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ABSTRACT

RET protein functions as a receptor-type tyrosine
kinase and has been found to be aberrantly ex-
pressed in a wide range of human diseases. A
highly GC-rich region upstream of the promoter
plays an important role in the transcriptional regu-
lation of RET. Here, we report the NMR solution
structure of the major intramolecular G-quadruplex
formed on the G-rich strand of this region in K*
solution. The overall G-quadruplex is composed of
three stacked G-tetrad and four syn guanines, which
shows distinct features for all parallel-stranded
folding topology. The core structure contains one
G-tetrad with all syn guanines and two other with
all anti-guanines. There are three double-chain
reversal loops: the first and the third loops are
made of 3nt G-C-G segments, while the second
one contains only 1nt C10. These loops interact
with the core G-tetrads in a specific way that defines
and stabilizes the overall G-quadruplex structure
and their conformations are in accord with the ex-
perimental mutations. The distinct RET promoter
G-quadruplex structure suggests that it can be spe-
cifically involved in gene regulation and can be an
attractive target for pathway-specific drug design.

INTRODUCTION

The RET proto-oncogene encodes a receptor-type tyrosine
kinase that plays an important role in the initiation and
progression of several human cancers, especially thyroid
cancer (1-4). For example, the multiple endocrine neopla-
sia type 2 (MEN 2), an inherited cancer syndrome
characterized by medullary thyroid carcinoma (MTC)

and pheochromocytoma (PC), was caused by germline
mutations in the exon region, encoding one of three
specific cysteine residues in the extracellular domain of
the RET protein. Moreover, RET protein levels was
found to be overexpressed in MTC and PC, a common
feature for these cancer cells (5-8). Thus, RET protein has
been investigated as a potential therapeutic target in pre-
clinical approaches for the treatment of RET-associated
cancers. It was revealed from the studies of the transcrip-
tional regulation of the RET proto-oncogene that the
human RET promoter had three GC boxes corresponding
to three Sp1 binding sites in the proximal promoter region.
Two of these GC boxes, locating between —59 and —25
upstream of the transcription start site, are essential for
functional transcription activity of RET basal promoter
(9,10). This proximal promoter region of the human
RET protooncogene containing five guanine tracts
(Figure 1) was reported to form stable parallel-stranded
G-quadruplex in the presence of K* (11), a high-order
DNA structure which is related to the activities of
promoter sequences.

The G-quadruplexes are generally formed in DNA and
RNA sequences containing repeated short guanine-rich
tracts by the stacking interaction of successive G-G-G-G
tetrads (G-tetrads) and stabilized by bound monovalent
Na® or K cation (12). The arrangements of G-quadru-
plexes can be tetramolecular, bimolecular or intramolecu-
lar, which are possible by virtue of the changes in strand
polarities and also the sequence and topologies of the
loops (13,14). It has been reported that G-quadruplex
structures can be formed in vitro in the human telomere
ends (15-19) and the promoter regions of different onco-
genes, such as c-Myc (20,21), c-kit (22,23), VEGF (24) and
Bcl-2 (25,26). The G-quadruplex-interactive agents such as
TMPyP4 and telomestatin are used to induce and stabilize
G-quadruplex structure formed in G-rich sequence, for
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Figure 1. (A) The promoter sequence of the RET oncogene and its
modifications. RET20G is the wild-type sequence containing the latter
four consecutive G-stretches; RET21mer is RET20G sequence with add-
itional T at the 3’-end; RET20T is the mutant of RET20G with the
replacement of G at 3'-terminal by T. The five G-stretches are colored
in red and numbered using Roman numerals; Two GC-boxes are
labeled. (B) The imino proton regions of 1D "H NMR spectra of
RET2Imer, RET20G and RET20T with sample concentration at
0.3mM. NMR buffer conditions: 25°C, 20mM K-phosphate, 80 mM
KCl, pH 6.8.

example, of the c-Myc and RET promoters, to inhibit their
promoter activities and regulate their expression (11,20).
This suggests that these G-quadruplexes can serve as
therapeutic targets, and it is worthwhile to make consid-
erable efforts to identify evidence in support of an in vivo
functional role for G-quadruplexes (27-29).

