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Abstract: Infertility is defined as a couple’s inability to conceive after at least one year of regular
unprotected intercourse. This condition has become a global health problem affecting approximately
187 million couples worldwide and about half of the cases are attributable to male factors. Oxidative
stress is a common reason for several conditions associated with male infertility. High levels of reac-
tive oxygen species (ROS) impair sperm quality by decreasing motility and increasing the oxidation
of DNA, of protein and of lipids. Multi-antioxidant supplementation is considered effective for male
fertility parameters due to the synergistic effects of antioxidants. Most of them act by decreasing
ROS concentration, thus improving sperm quality. In addition, other natural molecules, myo-inositol
(MI) and d-chiro–inositol (DCI), ameliorate sperm quality. In sperm cells, MI is involved in many
transduction mechanisms that regulate cytoplasmic calcium levels, capacitation and mitochondrial
function. On the other hand, DCI is involved in the downregulation of steroidogenic enzyme aro-
matase, which produces testosterone. In this review, we analyze the processes involving oxidative
stress in male fertility and the mechanisms of action of different molecules.
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1. Introduction

Infertility is diagnosed after at least one year of regular unprotected intercourse
without conception. Diagnosis of infertility has become a global health concern, occurring
in about 187 million couples worldwide, and approximately half of the cases are attributable
to male factors [1,2].

Oxidative stress caused by a high amount of reactive oxygen species (ROS) has been
observed in 30–80% of infertile patients [3,4]. High levels of ROS promote impairment of
sperm quality mainly by decreasing motility and increasing the levels of DNA oxidation,
protein oxidation and lipid peroxidation [5].

Lifestyle [6,7], genetics [8] and environment, such as exposure to chemicals [9], repre-
sent risk factors for male infertility. Additionally, several pathologies may cause infertility,
including varicocele and endocrine unbalance, all related to oxidative stress and DNA
damage [6].

Infectious diseases represent another important factor that may affect human fertility,
especially through damage to DNA, inflammation and oxidative stress. In particular,
viruses are known to induce inflammation in infected tissues, promoting the production
of ROS [10]. A notable case of virus infecting testes, among others, is the SARS-CoV2.
Such a virus is internalized by the cells via angiotensin-converting enzyme 2 (ACE2),
which is highly expressed on testis, especially in Leydig and Sertoli cells [11]. Clinical
studies report that SARS-CoV2 infection increases the concentration of ROS, together with
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malondialdehyde (MDA). Moreover, such a virus seems to reduce the percentage of motile
spermatozoan, impairing both motility and morphology [12,13].

Indeed, ROS represent a major factor that contributes to male idiopathic infertility. In
recent years, male oxidative stress infertility (MOSI) emerged as a term defining “infertile
men with abnormal semen characteristics and oxidative stress” that has a global incidence
of about 37.2 million cases. MOSI is characterized by abnormal semen parameters with no
clear cause of idiopathic infertility [14].

The oxidative stress is an emerging risk factor for male infertility, and antioxidants
are recommended as treatment of choice for idiopathic infertility. Intriguingly, different
antioxidants display synergistic effects, making multi-antioxidants an effective treatment
for male infertility [14]. Treatments for male infertility involve several different compounds.
Most of them act by decreasing the levels of ROS and thus improving sperm motility [15].

In this regard, myo-inositol is an important natural compound whose action as an
antioxidant molecule is well documented. The structure of inositols is composed by a
ring made out of six carbons, each with a hydroxyl group substituent. Myo-inositol (MI)
is the most common stereoisomer. Being MI a fundamental element of membranes, it is
involved into osmoregulation and protein phosphorylation. Phosphorylated forms of MI
are second messengers of different pathways. Likewise, in sperm cells MI participates in
transduction mechanisms that control calcium levels in cytoplasm, other than capacitation
and mitochondrial functionality [16].

Recently, the optimal dosages and timing for the administration of D-chiro-inositol
(DCI) was evaluated for different pathologies, including male infertility. Indeed, the evalu-
ation considered the effect of DCI on the expression of steroidogenic enzyme aromatase,
which aromatize androgens to estrogens. Specifically, treatment with DCI inhibits the
expression of the enzyme, leading to testosterone accumulation [17].

2. Dual Role of ROS and Antioxidant System in Male Fertility

Oxidative stress is an important cause of male infertility due to detrimental changes
during spermatogenesis, epididymal maturation, and sperm capacitation, that can lead to
infertility [18].

Spermatozoa are produced in the testes during the hormone-regulated process of
spermatogenesis. The crucial step to achieve fertilization capacity, motility and complete
maturation occurs into epididymis [18,19]. During this phase, spermatozoa are physiolog-
ically exposed to ROS that are also involved into physiological functions such as sperm
capacitation and acrosome reaction. These are necessary for efficient fertilization and
require high levels of energy provided by metabolic pathways as glycolysis or oxidative
phosphorylation (OXPHOS). Capacitation is a cascade of different cellular reactions that
enables spermatozoa to bind the zona pellucida of oocyte. This induces the acrosome
reaction, a release of proteolytic enzymes [18].

Another feature to consider is that the sperm membranes are made up of a high
amount of polyunsaturated fatty acids (PUFA), which guarantee the fluidity necessary
for fertilization. At the same time, this high amount of PUFA represents a risk for the
spermatozoa, being PUFA vulnerable to lipid peroxidation (LPO) [19]. The oxidative
damage that can result is associated with the loss of membrane fluidity, mitochondrial
dysfunction, alteration of morphology, reduction of vitality and other alterations that lead
to the failure of fertilization [6].

Furthermore, the structure of mature spermatozoa has no capacity to respond to stress
stimuli because the haploid and highly compacted nucleus does not transcribe anymore.
Indeed, during the last stages of spermatogenesis, spermatozoa has eliminated most of
its cytoplasm, which is the major source of antioxidants [20]. So, in spermatozoa, the
cytoplasm content is very small and it is mainly occupied by DNA [19].

While physiological levels of ROS are necessary for the regulation of spermatic func-
tions, an excessive quantity can overwhelm the antioxidant mechanisms responsible for the
protection of spermatozoa. In the seminal fluid there is an antioxidant system dedicated to
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maintaining normal cellular function, composed of enzymatic and non-enzymatic factors,
which interact with each other to ensure optimal protection against ROS. Among these
factors, important roles are covered from the enzymatic triad that includes superoxide
dismutase (SOD), catalase (CT) and glutathione peroxidase (GSHPX) [18,21].

