pawitan

2001) for the model

wλ
i − 1

λ
= μ + αqi + εi

where residuals are normally distributed and σ2 is constant (i.e. for a model with ho-

moscedastic residual variance). Two models were fitted using dglm (Dunn and Smyth

2009):

wi = μ + αqi + εi

log(σ2
i ) = m + θqi

and

wλ̂
i − 1

λ̂
= μ + αqi + εi

log(σ2
i ) = m + θqi

where μ and α is an intercept term and regression coefficient for the mean model, and m

and θ is an intercept term and regression coefficient for the variance model.
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Table A1: Estimated Box-Cox parameter λ and estimated regression parameter θ in the

variance part of the model (standard errors within brackets)

w λ̂ θ̂ with response w θ̂ with response wλ̂−1

λ̂

y 0.96 (0.015) 0.113 (0.047) -0.006 (0.018)

y2 0.48 (0.007) 2.92 (0.074) -0.006 (0.018)

√
y 1.92 (0.031) -1.39 (0.039) -0.006 (0.018)

1
y

-0.96 (0.015) -6.47 (0.045) -0.006 (0.018)

For y, generated from normal random numbers with a homogeneous variance, the average

estimate of θ over the 20 replicates was close to 0 as expected (θ̂ = 0.113). By chance the

samples of y were slightly skewed and the average estimate of λ was 0.96 with θ̂ = −0.006

after Box-Cox transformation. Note that the average estimate of θ was -0.006 for all four

cases and that the risk of detecting false vQTL due to scale effects therefore can be avoided

using Box-Cox transformation. Note also that all three transformations gave estimates of

θ significantly different from 0, implying that we can expect non-normal data to give false

vQTL.

To asses the risk of Box-Cox transformation removing true vQTL, we simulated data

with heteroscedastic variances:

y ∼ N(μ + αq, log(m + θqd))

where μ = 1, α = 10, m = 0, and θ was set to either 1 or −1. As above, q was a vector of

50 zeros and 50 ones. We studied two cases for each simulated value of θ:

• Case 1: qd = q

• Case 2: qd and q are uncorrelated

The Box-Cox parameter λ was estimated by means of MLE as described above, and two
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models were fitted using dglm

yi = μ + αqi + εi

yλ̂
i − 1

λ̂
= μ + αqi + ε

log(σ2
i ) = m + θqd,i

From the results for Case 1 (qd = q) in Table A2, we can see that Box-Cox transformation

removes the vQTL effects if the covariates in the mean and variance parts of the model are

highly correlated, i.e. if the vQTL is located at, or very close to, an ordinary QTL. From

Case 2, we can see that Box-Cox transformation does not remove the vQTL effect if the

vQTL and the ordinary QTL are not linked.

Table A2: Estimated Box-Cox parameter λ and estimated regression parameter θ in the

variance part of the model (standard errors within brackets)

Simulated θ Simulated case λ̂ θ̂ for response y θ̂ for response yλ̂−1

λ̂

1 qd = q 0.65 (0.013) 1.11 (0.047) 0.070 (0.018)

-1 qd = q 1.28 (0.018) -0.89 (0.047) -0.073 (0.020)

1 qd �= q 0.98 (0.023) 1.03 (0.060) 1.00 (0.065)

-1 qd �= q 0.95 (0.022) -1.00 (0.061) -0.95 (0.059)

Guidelines for fitting vQTL when the data generation process is not known or

expected to be approximately normal.

1. Fit ordinary QTL with a homoscedastic linear model and include ordinary QTL with

large effects in this preliminary linear model.

2. Do a QQplot of the residuals and estimate the Box-Cox transformation parameter λ

for the preliminary linear model.
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3. If the QQplot is satisfactory and λ is close to 1 then perform dglm to detect both

ordinary QTL and vQTL.

4. If the QQplot is not satisfactory or λ is not close to 1. Use the Box-Cox transformed

response in a dglm to detect both QTL and vQTL.

Guidelines for fitting vQTL when the data is expected to have been generated

by a non-normal GLM, e.g. binomial, Poisson or gamma.

1. Fit ordinary QTL with a GLM and include QTL with large effects in a preliminary

linear model.

2. Perform GLM diagnostics plots, including QQplot of for the standardized deviance

residuals, and estimate the EQL parameter ψ.

3. If the diagnostics plots are satisfactory and the estimate of ψ is close to the assumed

variance function for μψ then use dglm to detect both ordinary and vQTL.

4. If the diagnostics plots are not satisfactory, or the EQL estimate of ψ is not close to

the expected value, then compare different distributions and link functions prior to the

DGLM scan.

The interpretation of vQTL varies with different GLM distributions. Generally, vQTL

are effects explaining differences in the dispersion parameter of the GLM, such that for a

gamma distribution a vQTL explains differences in CV (coefficient of variation), whereas for

a Poisson distribution a vQTL explains differences in the ratio of variance/mean.
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