Here, we report the NMR solution structure for the
predominant G-quadruplex structure formed in the RET
promoter region. The solution structure provides not only
the molecular details of this G-quadruplex but also im-
portant insights for its loop conformations and inter-
actions with the core tetrad structures.

MATERIALS AND METHODS
Sample preparation

Unlabeled and site-specific low-enrichment (2% '°N-labeled)
oligonucleotides were synthesized on an ABI 394 DNA syn-
thesizer and purified by HPLC (30). They were dialyzed

successively against 40mM KCIl solution and against
water. The strand concentration of the NMR samples
was typically 0.2-3mM; the solutions contained 80 mM
KCI and 20 mM potassium phosphate (pH 6.8).

Circular dichroism

Circular dichroism (CD) spectra were recorded at 25°C on
a JASCO-815 spectropolarimeter using a 1-cm path length
quartz cuvette with a reaction volume of 400 ul. DNA
concentration was 7uM. The DNA oligonucleotides
were prepared in a pH 6.8 buffer containing 20 mM po-
tassium phosphate and 5, 10, 20 and 100mM KCI, re-
spectively. The samples were heated to 95°C for Smin
and cooled down to room temperature overnight. For
each sample, an average of three scans was taken, the
spectrum of the buffer was subtracted.

NMR experiments

Experiments were performed on 600 MHz Varian and
800 MHz Bruker spectrometers at 25°C. Resonances
were assigned unambiguously by using site-specific low-
enrichment labeling and through-bond correlations at
natural abundance (31,32). The NMR experiments for
samples in water solution were performed with
Watergate or Jump-and-Return water suppression tech-
niques. The acquisition data points were set to
2048 x (250-512) (complex points). All spectra were pro-
cessed by using the program NMRPipe (33). The 45° or
60° shifted sine-squared functions were applied to NOESY
and TOCSY spectra. The fifth-order polynomial functions
were employed for the baseline corrections. The final
spectral sizes are 2048 x 1024. The 'H chemical shifts
were referenced to 2, 2-dimethylsilapentane-5-sulfonic
acid (DSS). Peak assignments and integrations were
achieved using the software Sparky (http://www.cgl.ucsf
.edu/home/sparky/). The NOE peaks were integrated
using the peak fitting function and volume integration of
Sparky.

The *'P NMR spectra were collected on a DNA sample
at 1.5mM in D,0O (20mM potassium—phosphate buffer,
80mM KCI, pH 6.8) at 25°C and were referenced to an
external standard of 85% H3PO,, including the one di-
mensional proton-decoupled phosphorus spectrum, and
two dimensional heteronuclear *'P-'H  Correlation
Spectroscopy (COSY). Assignments of the individual *'P
resonance were accomplished by a combination of two
dimensional 'H-'H NOESY, COSY, TOCSY and hetero-
nuclear *'P-'"H COSY (Supplementary Figure S8).

Distance geometry and simulated annealing calculations

The distances between non-exchangeable protons were
estimated based on the NOE cross-peak volumes at 50,
75, 100, 150, 200 and 250 ms mixing times, with the
upper and lower boundaries assigned to +20% of the
estimated distances. The cytosine base proton H5-H6
distance (2.45A) was used as a reference. Exchangeable
proton restraints are based on NOESY data sets at two
mixing times (50 and 200ms) in H,O. Cross-peaks
involving exchangeable protons were classified as strong
(strong intensity at 50ms), medium (weak intensity at
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50ms) and weak (observed only at 200ms), and distances
between protons were then restrained to 3.0 £ 0.9A,
4.0+ 1.2A and 6.0 £ 1.8 A, respectively. The distances
involving the unresolved protons, e.g. methyl protons,
were assigned using pseudo-atom notation to make use
of the pseudo-atom correction automatically computed
by X-PLOR.

The structure of RET20T was calculated on the basis of
NMR restraints by using X-PLOR (NIH version) (34) to
embed and optimize 100 initial structures. An arbitrary
extended conformation was first generated for the single-
stranded RET20T sequence. Substructure embedding was
performed to produce a family of 100 distance geometry
(DQG) structures. Then the 100 structures were subjected to
simulated annealing regularization. The experimentally
obtained distance restraints and G-tetrad hydrogen-
bonding distance restraints were included during the
calculation. All distance restraints were specified with
the SUM averaging option in X-PLOR.