SOD is a metalloenzyme that catalyzes the superoxide anion dismutation reactions
and specifically, plays a leading role in the protection of PUFA, constituents of the plasma
membrane, and in the fragmentation of DNA [22]. It can perform its functions both in
extra and intracellular space, even though the principal enzymatic activity is located to the
cytoplasm of the cells [23].

Catalase (CT) is responsible for the transformation of hydrogen peroxide into molec-
ular oxygen and water. It is characterized by the presence of the heme system, with an
iron atom in the center of the group. Its activity has been found in different organelles:
peroxisomes, mitochondria, endoplasmic reticulum and in the cytosol of different cell
types [23].

Another enzyme that is part of the sperm antioxidant system is glutathione perox-
idase (GSHPX), whose active site is made up of selenocysteine. Generally, this enzyme
is responsible for the reduction of hydrogen peroxide and organic peroxides [23]. There
are three isoforms: cytosolic, mitochondrial and nuclear. Specifically, the mitochondrial
isoform is necessary for sperm quality and motility [22].

When the antioxidant system fails to counteract the excessive increase in ROS, cell
death occurs. Therefore, ROS have a double role: physiologically to complete the matura-
tion of spermatozoa and/or to achieve fertilization, but in excess they are harmful to cell
structures, functions and survival [6].

Genesis of Oxidative Stress, Lipid Peroxidation and DNA Damage

When ROS production passes antioxidant defenses, dangerous effects on spermatozoa
can be summarized as increased LPO and DNA damage and reduction of sperm motility,
morphology and viability which are associated with lower sperm fertility [23]. The main
sources of ROS are attributable to two metabolic pathways that produce energy: glycolysis
and OXPHOS [19].

To produce ATP molecules, the cells rely on mitochondria, which generate ROS during
mitochondrial respiration. [24]. The electron transport chain and oxidative phosphorylation
generate ATP in the mitochondria, transferring electrons from the inner mitochondrial
membrane complexes. Consequently, the process leads to a pumping of protons to the in-
termembrane space. Here, the electron chain may generate a local excess of ROS, especially
by complexes I and III [23].

The production of ROS starts with the formation of a superoxide anion radical (O2
−),

which is physiologically recycled by SOD into hydrogen peroxide (H2O2). Hydrogen
peroxide is very stable molecule and can cross the plasma membrane to contact all the
cellular and extracellular compartments. Despite that hydrogen peroxide is one of the
non-radical species, it can generate highly reactive hydroxyl radicals in the presence of
metal ions. Via the Fenton and Haber–Weiss reactions, an excess of H2O2 leads to the
generation of very aggressive radicals (hydroxyl and alkoxyl, OH and OH−).

Furthermore, the main target of ROS is the peroxidation of unsaturated fatty acids
that produces highly reactive lipid and aldehyde, which in a positive feedback react with
cellular components producing increasing ROS contents [6,25].

Spermatozoa are also particularly susceptible to the damage induced by excessive ROS
because their plasma membranes contain large quantities of PUFA as the decohexaenoic
acid (DHA, where six double bonds between their methylene groups are not conjugated).
PUFA undergo lipid peroxidation by ROS, and this reduces the integrity of the mem-
branes [26].

LPO is divided in three subsequent phases, schematized in Figure 1:

1. Initiation: corresponds to the extraction of hydrogen atoms from the carbon-carbon
double bonds of an unsaturated fatty acid to generate free radicals;
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2. Propagation: corresponds to the formation of lipid radicals followed by their rapid
reaction with oxygen to form peroxyl radicals;

3. Termination: corresponds to the last phase in which the radicals formed react with
other lipids generating different cytotoxic adducts such as aldehydes [25].

Antioxidants 2021, 10, x FOR PEER REVIEW 4 of 21 
 

1. Initiation: corresponds to the extraction of hydrogen atoms from the carbon-carbon 
double bonds of an unsaturated fatty acid to generate free radicals; 

2. Propagation: corresponds to the formation of lipid radicals followed by their rapid 
reaction with oxygen to form peroxyl radicals; 

3. Termination: corresponds to the last phase in which the radicals formed react with 
other lipids generating different cytotoxic adducts such as aldehydes [25]. 

 
Figure 1. Three steps of LPO: initiation, propagation and termination. 

As previously mentioned, excess ROS can damage not only the fluidity of the sperm 
membrane but also the nuclear DNA. Damage related to sperm DNA can result in an 
attack on the nitrogenous bases, a double or single strand break of DNA, and chromatin 
alterations [21]. Previous studies conducted on the oxidative stress of spermatic DNA 
have shown that guanosine and adenosine are among the nucleosides most sensitive to 
oxidation [25]. It is widely known that genetic material is structured in a highly condensed 
and compact manner to increase stability and at the appropriate time DNA is decon-
densed to transfer genetic information [21]. In this regard, the excess of ROS can promote 
decondensation by exposing the DNA to the damage of free radicals (DNA repair can only 
occur during specific stages of spermiogenesis which does not include the condensation 
stage. In fact, after the initial stages the last chance for repair occurs by the human oocyte. 
If the breaks in the filaments are not repaired, the cell undergoes apoptosis and therefore 
programed cell death [25]. 

  

Figure 1. Three steps of LPO: initiation, propagation and termination.

As previously mentioned, excess ROS can damage not only the fluidity of the sperm
membrane but also the nuclear DNA. Damage related to sperm DNA can result in an
attack on the nitrogenous bases, a double or single strand break of DNA, and chromatin
alterations [21]. Previous studies conducted on the oxidative stress of spermatic DNA
have shown that guanosine and adenosine are among the nucleosides most sensitive to
oxidation [25]. It is widely known that genetic material is structured in a highly condensed
and compact manner to increase stability and at the appropriate time DNA is decondensed
to transfer genetic information [21]. In this regard, the excess of ROS can promote decon-
densation by exposing the DNA to the damage of free radicals (DNA repair can only occur
during specific stages of spermiogenesis which does not include the condensation stage.
In fact, after the initial stages the last chance for repair occurs by the human oocyte. If
the breaks in the filaments are not repaired, the cell undergoes apoptosis and therefore
programed cell death [25].

