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1 INTRODUCTION

A binary classification is a computational procedure that labels data elements as members of one or
another category. In machine learning and computational statistics, input data elements which are
part of two classes are usually encoded as 0’s or –1’s (negatives) and 1’s (positives). During a binary
classification, a method assigns each data element to one of the two categories, usually after a
machine learning phase. A typical evaluation procedure then creates a 2 × 2 contingency table called
confusion matrix, where the positive elements correctly predicted positive are called true positives
(TP), the negative elements correctly predicted negative are called true negatives (TN), the positive
elements wrongly labeled as negatives are called false negatives (FN), and the negative elements
wrongly labeled as positives are called false positives (FP).

Since it would be difficult to always analyze the four categories of the confusion matrix for each
test, scientists defined statistical rates that summarize TP, FP, FN, and TN in one value. Accuracy
(Eq. 1), for example, is a rate that indicates the ratio of correct positives and negatives (Zliobaite,
2015), while F1 score (Eq. 2), is the harmonic mean of positive predictive value and true positive rate
(Lipton et al., 2014; Huang et al., 2015).

accuracy � TP + TN

TN + TP + FP + FN
(1)

(worst value = 0; best value = 1).

F1 score � 2 · TP
2 · TP + FP + FN

(2)

(worst value = 0; best value = 1).
Even if accuracy and F1 score are very common in machine learning studies, they can be

misleading (Chicco and Jurman, 2020) in several situations.
The Matthews correlation coefficient (Eq. 3) (Matthews, 1975), instead, is the only statistical rate

that generates a high score only if the values of the four basic rates (sensitivity, specificity, precision,
negative predictive value) are high (Yao and Shepperd, 2020; Zhu, 2020). For this reason, the MCC
results being more informative and reliable than accuracy, F1 score, and many other rates (Jurman
et al., 2012; Chicco, 2017; Chicco and Jurman, 2020; Chicco et al., 2021; Chicco et al., 2021a; Chicco
et al., 2021b).

MCC � TP · TN − FP · FN
�����������������������������������������
TP + FP( ) · TP + FN( ) · TN + FP( ) · TN + FN( )√ (3)

(minimum value = −1; maximum value = +1).
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where MCC = +1 means perfectly correct prediction (all the
positives correctly predicted positives and all the negatives
correctly predicted negatives), MCC = 0 means the prediction
was no better than random guessing, and MCC = –1 means
perfectly wrong prediction (that is, all the ones were predicted
zeros and all the zeros were predicted ones).

Despite the large usage of the MCC in machine learning,
bioinformatics, and health informatics, we decided to investigate
how popular this rate was in robotics and artificial intelligence.

2 ANALYSIS

Method. To investigate the usage of these three confusion matrix
rates in robotics and artificial intelligence, we performed a search
of the Matthews correlation coefficient, accuracy, F1 score
keywords in ten preeminent scientific journals on robotics. We
counted the number of publications containing each keyword, per
each journal, through Google Scholar. For example, we used the
following search terms on Google Scholar to count the number of
articles containing the “Matthews correlation coefficient”
keyword in the Frontiers in Artificial Intelligence journal:

“Matthews correlation coefficient” source:“Frontiers in
Artificial Intelligence”

We performed this search for ten robotics journals (Frontiers
in Artificial Intelligence, Robotics and Autonomous Systems,
Frontiers in Neurorobotics, International Journal of Robotics
Research, Journal of Field Robotics, Frontiers in Robotics and
AI, IEEE Robotics and Automation Letters, IEEE Transactions on
Robotics, Science Robotics, Journal of Intelligent and Robotic
Systems) and reported the results in Table 1.
Results. As we can see in the table indicating the number of
articles including each keyword per each robotics journal
(Table 1), the MCC was employed in very few articles among
all the journals. Frontiers in Artificial Intelligence had the highest
number, six, while Robotics and Autonomous Systems had five.

Only one article published in Frontiers in Neurorobitics,
International Journal of Robotics Research, and Journal of Field
Robotics each contained results measured by the Matthews
correlation coefficient. No article mentioning the MCC was
found in the other five journals (Frontiers in Robotics and AI,
IEEE Robotics and Automation Letters, IEEE Transactions on
Robotics, Robotics and Intelligent Systems, and Science Robotics).
The average number of articles including MCC results in these
ten journals is 1.40 (Table 1).

On the contrary, we found hundreds and thousands of articles
mentioning the accuracy rate (Table 1), ranging from 135 articles
of Science Robotics to 2,390 studies published in IEEE Robotics
and Automation Letters. The average number of articles including
accuracy results in these ten journals is 1,077.2 (Table 1).

The number of articles including the F1 score was smaller than
the accuracy ones, but definetely more than theMCC studies. The
number of F1 score articles ranged from none (Science Robotics)
to 71 (IEEE Robotics and Automation Letters), with an overall
average value of 19.30 (Table 1). Almost all the journals had at
least ten published articles containing results measured by F1
score, except IEEE Transactions on Robotics with eight articles
and the already mentioned Science Robotics with zero.