Distance restrained molecular dynamics calculations

The 10 best structures were selected and subjected to
distance restrained molecular dynamics calculations in
XPLOR with a distance-dependent dielectric constant.
The G-tetrads within the quadruplex were restrained
with distances corresponding to ideal hydrogen bond
geometry. Each individual hydrogen bond was restrained
using two distance restraints (heavy atom—heavy atom and
heavy atom—proton). Hydrogen bond distance restraints
were also applied to H; (in G16):04 (in T20) and NH, (in
C5):N; (in G3), with larger distance bounds (+0.3 A). The
force constants were scaled at 30 and 100 kcalmol~' A~2
for NOE and hydrogen bond distance restraints, respect-
ively. A total of 411 NOE-distance restraints (Table 1),
of which 138 are from interresidue NOE interactions,
were incorporated into the NOE-restrained structure
calculation.

Table 1. Structural statistics for the RET20T G-quadruplex structure

NMR distance and dihedral constraints
Distance restraints

Total NOEs 359
Intraresidue 221
Interresidue 138
Sequential (|i—j| = 1) 84
Non-sequential (|i—j| > 1) 54
Hydrogen bonds 52
Total dihedral angle restraints 42

Structural statistics
Violations (mean and SD)
Number (>0.2A) 0

Maximum violations (A) 0.158 + 0.026
Distance constraints (A) 0.044 + 0.0016
Dihedral angle constraints (°) 0.90 = 0.09

Deviations from idealized geometry

Bond lengths (A) 0.005 + 0.0001

Bond angle (°) 1.00 + 0.01

Impropers (°) . 0.60 £+ 0.01
Average pairwise r.m.s.d. of all heavy atoms (A)

All heavy atoms except C15 0.55 = 0.15

All residues 0.75 = 0.26
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Dihedral angle restraints were used to restrict the glyco-
sidic torsion angle (x) for the experimentally assigned syn
configuration, i.e. G1, G7, G11 and G17 tetrad-guanines
[60 (£35)°], and C5 and G16 in the loop [60 (£ 35)°], as
well as for some of the experimentally assigned anti-con-
figuration bases, i.e. G2, G3, G4, G6, G8, G9, G12, G13,
G114, G18 and G19 [240(+70)°]. Dihedral angle restraints
were also used to restrain the sugar backbone torsion
angles B, v and € (35). Based on the J-coupling constants of
31P(n)-HS'/H5"(n) and H3' (n — 1) — *'P(n) obtained from
3P-'H COSY (Supplementary Figure S6), the B angles
were restrained to the B-t conformation at 180(=+70)°
for all the residues, except for G11 and G17 whose B
angles were restrained to —60(=£20)°. The ¢ angles were
restrained to 90( £ 20)° for G6, C10 and G14. Based on the
relative intensities of H3'-H5'/H5” and H4-H5'/HY”, the
g angles of the majority of residues with resolved H5' /H5”
are in the regular y+ conformation (~60°) or sometimes in
the y- conformation (~60°), because for each residue, the
H3-H5 (or H3-H5”) NOE is clearly stronger than the
H3-H5” (or H3-H5’) NOE, except for G14 which shows
similar intensities for H3-H5” and H3'-H5”, and thus
falls in the y-t region (35). Thus only the y angle of G14
was restrained to 170(£80)°. The force constants of
dihedral angle restraints were 10kcalmol™'rad™ for
and 5kcalmol™'rad ™ for B, vy and «.

Restrained molecular dynamics calculations were
initiated at 300K, and the temperature was gradually
increased to 1000 K in 4 ps. The system was equilibrated
at 1000 K for 20 ps, and was then slowly cooled to 300 K
in 10ps. The coordinates saved every 0.2ps during the
last 2.0 ps were averaged. The resulting average structure
was subjected to minimization until the energy gradient
of 0.1kcalmol™" was achieved. A soft planarity restraint
(weight of 5kcalmol~' A~?) was imposed on the G-tetrads
before the heating process and was removed at the begin-
ning of the equilibration stage. The time steps for all
processes of heating, cooling, and equilibration were
equal to 0.5fs. The 10 best molecules were selected
based both on their minimal energy terms and number
of NOE violations.