3. Role of Antioxidant in Male Fertility

Researchers observed an enhancement in semen parameters with the use of antiox-
idants, suggesting that such substances minimize the toxic effects of oxidative stress in
spermatozoa.

3.1. Folic Acid

One of these antioxidants is folate, a vitamin from the B group involved in many
biochemical processes and several functions as: DNA synthesis, which is fundamental for
the development of spermatozoa; oxidative pathway, as the synthetic form of the folate,
folic acid, effectively scavenges oxidizing free radicals and inhibits LPO [27–29]. Different
studies evaluated the free radical scavenging properties and possible antioxidant activity
of folic acid. Its constituents, pyrazine and pterin, can easily be reduced by hydrated



Antioxidants 2021, 10, 1283 5 of 20

electron to the corresponding hydroderivatives in the pyrazine ring of the molecule [30,31].
Furthermore, free radical intermediates are suggested in the chemical oxidation of reduced
pterins by air, H2O2 or iron ions [32,33]. Moreover, a folate deficiency is involved into
apoptosis process through p53, as it happens in case of certain types of DNA damage [34].
As a consequence of the involvement of folate in scavenging processes, researchers found
that the concentration of indexes of lipid peroxidation in folate-deficient cells are drastically
increased. This folate deficiency activates a redox-sensitive transcription factor, NF-κB,
which controls an apoptosis mediated by reactive oxygen species [35].

Different studies analyzed the supplementation of folic acid in sub-fertile male. A
study reported an improvement in number and motility of spermatozoa and a decrease in
the number of immature cells after 3 months of supplementation with 15 mg of folic acid
(5-formyl tetrahydrofolate) in 65 men of infertile couples with cell idiopathic syndrome [36].
A recent systematic review and meta-analysis analyzed seven randomized controlled trial
(RCT) involving sub fertile men to evaluate oral folic acid supplementation alone or in
combination with zinc sulfate, evaluating inhibin B, FSH, testosterone and concomitantly
sperm characteristics as concentration, morphology and motility. Folic acid may also im-
prove endocrine parameters by stimulating the Sertoli cells, the main producers of inhibin
B. The serum concentration of inhibin B relates with sperm concentration, testicular volume
and the state of the spermatogenetic epithelium. Intuitively, the concentration of inhibin B
reflects the quality of the Sertoli cell and thus represents a marker of good spermatogenesis
in humans [37,38]. As a consequence, supplementation with folate significantly improve
sperm concentration [39,40].

3.2. L-carnitine

L-carnitine is detectable as free or acetylated forms in epididymal tissue, seminal
plasma and spermatozoa [41,42]. The pivotal role of L-carnitine is to transport acetyl and
acyl groups, which are essential for mitochondrial metabolism, across the mitochondrial
inner membrane. L-carnitine likely accelerates the metabolism of long-chain fatty acids
in mitochondria [42,43]. During this process L-carnitine temporarily binds acetyl groups,
producing L-acetyl-carnitine [42]. These reactions modulate mitochondrial concentrations
of acetyl coenzyme A (CoA), which is implicated in the energetic metabolism, such as
the Krebs cycle, the β-oxidation of organic acids and the degradation of amino acids [43].
L-acetyl-carnitineand L-carnitine participate in the energetic metabolism, which improves
the motility and the maturation of spermatozoa. Furthermore, L-carnitine and L-acetyl-
carnitine participate in protection against oxidative damages. The excess of acetyl-CoA
generated allows the formation of L-acetyl-carnitine as a buffer of acetyl groups [44].
Moreover, L-carnitine shows the activity of free radical scavenger, especially to superoxide
anion. In a study involving rats, L-carnitine taken before doxorubicin, a chemotherapy
drug, partially preserved the acrosome integrity of sperm [45]. In another study on mice,
L-carnitine raises Bcl-2 levels and reduces Bax expression, indicating that this compound
may inhibit apoptosis [46]. Several studies on L-carnitine involved also antimicrobials,
anti-inflammatory drugs or pentoxifylline [47–50]. These studies showed positive results as
an increase in sperm vitality, motility and a reduction in ROS. The treatment also improved
the sperm count when in combination with pentoxifylline [51].

A randomized placebo-controlled study on 100 patients taking L-carnitine showed a
significant improvement in semen quality, specifically in sperm concentration and motil-
ity [52]. The same author conducted another randomized, placebo-controlled study from
the same group involved 60 OAT patients taking either L-carnitine, L-acetyl-carnitine or a
combination. The combined treatment improved sperm motility, especially in groups with
lower levels at baseline [53]. A further study confirmed that L-acetyl-carnitine improved
sperm motility, either alone or in combination with L-carnitine. The combined therapy
significantly improved straight progressive velocity after 3 months [54]. A double-blind
randomized cross-over clinical trial on 30 infertile men evaluated the treatment with L-
carnitine or placebo. After a washout period of 8 weeks, each group received the different
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treatment. This posology significantly improved sperm concentration and progressive
motility [55]. A further study on 20 patients with idiopathic oligoasthenospermia taking
L-acetyl-carnitine significantly increased progressive sperm motility [56]. A multicenter
study on 100 patients receiving 3 g/day of oral L-carnitine for 4 months indicates that
L-carnitine increases spermatozoa motility and the total number of ejaculated spermato-
zoa [57]. A single-blind clinical study on 30 asthenozoospermic patients taking 2 g/day of
L-carnitine for 3 months revealed an improvement of mean sperm motility only in patients
with normal GSHPX levels. Since GSHPX plays pivotal role in male fertility, L-carnitine
treatment might improve sperm motility in the presence of normal mitochondrial func-
tion [58]. Ultimately, a systematic review quantified the efficacy of L-carnitine and/or
L-acetyl-carnitine. Results showed that both carnitines likely improve total sperm motility
and reduce the percentage of sperm with incorrect morphologies [59].