3 DISCUSSION

Our results clearly show that the Matthews correlation coefficient
is almost unknown in robotics. F1 score is clearly underused with
respect to accuracy, but it is still known for all the journals except
Science Robotics. The MCC, instead, is clearly out of radar for
most of the robotics researchers that published articles in these
ten robotics journals. The MCC is unknown probably also to the
reviewers and the associate editors who handled the review of
these manuscripts and did not invite the authors to include results
measured by this statistical rate.

All the authors of all the manuscripts published in five robotics
journals (Frontiers in Robotics and AI, IEEE Robotics and
Automation Letters, IEEE Transactions on Robotics, Robotics

TABLE 1 | Occurrences of the keywords in the articles of the journals. #MCC: number of articles containing the “Matthews correlation coefficient” keyword for each journal.
#accuracy: number of articles containing the “accuracy” keyword for each journal. #F1 score: number of articles containing the “F1 score” keyword for each journal. We
did all the searches on 14 February 2022 at 2:00p.m. EST, by using the source keyword on the Google Scholar search field at https://scholar.google.com We sorted the
scientific journals alphabetically.

Scientific Journal #MCC #Accuracy #F1 Score

Frontiers in Artificial Intelligence 6 324 28
Frontiers in Neurorobotics 1 439 16
Frontiers in Robotics and AI 0 596 14
IEEE Robotics and Automation Letters 0 2,390 71
IEEE Transactions on Robotics 0 1,750 8
International Journal of Robotics Research 1 1,540 10
Journal of Field Robotics 1 688 12
Journal of Intelligent and Robotic Systems 0 1,010 13
Robotics and Autonomous Systems 5 1,900 21
Science Robotics 0 135 0

Average 1.4 1,077.2 19.3
Median 0.5 849 13.5
Range [0; 6] [135; 2,390] [0; 71]
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and Intelligent Systems, and Science Robotics) decided not to
include any result measured by the MCC.

Regarding Frontiers in Artificial Intelligence, we notice that the
Matthews correlation coefficient was employed by the authors of
three original research studies (Bhatt et al., 2021; Li et al., 2021;
Wu et al., 2021), two methods articles (Fletcher et al., 2021;
Weerawardhana et al., 2022), and one review (Tripathi et al.,
2021). The study of Li et al. (2021) presents a deep learning
application on chemoinformatics data for the prediction of
carcinogenicity. Chemical data analysis is also the topic of the
article by Wu et al. (2021), which employs natural language
processing techniques for drug labeling and indexing. Fletcher
et al. (2021), instead, present a study on fairness in artificial
intelligence applied to public health, reporting a case study on
machine learning applied to data of pulmonary disease.
Weerawardhana et al. (2022) employed the MCC to measure
the results in a human-aware intervention and behavior
classification study, In their review article, Tripathi et al.
(2021) reported some AI best practices in manufacturing,
indicating the MCC as one of the confusion matrix rates
employed in this field.

Among the five articles published in the Robotics and
Autonomous Systems journal, three are about robots’ visual
activities (Bosse and Zlot, 2009; Özbilge, 2016; Özbilge, 2019),
one is about swarm robotics (Lau et al., 2011), and one is about
human–robot verbal interaction (Grassi et al., 2022).

The only article of Frontiers in Neurorobotics including results
measured by the MCC is a study on visual perception of robots
(Layher et al., 2017), while the only MCC study in International
Journal of Robotics Research describes a dataset on urban point
cloud obtained acquired by mobile laser scanning (Roynard et al.,
2018). The article of the Journal of Field Robotics including MCC
results is about the robotics visual obstacle detection (Santana
et al., 2011). The presence of the MCC in these studies does not
seem to follow a precise trend, but rather be occasionally
employed by authors who are aware of MCC’s assets, for
reasons we do not know.

Regarding dates, it is interesting to notice that, except one
article published in 2009 and one in 2011, all the other studies

were published after 2016, showing an increased interest towards
theMatthews correlation coefficient. Eight articles out of fourteen
have been published in 2021 and 2022, suggesting a greater use of
the MCC in future studies.

As we explained earlier, the amount of articles including
MCC results is very low compared to the number of published
studies involving accuracy and F1 score (Table 1). And we
think this is a serious drawback: as we explained in our study
(Chicco and Jurman, 2020), the Matthews correlation
coefficient is more informative and reliable than accuracy
and F1 score, because it takes into account the ratio of
positive data instances, negative data instances, positive
predictions, and negative predictions.

Accuracy and F1 score both range between 0 and 1, with 0
meaning worst result possible and 1 meaning perfect
prediction. An accuracy value of 0.9 and a F1 score of 0.95,
for example, suggest a very good binary classification. If the
original dataset consisted of 91 positive elements and 9
negative elements, these results could be generated by a
cracked classifier that labels everything as positive. If a
classifier assigned the “positive” label to all the 100 data
elements, the evaluation procedure would get accuracy =
0.9 and F1 score = 0.95, which are clearly misleading
results and could let the practitioner think that the binary
classification was excellent. The MCC, instead, would have
been –0.03, that in the [ − 1, +1] interval indicates a poor
prediction similar to random guessing: the MCC would
inform the practitioner that her/his binary classification
was quite bad, while accuracy and F1 score tried to make
her/him believe it was great.

We therefore invite the robotics and artificial intelligence
communities to include results measured through the MCC
for any binary classification analysis.
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