Data deposition

The coordinates for the d[(G4C);G4T] quadruplex have
been deposited in the Protein Data Bank (accession code
21.88).

RESULTS AND DISCUSSIONS

Screening sequence RET20T as the predominant G-
quadruplex in the RET promoter

A recent study has shown that the four consecutive
guanine repeats II-V (Figure 1A) in the G-rich strand of
RET promoter form the intramolecular G-quadruplex in
the presence of K solution (11). The imino proton NMR
spectra in Figure 1B indicates the presence of multiple
G-quadruplex forms for the wild-type sequence of RET
promoter RET20G. To obtain the sequence of RET
promoter suitable for NMR G-quadruplex structure
studies, we mutated the nucleotide residues flanking the
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forth G-tracts and got the two sequences RET2Imer and
RET20T (Figure 1). Fortunately, the sequence RET20T
forms the most stable G-quadruplex structure, as
demonstrated by NMR spectrum (Figure 1B). RET20T
%ives a well-defined spectrum that has many overlapping
H NMR resonance signals with the wild-type sequence of
RET20G (Figure 1). Therefore, the RET20T sequence
with a mutant G to T at 3’-end was chosen as the
sequence for NMR structure determination.

CD signature

The CD spectra (Figure 2) for RET20T in K solution
were in agreement with the results from NMR of the for-
mation of G-quadruplex structure. The CD profile for
RET20T containing 100mM KCI almost displayed a
single-positive absorption at 260 nm and negative absorp-
tion around 240 nm, which is characteristic of all-parallel
G-quadruplex structure (36). While RET20T with low con-
centration of KCI (5, 10 and 20 mM) exhibited a negative
minimum around 240nm, a single positive maximum
around 260 nm, and a weak plateau from 280 to 300 nm,
indicative of the formation of two or more folds of
G-quadruplex in the solution (37). These data revealed
that high concentration of K* favors the all-parallel
G-quadruplex structure for the sequence RET20T.

NMR spectral assignments

The spectral line widths of the modified sequence RET20T
(2-4 Hz for the sharpest peaks at 25°C) are indicative of a
monomeric intramolecular structure, this is supported by
the concentration-independent of the well-resolved quality
of 'H spectra for RET20T (Supplementary Figure S1),
where the line widths of imino proton signals are almost
same to each other in both cases at the concentration of
0.2 and 3mM of RET20T NMR sample. The result is also
in agreement with the previous data (11), which showed

that the G-quadruplex structure formed by the RET
promoter sequence was a parallel-type intramolecular
structure by comparative CD and DMS footprinting
studies. This is further corroborated by the NMR stoi-
chiometry titration experiment (38) (Supplementary
Figure S2).

Guanine imino and HS8 protons of RET20T were unam-
biguously assigned by wusing the site-specific low-
enrichment labeling and natural abundance through
bond correlation strategies (31,32) (Figure 3A and C).
Resonances for cytosine residues were unambiguously
assigned by C-to-T substitutions. The non-exchangeable
base and sugar protons of the RET20T sequence were
assigned using standard protocols by through space (two
dimensional "H-"H NOESYP and through bond (two di-
mensional 'H-'H COSY, 'H-'H TOCSY and "“C-'H
HSQC) experiments in “H,O K* solution. In case of
spectral overlapping, resonance assignments were faci-
litated by guanosines (G) to inosine (I) substitutions at
positions 4, 14 (double-site RET20T4-141 mutant shown
in Supplementary Figures S3, S4 and S5) and position 16
(RET20T-161 mutant shown in Supplementary Figure S6
and S7). The expanded 'H-'H NOESY cross-peaks
(mixing time 200 ms) including the classical H8/H6-H1’
sequential connectivities were shown in Figure 3A. The
complete assignments of base and sugar proton chemical
shifts are listed in Supplementary Table S1. The intensities
of intraresidue H8-H1’ NOE cross-peaks (Figure 4B)
indicate syn glycosidic conformation for G1, C5, G7,
Gl11, G16 and G17, in contrast to other residues, which
adopt anti conformation.