3.3. L-arginine

L-arginine actively participates in the formation of sperm and prevents the peroxi-
dation of membrane lipids [60]. This mechanism seems to involve nitric oxide (NO), a
short-lived free radical, synthesized in many mammalians cell types by a class of NADPH
dependent enzymes called nitric oxide synthases (NOS) [61]. These enzymes catalyze
the conversion of L-arginine to L-citrulline and NO [62]. In vitro studies investigated
the effects of exogenous NO donors on sperm function as motility and viability, with
controversial results. There is evidence that low concentrations of NO increase human
sperm capacitation [63]. In addition, other studies suggest that the stimulation of NO
generation relates with the enhancement of tyrosine phosphorylation in sperm proteins,
which leads to sperm capacitation [64]. Moreover, NO inactivates superoxide anions. When
NO predominates, it inactivates superoxide; when superoxide predominates, it inactivates
NO. Thus, higher concentration of NO is expected to reduce lipid peroxidation by inac-
tivating superoxide. Based on the ability of L-arginine to increase the generation of NO,
it is likely that L-arginine protects spermatozoa against lipid peroxidation. These results
strongly support the proposal that L-arginine improves the quality of spermatozoa via the
biosynthesis of nitric oxide [65].

Unlike the other substances aforementioned, few studies exist on L-arginine and
sperm parameters. In a first in vitro study, human semen with low motility incubated
with L-Arginine showed that the amino-acid enhances sperm motility. This suggests that
L-arginine may be a useful treatment in artificial insemination processes in men with
subnormal spermatozoa motility [66]. In a goat epididymal spermatozoa L-arginine plays
an important role in its physiology and it enhances the metabolism of these cells. It also
decreases the grade of membrane lipid peroxidation. The authors evaluated both natu-
ral peroxidation and that induced by UV radiation. Independently from the nature of
peroxidation, L-arginine reduces the extent of lipid peroxidation in a concentration de-
pendent manner [67]. A further study investigated the clinical efficacy and acceptance
of L-arginine in 40 infertile men. All of these men had a normal number of spermatozoa
(>20 million/mL), but a decreased motility. They received 80 mL of 10% L-arginine HCL
daily per os for 6 months. L-arginine treatment led to an improvement in the motility
of spermatozoa without any side-effects [68]. In another study, 45 patients with vari-
ous degrees of oligospermia and asthenospermia received L-arginine, indomethacin and
kallikrein. Fifteen patients took L-arginine hydrochloride, 15 the anti-inflammatory agent
indomethacin, while 15 others the enzyme kallikrein, all for 3 months. All the three treat-
ments increased sperm count and motility [69]. In a further double-blind, randomized,
placebo-controlled, crossover study, physicians analyzed the sperm quality of 50 subfertile
men after the treatment with 2 tablets containing 3 g L-arginine aspartate or placebo for
1 month. The amino-acid improved sperm volume, concentration, motility, vitality and
morphology without adverse effects [70].
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3.4. N-acetylcystenine

Since the 1960s, N-acetyl-cysteine (NAC), has been widely described as a mucolytic
agent. In particular, the mucolytic action of NAC is due to its ability to break the disulfide
bonds in the high-molecular-weight glycoproteins of mucus, reducing the viscosity. For
this reason, NAC is also considered as an option for the treatment of diseases involv-
ing oxidative stress. In addition, several in vitro studies reported efficient antioxidant
activity of NAC using different oxidants, substrates, and methods to assess the oxida-
tive processes [71–76]. The antioxidant activity of NAC can be related to at least three
different mechanisms:

(1) A direct antioxidant effect toward certain oxidant species including NO2 and hypo-
halous acids (HOX). HOX, due to their high reactivity, are not specific oxidants and
also react with many biologically important molecules, thus inducing a cytotoxic
effect [77].

(2) As NAC acts as a predecessor of cysteine and is part of important step to glutathione
synthesis has an indirect antioxidant effect. Then GSH is engaged in different detoxi-
fication processes as elimination of by-product of lipid peroxidation and hydroperox-
ides [78].

(3) From a chemical point of view, NAC acts as a reducing agent, and therefore exerts its
activity against the disulfide groups by reducing them and generating SH group [79,80].

Further studies involved animal models to evaluate NAC efficacy. For example, a
study evaluated the protective effect of NAC against the toxic effects of orally administered
TiO2 nanoparticles in 50 adult male albino rats. It is known that the TiO2 particles trigger
pathological alterations at the testicular level, which results in an increase in MDA and
a corresponding reduction in GSH. The simultaneous administration of NAC restores
the previously mentioned alterations by exerting a protection against DNA damage [81].
Another study on mice evaluated the protective role of NAC against arsenic trioxide
(As2O3), which is often used in treatment of leukemia. Following NAC administration,
animals showed improved sperm parameters and seminal vesicle weight [82]. The exposure
to another substance, chlorpyrifos (CPF), may cause chronic toxicity in male genital system,
and the treatment with NAC after the exposure significantly improves spermatogonia,
spermatocytes, spermatid cell counts as well as sperm parameters [83].

In vitro studies evaluated the effect of NAC on human spermatozoa using Stattic V, a
non-peptidic inhibitor of STAT3 involved into sperm function [84,85]. Stattic V is associated
to sperm apoptosis and sperm immobilization due to increase of different pathological
outcomes such as acrosome reaction, intracellular Ca2+ concentration, extracellular levels
of reactive oxygen species (ROS), mitochondrial membrane depolarization and decrease
in sperm ATP content [86]. Other in vivo study assessed the effect of 600 mg/day of
NAC for three months to evaluate different parameters as chromatin negative alteration
induced by high oxidative stress and its consequences on sperm quality (motility, count
and morphology). After this treatment all the sperm parameters improved significantly
and in parallel DNA fragmentation and protamine deficiency decreased. Positive results
were also into hormonal profile, lowering FSH and LH levels e consequently increasing
testosterone levels [87].

As the production of reactive oxygen species (ROS) is one of the main events asso-
ciated with varicocele, physician evaluated the efficiency of NAC supplementation in
35 infertile men with varicocele. The researchers evaluated semen parameters, protamine
content, DNA integrity and oxidative stress before varicocelectomy and three months later.
Abnormal semen parameters, protamine deficiency, DNA fragmentation and oxidative
stress were significantly decreased either in the control or in the treatment group compared
to before surgery, and in particular NAC significantly improved protamine deficiency and
DNA fragmentation [88].

A further double-blind, placebo-controlled, randomized study included 468 infertile
men with idiopathic oligo-asthenoteratospermia. After randomization, patients received
either 200 mcg selenium orally daily, 600 mg N-acetylcysteine orally daily, 200 mcg selenium
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plus 600 mg N-acetyl-cysteine orally daily or similar regimen of placebo for 26 weeks. In
response to selenium and N-acetyl-cysteine treatment, serum FSH decreased but serum
testosterone and inhibin B increased. All semen parameters (concentrations, motility and
percent normal morphology) significantly improved with selenium [89].

Another in vivo study included 120 men with idiopathic infertility, divided randomly
into 2 groups: the first treated with NAC (600 mg/day orally) for 3 months and the second
with placebo. After NAC treatment, the serum total antioxidant capacity was greater and
the total peroxide and oxidative stress index were lower in the in respect to the control
group. These beneficial effects resulted from reduced reactive oxygen species in the serum
and reduced viscosity of the semen [90].

Another randomized, blinded clinical trial study on 50 asthenoteratozoospermic
men evaluated nuclear factor erythroid 2-related factor 2 (NRF2). NRF2 activates the
cellular antioxidant response by inducing the transcription of a wide array of genes that
can combat the harmful effects of factors such as oxidative stress. After the treatment
with NAC (600 mg, three times daily), researchers found a significant increase in sperm
concentration and motility compared to pre-treatment status, whereas the percentage of
abnormal morphology and DNA fragmentation was significantly decreased. The authors
also observed a significant improvement in the expression of NRF2 gene and in antioxidant
enzyme levels. They also report significant correlations between NRF2 mRNA expression
level, specific sperm parameters and level of antioxidant enzymes [91].

3.5. Resveratrol

Resveratrol (RSV) is a natural polyphenolic compound, found primarily in grapes
and wine, presenting a considerable number of beneficial effects in a variety of organs and
systems, which are mainly due to its antioxidant activity [92]. RSV inhibits the formation
of ROS via the suppression of pro-oxidant genes and the induction of antioxidant enzymes
including SOD, CAT, and GSHPX [93–97]. RSV also chelates copper and other transition
metals, which are able to generate free radicals and thus may cause lipid peroxidation [98].

RSV exerts a protective action on the testes and epididymis, as it acts as an antioxidant
and a scavenger of electron-donor free radical [99,100]. RSV is a lipophilic molecule that
prevents lipid peroxidation induced by Fenton reaction products and its protective effects
against oxidative damage is likely due to a hydrogen electron donation from its hydroxyl
groups [101–103]. Moreover, RSV inhibits phosphodiesterase enzymes (PDE), and this
action leads to an increase in intracellular cyclic adenosine-monophosphate (cAMP) [104].
Such a mechanism is of particular relevance to mammalian spermatozoa, as the majority of
the processes involved in their capacitation are modulated by a cAMP-dependent signaling
cascade [105].

Another mechanism of action could be related to AMPK pathway. AMPK activa-
tion has been reported to reduce ROS levels in different animal models and pathology
and also upon human and chicken sperm cryopreservation. Protective features of RSV
on cryopreservation-induced oxidative stress may be mediated through activation of
AMPK [106].

Several studies evaluated the capacity of RSV to protect from DNA damage in cry-
opreservation of human semen. The addition of resveratrol before the cryopreservation
process avoided oxidative damages to the sperm, in both fertile and infertile men [107].

In a study the protective effect of resveratrol was evaluated against polyvinyl chloride
(PVC), used in the plastic industry, to evaluate its toxicity on male fertility measuring
oxidative status and specifically evaluating steroidogenesis, spermatogenesis, in an animal
preclinical model with adult male Wistar Rats. RSV is transported into the mitochondria by
StAR at the hydrophobic tunnel and can reduce oxidative stress induced by PVC protecting
mitochondria from oxidative damage and consequently preserving the physiology of
Leydig cells for testosterone biosynthesis [108]. Additionally, acrylamide was tested and
administered to male 405 mice for three or six months. The use of RSV, as anticipated in
other results also reported above, improves the damage to the DNA level. However, it
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is necessary to underline that the treatment for six months also brought negative results
such as alteration of the morphology, probably caused by a premature induction of the
capacitation process [109].

In another preclinical study the capacity of RSV was assessed to contrast the ferrous
iron/ascorbate damage in sperm mice. The treatment with RSV provided before ferrous
iron/ascorbate treatment showed a significant increase of MMP parallel to significant
decrease of ROS and consequently positive results to sperm parameters such as viability
and motility. However, no changes in SOD activity were observed. To evaluate the effect of
valproic acid (VPA), a drug widely use for the treatment of epilepsy in male reproductive
function, Wistar rats were treated with VPA by gavage for 28 days in co-administration
of RSV. RSV was shown to minimize the damage induced by VPA and protect the male
reproductive system. The results reported a strengthening of antioxidant capacity both
in testes and in the epididymides of treated rats that were previous treated with long
VPA treatment [110]. Another pathological situation that can induce lipid peroxidation
and therefore increase oxidative stress and damage related to fertility is type 1 diabetes
mellitus (DM1). RSV has been shown to be useful in improving the parameters of fertility
altered by this pathology: lipid peroxidation, fragmentation of spermatic DNA, alteration
of chromatin and mitochondrial mass [111].