Determination of G-quadruplex folding topology

Analysis of characteristic NOEs between imino and HS
protons (Figure 5B) revealed the formation of an intra-
molecular G-quadruplex involving three G-tetrads, Gle

100 mM KCl1
20 mM KCI
10 mM KCl
5mM KCI

Molar Ellipticity (103dg M1 cm™)

_3 1 1
220 240 260

280 300 320

Wavelength (nm)

Figure 2. CD spectra of RET20T in 5, 10, 20, and 100mM KClI solution recorded at 25°C.
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Figure 3. (A) Imino proton spectra with assignments indicated over the reference spectrum (ref) on the top. Guanine imino protons were assigned in
N-filtered spectra of samples, 2.0% '*N-labeled at the indicated positions. (B) A schematic indicating long-range J couplings used to correlate
imino proton and H8 proton within the guanosine base. (C) H8 proton assignments of RET20T sequence by through-bond correlations between
guanosine imino and H8 protons via '>C (at 5-position) at natural abundance, using long-range J couplings shown in (B).
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Figure 4. Non-exchangeable proton assignments of RET20T Sequence.
(A) Expanded 'H-'H NOESY spectrum (200ms mixing time)
correlating base and sugar HI1' protons. The line connectivities trace
NOEs between a base proton (H8 or H6) and its own and 5'-flanking
sugar H1’' protons. Intraresidue base to sugar Hl” NOEs are labeled
with residue numbers. The peak assigned to G17 is broadened at 25°C,
which reflects a motion at the bottom of structure. (B) Stacked plot of
short mixing time (100 ms) NOESY spectrum. The strong intraresidue
guanosine H8-H1" cross-peaks (syn glycosidic bonds) are labeled and
can be distinguished from weak cross-peaks (anti-glycosidic bonds). (C)
Imino proton NMR spectrum of RET20T sequence after 60 min in D,O
solution. Assignments of slowly exchanging imino protons are listed
over the spectrum.

G7eG11eG17, G26G186G12eG8, and G3eG19eG13eGY
(Figures 5A and C), which is further confirmed by the
NOE:s in the H1 region (Supplementary Figure S9). The
hydrogen-bond directionalities of the three G-tetrads are
clockwise, anti-clockwise and anti-clockwise, respectively.

The glycosidic conformations of guanines around the first
G-tetrad are syn-syn-syn-syn, while those of the other two
G-tetrads are anti-anti-anti-anti. These glycosidic con-
formations are consistent with the all parallel-stranded
G-quadruplex core containing four G-tracts (G1-G2-G3,
G7-G8-GY, G11-G12-G13 and G17-G18-G19) oriented in
one direction. All of the three loops are of the double-
chain reversal type. The first and the third loops are
made of three nucleotides (G4-C5-G6 and G14-Cl15-
G16), while the second loop is composed of a single
nucleotide (C10). In this G-quadruplex fold G2, G8,
G12 and GI18 are in the central G-tetrad, consistent with
imino protons of these residues being the most protected
from exchange with water (Figure 4C).

Solution structure of RET20T G-quadruplex in the
presence of K*

The structure of the RET20T quadruplex was calculated
on the basis of NMR restraints (Table 1) by using the
X-PLOR program (34) (see ‘Materials and Methods’
section). Ten superimposed lowest energy refined struc-
tures of the RET20T quadruplex are shown in Figure 6A.
Ribbon view of a representative refined structure of the
RET20T quadruplex are shown in Figure 6B.