4. Role of Inositols in Male Fertility

Inositol exists as nine stereoisomers, resulting from epimerization of the six OH-
groups (cis-, epi-, allo-, myo-, neo-, scyllo-, L-chiro-, D-chiro-, and muco-inositol). The
most diffused form in nature is cis-1,2,3,5-trans-4,6-cyclohexanehexol, or myo-inositol (MI),
followed by D-chiro-inositol (DCI) [112–114]. The conversion of MI into DCI is accom-
plished by an enzyme with epimerase activity, which is responsible for their different tissue
distribution. In fact, every organ or tissue has a specific ratio of MI:DCI, fundamental for
the correct inositol-related functions. In animals, inositol is both synthesized and taken
with the diet through grains, wheat germ, citrus fruits and meats, primarily as inositol-
phosphates [115–118]. The absorption of free inositol in the intestine is achieved with an
active transporter of sodium/myo-inositol transporter (SMIT) family, temperature and pH
dependent. SMIT is an active symporter which allows uptake and accumulation, depen-
dently on both concentration of substrates and energy [119,120]. Furthermore, intestinal
absorption of a high amount of myo-inositol is considered safe, as highlighted by several
studies that proved the absence of side effects even after ingesting large quantities [118].
In addition, in vitro and in vivo results support an increased MI intestinal absorption
when combined with alpha-lactalbumin administration [121]. Once absorbed, inositol-
phosphates are metabolized into un-phosphate MI by inositol-phosphate-phosphatase 1
(MINPP1) and then transported to the cytosol of cells. Specifically, an integral membrane
protein of the SMIT family encoded by the SLC5A3 gene and controlled by osmoregulatory
elements transports one molecule of MI and two of Na+ [122–124]. In recent years, the
SLC5A3 cellular transporter was found to be expressed in several tissues. Among others,
testis and epididymis displayed (high/medium/low) expression, while Sertoli cells display
elevated expression, as the hypertonic conditions increase MI uptake [119,120]. Therefore,
here the concentration of MI is 28 times higher compared to the plasma. Moreover, the
presence of the blood-testicular barrier prevents the free passage of MI from the blood to the
testicle and vice-versa. Owing to this mechanical barrier, MI remains strongly concentrated
into seminiferous tubules [120]. In spermatozoa, MI plays a key role as an intracellular
second messenger through the regulation of Ca2+ levels. It also intervenes in the regulation
of sperm motility, capacitation and the acrosome reaction. The activation of intracellular
transmission systems necessarily leads to an increase in cytoplasmic and mitochondrial
Ca2+ level. High Ca2+ levels stimulate the oxidative metabolism, inducing the production
of ATP depending on the energy requirements [124]. This system needs a good functional
state of the mitochondria and consequently of high mitochondrial membrane potential
(MMP). Recently, researchers proved that high MMP correlates to higher fertilizing capacity
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of spermatozoa and to higher spermatic motility. Several studies highlighted an interesting
role of MI, which proved able to increase MMP and sperm motility [125]. Finally, regulating
intracellular levels of Ca2+, MI is able to improve the main characteristics related to the
“state of health” of spermatozoa, increasing their fertilizing capacities [126]. The acrosome
reaction is a prerequisite for fertilization in mammals. It consists of a fusion between the
plasma membrane and the outer acrosome membrane above the anterior portion of the
sperm head. It takes place on the surface of the zona pellucida, after specific binding with
a specific glycoprotein, the ZP3 [127]. Once the acrosome reaction is completed, the sperm
cell is able to penetrate the zona pellucida. A premature acrosome reaction leads to a loss
of the recognition sites of the zona pellucida on the spermatozoa surface and thus it affects
gamete fusion [128]. In contrast, the inability to achieve activation, which is responsible for
initiation of the acrosome reaction, prevents the oocyte penetration.

Moreover, in IP3 form, MI is involved in the activation of Akt, which is a fundamental
protein involved in maturation of spermatozoa. In fact, Akt regulates a wide range of
proteins by phosphorylation [129]. Akt phosphorylating some proteins as Bcl-2 (at the
level of the residue Ser70, S473, T308) negatively regulates the apoptosis process. Indeed,
phosphorylation determines the passage from the mitochondria to the cytosol and mak-
ing it a marker of cell survival [130,131]. The MI in the IP3 form initiates a cascade of
reactions which always lead to the phosphorylation of tyrosine residues and reflect the
state of capacitation that makes male gamete available to fusion with the oocyte (acrosome
reaction) [132–134].

MI also represents the second messenger of the gonadotropin Follicle-stimulating
hormone (FSH). At the testicular level, FSH plays a key role in the control of Sertoli cell
number and function, promoting the differentiation of these cells essential to sustain a
normal spermatogenesis. MI, acting as second messenger, regulates the activities of FSH,
and thus may result useful to counteract alterations of the hormone levels. In addition,
MI administration lowers LH concentration. High FSH and LH serum concentrations
relate with low sperm concentration [135–139]. On the other hand, MI increases the levels
of Inhibin B, a glycoprotein secreted from the testis as a product of Sertoli cells that act
as negative feedback to regulate FSH secretion. In men, either with normal or altered
spermatogenesis, a strong inverse correlation is reported between inhibin B and FSH
levels [140,141].

4.1. MI: In Vitro Studies

One of the first studies evaluating the impact of MI treatment on sperm samples from
OAT patients showed that 2 mg/mL MI determine the absence of amorphous material.
This material is responsible for the high viscosity of the seminal fluid and consequently for
the reduction of sperm motility. Furthermore, the mitochondria of the treated cells showed
a morphology similar to the physiological, free from damage to the mitochondrial crests, in
contrast to the untreated ones, which display altered morphology [142]. To investigate the
effects of MI on mitochondrial function, researchers incubated samples from OAT patients
with 2 mg/mL and then evaluated: MMP, phosphatidylserine externalization (PS) and
chromatin compactness. At the end of the treatment, although there were no appreciable
results on PS and chromatin compactness, the number of spermatozoa with high MMP
had increased, otherwise the number of spermatozoa with low MMP had decreased [143].
Another similar in vitro study showed the same outcomes of higher sperm numbers with
high MMP and higher progressive motility in both normospermic and OAT patients.
Furthermore, motility improvement in the first group was associated with a significant
increase in the percentage of spermatozoa with high MPP [144]. As studies showed that
sperm motility is directly associated to fertilization rate, even in IVF procedures, different
studies evaluated the impact of MI in IVF procedures [145,146]. For this reason, MI use was
shown to improve the culture conditions necessary for a successful ICSI technique. This led
to improvement in outcomes as the fertilization rate, the percentage of grade A embryos
on day 3 and progressive motility in normospermic and OAT patients undergoing in vitro
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fertilization (IVF) [147,148]. In sperm samples from patients with hyper viscosity, MI also
improved progressive motility compared to the control group [149]. As the thawing process
of sperm samples leads to a reduction in motility, sperm quality and fertilization rate, the
efficacy of MI was evaluated on both fresh and thawed sperm samples. The results obtained
showed an improvement in motility in both samples [150]. Similar results were obtained
when evaluating the use of MI in culture media for cryopreservation processes. Again,
the results showed a significant increase in the cryo-survival rate (CSR), defined as the
percentage of total motility after thawing, divided by the percentage of total pre-freezing
motility and multiplied by 100 [151,152]. Hence, in vitro supplementation of MI has been
shown to induce a significant increase in sperm motility and oxygen consumption, the main
index of the efficiency of oxidative phosphorylation and ATP production. Previous studies
provided only indirect results on the antioxidant power of MI. Therefore, researchers
decided to evaluate 8-OHdG, one of the first products of oxidative damage to DNA. The
samples treated with MI displayed reduced levels of 8-OHdG [153]. Therefore, MI can
improve the sperm parameters related to the quality and in vitro fertilization process. In
fact, the antioxidant properties of MI, although not yet fully known, can contribute to
the improvement of sperm parameters to optimize the results of assisted reproduction
techniques. Data from in vitro studies are collected into Table 1.

Table 1. Myo-inositol: in vitro studies.

Author and Publication Year Samples Treatments Results

Colone et al., 2010 OAT patients

Inositol 2 mg/mL and then
submitted to scansion electron

microscopy (SEM) and to
transmission electron

microscopy (TEM)

Absence of amorphous material
and reduction of mitochondrial

damage to the crests

Condorelli et al., 2011 5 normozoospermic and 7
OAT patients

Incubated in-vitro with
2 mg/mL of myo-inositol or

placebo (control) for 2 h

Increased the number of
spermatozoa with high MMP
and decreased the number of
those with low MMP in OAT

patients

Condorelli et al., 2012 20 normozoospermic and
20 OAT patients

Incubated in vitro with
2 mg/mL of myo-inositol or

phosphate-buffered saline as a
control for 2 h

Increased sperm motility and
the number of spermatozoa
after swim-up and in OAT

patients, the improvement was
associated with sperm

mitochondrial function.

Rubino et al., 2015
Myo-inositol group (n =

262 oocytes), placebo
group (n = 238 oocytes)

Washed and subjected to
swim-up with

2 mg/mL of myo-inositol or
placebo-supplemented medium

for 30–60 min. Spermatozoa
recovered used for ICSI.

Improved spermatozoa motility
in swim-up selected samples,
fertilization rate (%), grade A

embryos on day 3.

Artini et al., 2017 31 normospermic e 32
OAT patients

2 mg/mL MI and incubated
30 min at 37 ◦C

Improved total motile sperm
concentration, progressive

motile sperm concentration.

Scarselli et al., 2016 30 patients with grade II
and III varicocele

Semen centrifuged at
1800 rpm/10 min, resuspended,
and incubated with 2 mg/mL
myo-inositol and 133 mg/mL

myo-inositol in 9 mg/mL
sodium chloride) for 15 min at

37 ◦C

Patients suffering from
varicocele response in >60% of

the samples
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Table 1. Cont.

Author and Publication Year Samples Treatments Results

Palmieri et al., 2017

46 normospermic,
19 oligospermic,

15 asthenospermic
patients

Semen supplemented with
15 µL/mL of myo-inositol
incubated 15 min at 37 ◦C

Improved progressive and total
motility

Mohammadi et al., 2019 40 normospermic patients

Semen divided into two aliquots
ad cryopreserved: one with
2 mg/mL myo-inositol; one

without myo-inositol (control)

Improved progressive and total
motility, normal sperm

morphology, reactive oxygen
species, malondialdehyde, total

antioxidant assay and DNA
fragmentation

Saleh et al., 2018 41 samples: 15 normal and
26 abnormal

Semen samples supplemented
with 1 mg myo-inositol to

cryoprotectant

Total and progressive motility,
cryo-Survival Rate

Pallotti et al., 2019
9 normokinetic semen

samples with nonlinear
progressive motility

Incubation with a solution of
myo-inositol

Increased linear progressive
motility, significant reduction in
nonlinear progressive motility,
increased curvilinear velocity

Governini et al., 2020

56 Caucasian males with
possible causes of male

infertility such as
varicocele, cryptorchidism,

endocrine disorders or
systemic diseases

The aliquots were incubated
with standard medium

(untreated sample) or medium
supplemented with

myo-inositol at 20 mg/mL
(treated sample) for 20 min.

Increase in sperm motility and
in oxygen consumption, the

main index of oxidative
phosphorylation efficiency and
ATP production, both in basal

and in in vitro capacitated
samples.

4.2. MI: In Vivo Studies

Several studies evaluated the improvements in sperm and metabolic parameters re-
lated to male infertility following dietary supplement based on MI. A study carried out on
patients with idiopathic infertility demonstrated that MI can be useful for improving sperm
parameters such as percentage of spermatozoa with acrosome reaction, spermatozoa con-
centration, total count and progressive motility, when compared to placebo. Furthermore,
the same study evaluated hormonal parameters and highlighted a reduction in follicle-
stimulating hormone and luteinizing hormone and a concomitant increase in inhibin B
concentrations [154]. In another study, samples from healthy and oligoasthenospermic
(OA) patients were analyzed by light microscopy to evaluate semen volume, sperm number
and motility before and after the density gradient separation method. The study considered
these parameters before and after the administration of 4000 mg/day of MI and 400 mg of
folic acid for 2 months. After treatment there was a significant increase in sperm concen-
tration in the OA patient group and a significant increase in sperm count in the healthy
patient group [155]. Furthermore, such supplementation highlighted promising results in
asthenospermic patients with metabolic syndrome, showing significant improvements in
sperm (concentration, motility and morphology), hormonal (testosterone, E2, LH, SHBG)
and metabolic (HOMA index) parameters [156]. In addition, 85.32% of asthenospermic pa-
tients achieved significant improvement in sperm motility. In particular, 34.86% of patients
restored normal sperm motility while only 12.84% showed no beneficial effect [157]. For
the first time, researchers investigated the effect of MI on cholesterol efflux, a hallmark of
capacitation. They underlined an increase in cholesterol efflux in the spermatozoa of pa-
tients with OAT treated either in vitro or in vivo with a blend of nutraceuticals, containing
mainly MI. The same study also found an increase in the activity of G6PDH, associated
with the increase in glucose metabolism through pentose phosphate pathway (PPP), both
in normal patients and in patients with OAT [158]. Data from in vivo studies are collected
into Table 2.
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Table 2. Myo-inositol: in vivo studies.