As shown in Figure 8A, the G-quadruplex consists of
three G-tetrads linked with four parallel right-handed
G-strands (G1-G2-G3, G7-G8-G9, G11-G12-G13 and
G17-G18-G19) that are connected by three double-chain
reversal side loops (G4-C5-G6, C10, G14-C15-G16). The
first loop is of the double-chain-reversal type, and it is
composed of three nucleotide segment G4-C5-G6 with
unique topology features. C5 flanked by the groove of
the three G-tetrad core structure adopts syn conformation
for the glycosidic bonds from the NOE intensities of
H1’-H6. This conformation is stabilized by the hydrogen
bond between atoms N3 (in G3) and NH42 (in C5), which
is covered by the G4 located at the top of the core struc-
ture. The observation of NOEs between H41, H42 (in C5)
and the sugar protons of G4, H5, H6 (in C5) and H1 (in
G2 and G3) confirms the alignment (in Figure 7A). While
G6 in the loop is very flexible as shown in Figure 6A, for
there are almost no NOEs between G6 and its neighboring
nucleotides. The second loop is also of double-chain
reversal type and is bridged by only 1nt C10. The hird
linker G14-C15-G16 still forms the double-chain reversal
loop, which connects columns G11-G13 and G17-G19.
This loop is stabilized by the hydrogen bond between
H1 (in G16) and O4 (in T20), well explaining the
up-field shifted 11.2 ppm imino proton of G16, typical of
a guanosine imino proton hydrogen bonded to a thymine
oxygen accepter. Gl4 stacks over the top G-tetrad
G3eG9%G13eG19, consistent with the NOE between the
average amino proton of G14 and imino protons of G3,
G9, GI13 and GI19 (Figure 5B). CI15 stacks over the
G16:T20 base pair, which further stabilize the hydrogen
bond between G16 and T20. The alignment of G14-G16
and T20 is further confirmed by the observation of NOEs
between methyl group of T20 and H1 protons (in G16 and
G19), NH, (in G14), H5 (in C15) (in Figure 7B).


http://nar.oxfordjournals.org/cgi/content/full/gkr233/DC1

Nucleic Acids Research, 2011, Vol. 39, No. 15 6759

8H (ppm)

5.5
r6.0

6.5

F7.0
' :
j ) 9/13[4] L
F7.6

8.0

17/11

o g2 g 0

1s 110
H1 (ppm)

Figure 5. Determination of G-quadruplex topology for the promoter sequence RET20T in K solution. (A) Characteristic guanosine imino-H8 NOE
connectivity patterns around a GoeGPeGyeGd tetrad as indicated by arrows. (B) Guanosine imino-H8 connectivities observed for GleG17e¢G11eG7
(Magenta), G2eG8eG12eG18 (black) and G3eG9eG13eG19 (blue) G-tetrads. (C) Interstrand NOEs between imino H1 and aromatic HS of
unimolecular guanine bases within the same layer of G-tetrads (boxed in magenta, black and blue corresponding to the three tetrad mentioned

in (B), respectively).

Mutational analysis of RET20T for loop segments

We have carried out systematic analysis of RET20T
promoter sequences with mutated residues in the loop
regions to determine their functional role in RET20T
G-quadruplex formation and stability. We incorporated
two mutations in the first and third loops, G4 and G14
with inosine, resulting in much higher quality of the imino
signals (Supplementary Figure S3B). Further analysis of
the spectra of the sequence RET20T4-14I indicated no
changes on the overall quadruplex topology from the
NOE pattern (Supplementary Figure S4). As shown in
Supplementary Figure S6, replacement of unpaired residue
C15 by T15 (i.e. RET20T-15T) also has no impact on the
imino signals in the spectrum. Replacement of the central
residue C5, which is involved in the special conformation
of G3-G4-C5, by TS5 (i.e. RET20T-5T) impaired the
quality of imino proton signals, indicative of a role
for the hydrogen bond formed between Nj (in G3) and
NH, (in C5) in stabilizing the double-chain reversal loop
G4-C5-G6 of the G-quadruplex. Substitution of G161
resulted in a single conformation with the same general

fold from the NOE pattern (Supplementary Figure S7).
The 3’-terminal residue T20, which is involved in the for-
mation of hydrogen bond with G16, could be substituted
with A and C (Supplementary Figure S6) without impact
on the general folding of the structure from the NOE
pattern (data for RET20T-20A shown in Supplementary
Figure S10, data for RET20T-20C are not shown). This
could be explained by the flexibility of the terminal residue
T20. A20 and C20 instead of T20 still could form
hydrogen bond with G16 by N1 in A20 (NOE between
H2in A20 and H1 in G16) and N3 in C20 with H1 in G16.

Multiple conformations in RET promoter sequence

The RET promoter sequence located between —59 and
—25 upstream of the transcription start site contains five
G-stretches, which contain three/four/five guanosines per
stretch (Figure 1A). One could imagine multiple possible
ways of G-quadruplex formation wusing different
G-stretches. Indeed, this G-rich strand has the ability to
adopt two intramolecular G-quadruplex structures in the
presence of K* with two sets of G-tracts I-IV and II-V.
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Figure 6. Stereoview of the RET20T G-quadruplex structure in K solution. (A) 10 superimposed refined structures. Guanosine bases in G-tetrad
core are colored cyan (anti) and magenta (syn). Bases in loops are in brown for cytosines (C5, C10 and C15), orange-red for G6, blue for G16,
and green for T20. For clarity, the bases G4, G6 and G14 are only shown the backbone in the figure and (B) Ribbon view of a representative

structure.

G14 Cl5

T20

.47k

G13

G16

Figure 7. Detailed loop structures of the RET20T G-quadruplex in K" solution. (A) The conformation of the first loop G4-G6. The amino group of
C5 forms hydrogen bond with N3 in G3, which is further protected by G4. (B) Loop conformation for the segment G14-G16 and T20. H1 (in G16)
in the third loop forms hydrogen bond with O4 (in T20), which stabilizes the conformation of the double-chain reversal loop in RET20T quadruplex

structure.

While the DNA polymerase assay indicated that the
G-quadruplex formed by the latter sequence was the
major form (11). However, even for a given set of four
G-tracks, there may be several possible intramolecular
G-quaduplex topologies, which differ by G-selection in
one G-tract, strand orientations, syn/anti distributions,
and/or loop connections (13,14). From the 'H NMR
spectra (Figure 1B), the sequence RET2Imer and
RET20G could form different conformations in the
presence K. While the topology formed by the sequence
RET20T, almost a natural fragment derived from the RET
promoter, might represent the most stable conformation
involved in the biologically relevant G-quadruplex
structure.

The RET20T fold represents a new conformation for all
parallel-stranded G-quadruplex

We have identified the derivative guanine-rich strand
sequence from the RET promoter, RET20T, which is
suitable for structural characterization by NMR. The
sequence contains four G-tracts with four guanines
per tract that have been shown previously to participate
in formation of G-quadruplexes (11). We have shown here
that RET20T forms intramolecular propeller-type
parallel-stranded G-quadruplexes in K" solution: the
core of three G-tetrads is formed by four G-tracts
oriented in the same direction, all three loops are of
double-chain reversal loop type. The parallel-stranded



Gl6

Gl4

Nucleic Acids Research, 2011, Vol. 39, No. 15 6761

G22

G18
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Figure 8. Schematic structures of all parallel G-quadruplexes formed by (A) the promoter sequence of oncogene RET in K solution (this work),
(B) the promoter sequence of c-Myc in K™ solution, (C) the four-repeat human telomeric JAGGG(TTAGGG);] sequence in K™ solution and (D) the
two-repeat human telmoreic d TAGGGTTAGGGT] sequence in K*. Loops are colored red; anti and syn guanines are colored cyan and magenta,

respectively.

G-quadruplex topologies with three or two double-chain
reversal loops have been reported for the promoter
sequence of c¢-Myc (Figure 8B) (39,40) and for the
human telomeric G-rich strands containing the four-
repeat d[AG;3(T,AG3);] (Figure 8C) (16) and the
two-repeat d[TAG,T,AG;T] (Figure 8D) (16). The core
structure and conformations of loops represented
here are different and represent some new features. The
conformations adopted by the guanines involved in
the formation of the core structure: when their G-tetrad
cores are aligned, the glycosidic conformations of the first
G-tetrad are synesynesynesyn and those of the other two
are antieantieantieanti (Figure 8A), while the conform-
ations of the three G-tetrads are all antieantieantieanti
in all the other three structures (Figure 8B-D).
Moreover, although these structures are made of
double-chain-reversal loops, the first and the third
loops in structure RET20T still exhibit their distinct align-
ments which are involved in the specific interactions
between the residues in the loops and the core structure
(Figure 7).