Author Study Design and Patients Treatments Results

Calogero et al., 2015
Double-blind, randomized,

place-bo-controlled; 194 men
with idiopathic infertility

Group 1 (n = 98) received 2 g
of myo-inositol and 200 mcg

of folic acid twice daily. Group
2 (n = 96) received one placebo
sachet twice day for 3 months

MI significantly increased the
percentage of acrosome-reacted

spermatozoa, sperm
concentration, and total count and
progressive motility. In addition,

reduced serum luteinizing
hormone, follicle-stimulating

hormone, and in-creased inhibin
B concentration

Gulino et al., 2013

Prospective study; 62 patients
divided into three different

groups: healthy fertile
patients (Group A); patients
with oligoasthenospermia
(OA)–(Group B)–control

group (CTR).

4000 mg/die of MI and 400µg
of folic acid for 2 months

Increase of basal and after
density-gradient separation

method spermatozoa
concentration in Group B, and a

significant increase of
spermatozoa count after

density-gradient separation
method in Group A

Montanino Oliva et al.,
2016

Prospective longitudinal
study; 45 asthenospermic

males

The patients were treated by a
dietary supplement

administered twice a day
containing 1 g MI, 30 mg

L-carnitine, L-arginine and
vit-amin E, 55µg selenium,

and 200µg folic acid

Improved spermatic, hormonal
and metabolic parameters:

HOMA index, SHBG, E2, LH, free
and total testosterone, sperm
concentration, motility and

normal morphology

Dinkova et al. et al., 2017
Prospective longitudinal
study; 109 patients with

astheno-zoospermia

1 g myo-inositol, 30 mg of
L-carnitine, L-arginine, and

vitamin E, 55 mcg of selenium,
and 200 mcg of folic acid
twice a day for 3 months

A significant improvement in
spermmotility was reported in

85.32% of the patients

4.3. DCI in Male Fertility

Profound differences between the physiological functions of MI and DCI exists, and
physicians should pay attention on their use in assisted reproductive treatments. Indeed, it
is reported that the 40:1 ratio supplementation of MI and DCI in the treatment of PCOS is
one of the most effective [159,160].

Particularly, several studies indicate that the inositol plays a crucial role in oocyte and
spermatozoa development. An imbalance between MI and DCI may lead to a reduction in
insulin and FSH signaling, as observed in PCOS patients [161]. In this regard, administra-
tion of MI, alone or in combination with DCI (in the physiological plasma ratio of 40:1),
could be an adjuvant factor in improving ART outcomes [162].

Regards to mitochondrial function, and its membrane potential, MI showed different
positive results on correlated parameters as motility, thanks to insulin-sensitizing, antiox-
idant, prokinetic, and hormonal properties. Although the DCI showed positive results
on sperm mitochondrial function in vitro, MI also plays a crucial role in the development
of oocytes, spermatozoa and the embryo. In fact, for this reason MI is used in medically
assisted reproduction techniques, both for the male and female factor [129,159].

On the other hand, as MI, DCI acts as insulin sensitizer and is incorporated within
the inositol-phosphoglycans (IPG) as second messengers of insulin. In particular, DCI
mediates glycogen synthesis and stimulates androgen production at the ovarian level [163].
In fact, DCI concentrations are higher in the tissues responsible for glycogen storage
(liver, muscle, fat) and lower in the tissues with high glucose utilization (brain, heart,
ovaries) [164]. Further studies showed that DCI reduces the gene expression of aromatase
in a dose-dependent manner [165]. Aromatase is an enzyme present in different tissues
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that synthetizes estrogens from androgens, and modulating its gene expression regulates
free and total testosterone levels [166]. In this context, DCI can be widely used in those
pathologies characterized by an increase in estrogen levels or a lowering of androgen
levels, such as in several contexts of male infertility. In particular, DCI can be useful in
clinical pictures related to alterations of sperm parameters associated with low testosterone
levels [167].

Several aromatase inhibitors (AIs) were studied in male fertility, as they can be useful
to rebalance T/E2 ratio, restoring also the hypothalamic-pituitary-testis axis and thus
the resulting spermatic alterations. In case of no alteration of hormonal component, the
administration of AIs generally leads to fewer results on sperm alterations. An excess of
testosterone at testicular level can also have harmful effects on spermatogenesis and an
excessive reduction in E2 levels could excessively block the negative feedback at the level of
hypothalamic-pituitary-testis [168,169]. In addition, in the last years, the role of a discrete
amount of E2 at testicular level emerged as a component strictly required for development
of germ cells [170,171]. In this regard, a recent study highlighted that DCI could be a suit-
able treatment in hypogonadal hypogonadotropic patients, who display lowered androgen
levels due to the ageing. In fact, inhibiting aromatase expression and naturally restoring
physiological androgen levels revert the pre-pathological hypogonadism condition. On the
other hand, such as aromatase inhibitors, DCI must be avoided in primary hypogonadal
males, where it could worsen the already overburdened gonadotropin signaling.

5. Conclusions

Even though antioxidants exert protective roles against ROS-induced damage, they
do not always represent the most suitable solution in case of ROS-independent infertility.
Nevertheless, antioxidant could represent an adjuvant treatment in such cases, avoiding
further damage caused by ROS. Inositols play also other roles than those in the antioxidative
pathways. Thus, independently from their antioxidant properties, the activities of these
molecules have been widely investigated and described. The beneficial effects of inositols
on sperm motility and mitochondrial function can be due to their many actions: other
than antioxidant properties, insulin-sensitizing properties, prokinetic activity and hormonal
regulatory effects. MI plays a pivotal role in reproductive physiology, positively influencing
the development of oocytes, spermatozoa, and embryos. On the contrary, DCI acts to a lesser
extent, having smaller effects on spermatozoa than MI. The last studies showed that DCI
could be an interesting treatment thanks to its modulation upon aromatase expression, and
consequently upon testosterone levels. As already demonstrated in a clinical trial, this may be
particularly useful in conditions of hormonal disbalance associated with spermatic alterations.
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