A common feature of the stable loop conformation in
RET20T G-quadruplex and in the promoter
G-quadruplexes c¢-Myc (39,40), Bcl2 (25,26), and in
human chll intronic G-quadruplexe (41), is the single-
nucleotide G3NG; double-chain reversal loop. Such loop
spanning three G-tetrad was first reported by Phan AT et
(39) in the G-quadruplex structure formed by the

promoter sequence ¢-Myc and seems essential for the sta-
bility for the promoter sequence G-quadruplex structure,
such as for likely VEGF (42,43), HIF-1a (44) promoter
sequences.

A recent study of glycosidic conformation of guanines
in anti-parallel G-quadruplex structure revealed the
rules of relationship between the glycosidic conformation
and strand orientation: same strand direction, same glyco-
sidic conformation and to form as many 5'-syn-anti steps
for glycosidic conformational pattern as possible (45).
These rules also seem to be applied in the all-parallel
G-quadruplex structure. In the all-parallel G-quadruplex
structures, such as shown in Figure 8§8B-D, the guan-
ines within one G-tetrad display identical glycosidic con-
formations (all anti guanines) corresponding to their
strand orientation. While the all-parallel structure
formed by the sequence RET20T (Figure 8A) has the
maximum number of the 5-syn-anti steps (4 syn
guanines). The free-energy calculation combining solute
entropy estimates indicates that syn-anti and anti-anti
steps are close in stability for guanines stacking (45).
Moreover, the hydrogen bond between O5-HST (in G1)
and N3 (in Gl) (~2.0A) in the RET20T further con-
tribute the stability of the overall folding (7, ~58°C,
Supplementary Figure S2). Therefore, the RET20T
topology with four syn guanines within one G-tetrad rep-
resents a new overall folding for all-parallel G-quadruplex
structures.
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Biological implications for the oncogene RET
G-quadruplex

In the presence of K*, the promoter region of oncogene
RET could form G-quadruplex structure. Our NMR data
revealed the G-rich strand within the oncogene RET
promoter region could form multiple G-quadruplex struc-
tures. A major form of the G-quadruplex structure formed
by the four G-stretches (II-IV) is determined in the
present work. The G-quadruplex is composed of three
stacked G-tetrad and 4 syn guanines within one
G-tetrad, three double-chain reversal loops which
interact with the core structure specifically. The specific
alignments make the overall G-quadruplex structure has
a distinct pattern of grooves in comparison with the all
parallel-stranded G-quadruplex structure formed by the
oncogene promoter region of c-Myc (39,40). The specific
conformations of the two double-chain reversal loops
formed by G4-C5-G6 and G14—C15-G16 impose strictly
restrictions of accessibility to the grooves between the
columns G1-G2-G3 and G7-G8-GY and between Gl11-
G12-G13 and GI17-G18-G19, respectively. While the
neighboring groove formed by the G-tracts G7-G8-G9
and G11-G12-G13, bridged by only 1 nt C10, is accessible
to G-quadruplex-interactive agents through hydrogen
bond with the edges of guanosines within the G-tetrad.
The last groove between columns G1-G2-G3 and
G17-G18-G19 (Figure 6) is completely accessible to
hydrogen bond recognition by G-quadruplex ligands.
Moreover, all syn guanines within the G-tetrad in the
quadruplex structure modify the conformations of these
grooves when compared to those of ¢-Myc quadruplex
structure and provide the chance for selective recognition
by G-quadruplex ligands. Of course, no any restrictions at
the 5-end of RET20T is also completely accessible to
those ligands which bind to G-quadruplex structure by
stacking over the G-tetrad.

Formation of G-quadruplex structures in the c-Myc
(20) and c-kit (46) promoter regions has been shown to
deregulate the gene expression and that in the Bc/2 (47)
has been suggested to activate the gene expression. The
same role may be involved in the RET oncogene. The
unique all-parallel structure formed by RET promoter
regions with specific ligand binding sites analyzed as
above suggests that it could be an attractive target for
pathway-specific drug design.
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