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Abstract

Defects of the craniofacial skeleton arise as a direct result of trauma, diseases, oncological 

resection, or congenital anomalies. Current treatment options are limited, highlighting the 

importance for developing new strategies to restore form, function, and aesthetics of missing or 

damaged bone in the face and the cranium. For optimal reconstruction, the goal is to replace 

“like with like.” With the inherent challenges of existing options, there is a clear need to 

develop alternative strategies to reconstruct the craniofacial skeleton. The success of mesenchymal 

stem cell-based approaches has been hampered by high heterogeneity of transplanted cell 

populations with inconsistent preclinical and clinical trial outcomes. Here, we discuss the novel 

characterization and isolation of mouse skeletal stem cell (SSC) populations and their response to 

injury, systemic disease, and how their re-activation in vivo can contribute to tissue regeneration. 

These studies led to the characterization of human SSCs which are able to self-renew, give rise 

to increasingly fate restricted progenitors, and differentiate into bone, cartilage, and bone marrow 

stroma, all on the clonal level in vivo without prior in vitro culture. SSCs hold great potential for 

implementation in craniofacial bone tissue engineering and regenerative medicine. As we begin 

to better understand the diversity and the nature of skeletal stem and progenitor cells, there is 

a tangible future whereby a subset of human adult SSCs can be readily purified from bone or 

activated in situ with broad potential applications in craniofacial tissue engineering.
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INTRODUCTION

Defects of the craniofacial skeleton may arise following trauma, diseases, oncological 

resection, or may be secondary to congenital anomalies. The craniofacial skeleton is 

an anatomically complex region with critical functional and cosmetic importance and 

thus, craniofacial reconstruction proves challenging. Calvarial defects impact protection of 

the central nervous system, meninges and brain whereas orbital defects can impact eye 

protection, support and protection. Maxillary and mandibular defects can impact the basic 

functions of speech, swallow and breathing in addition to cosmesis. Current treatment 

options are limited which highlights the importance of developing novel strategies to restore 

form, function, and aesthetics of missing or damaged bone in the face and the cranium. 

Reconstructive surgeons perform in excess of 50,000 craniofacial procedures annually to 

treat both congenital anomalies and head and neck defects (1), and the global bone graft and 

substitutes market size is expected to exceed $4 billion by 2026 (2).

To achieve optimal reconstruction, the goal is to replace “like with like” (3). Autologous 

tissue is preferred for reconstruction, but this approach can lead to significant donor site 

morbidity, may still result in resorption, and has limited availability (4, 5). As there is a finite 

supply of bone, alternative strategies have been pursued including cadaveric allografts tissue 

and alloplastic bone substitutes. Allografts are fraught with unpredictable rates of bone 

resorption and when processed to reduce immunogenicity, osteo-inductive factors are also 

deactivated. Alloplastic bone substitutes are complicated by infection, risk of extrusion, and 

an inability to grow with a developing child (6). With the inherent challenges of established 

options, there is a definitive need to develop alternative strategies to reconstruct craniofacial 

tissues.

Tissue engineering supports tissue regenerative processes by implementing cells, scaffolds, 

growth factors, gene manipulation, or combinations of these elements to reconstruct defects 

(5, 7, 8). Thus, by engineering and delivering tissues with or without cells capable of 

replacing damaged bone, regenerative medicine offers the potential to treat critical-sized 

bone defects which pose challenging clinical dilemmas. In the field of regenerative tissue 

engineering, there are multiple issues to consider in the creation of a functional, implantable 

replacement tissue. Importantly, there must exist an easily accessible, readily abundant cell 

source with the capacity to express the phenotype of the desired tissue and a biocompatible 

scaffold to deliver the cells to the skeletal defect (5).

Stem cells capable of skeletal regeneration are ideal cells for tissue engineering. Stem 

cells display tissue-specific differentiation patterns and have an ability to proliferate in 

response to certain physiological cues, critical to tissue regeneration (9). Adult stem cells 

have been isolated from multiple tissues including the central nervous system (10), skeletal 

muscle (11), adipose tissue (12), and from bone (13–17). Bones undergo myriad biologically 

important steps throughout their life cycle, such as morphogenesis and development, 
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explosive growth and functional maturation, maintenance and repair of proper architecture 

and function, thus supporting the existence of adult skeletal stem cells (18, 19). There is a 

constant demand for differentiated cells at each sequential step so that bones can remodel, 

grow and become stronger, while maintaining their strength and function throughout life 

(19).

In this review, we will focus on the novel characterization of SSC populations with potential 

for implementation in craniofacial bone tissue engineering and regenerative medicine and 

describe their response to injury, systemic disease, and how their re-activation can contribute 

to tissue regeneration.

MESENCHYMAL STEM CELLS

The most frequently studied cells for potential tissue regeneration are the mesenchymal 

stromal/stem cells (MSCs) which are reported to have the capacity to generate bone, 

cartilage, and fat, among other types of stromal cells (20). For decades, we and myriad 

others have investigated MSCs as an abundant pluripotent source for potential use in 

tissue engineering and regenerative medicine (21–23). MSCs have been reportedly isolated 

from the heart, liver, synovium, placenta, pancreas, cord blood (24), however the cells 

which encompass MSCs are heterogenous and their ability to differentiate into osteogenic 

progenitors occurs is not uniform (25). While preclinical trials using MSCs continue, a 

number of questions related to MSC characterization and their implementation are largely 

unresolved (18, 26). Although the mechanisms underlying the therapeutic effects of MSCs 

are not well-characterized in disease models, the search for consistent cell-surface markers 

to identify and harvest source-specific MSCs is paramount to improve patient outcomes. The 

success of MSC-based approaches has been hindered by heterogeneity of the transplanted 

cell populations which is mainly attributable to the lack of consistency in tissue source, but 

may also be a result of discrepancies in approaches to detection of a pure cellular population 

and isolation of prospective stem cells (18, 27).

SKELETAL STEM CELL CHARACTERIZATION

The terms skeletal stem cells (SSCs) and MSCs are not equivalent and thus, should 

not be used interchangeably, as they report different skeletogenic populations (18). SSCs 

are distinguished by the local restriction of cells to bone with the ability to form an 

environment for hematopoiesis, the ability to self-renew on the clonal level, and the ability 

to demonstrate multipotency under in vivo conditions. Pioneering studies led by Friedenstein 

et al. established the presence of colony forming skeletogenic cells in the 1980’s (28). In 

the past decade, significant progress has been made in the characterization of cells capable 

of giving rise to bone, cartilage, and bone marrow stroma, hereafter referred to as skeletal 

stem cells (15, 16, 29–32). In 2015, following a combination of rigorous single cell analyses 

and lineage tracing technologies, our laboratory characterized the mouse skeletal stem cell 

(mSSC), a single cell capable of giving rise to bone, cartilage, and bone marrow stroma 

in mice (13). The mSSC immunophenotype is characterized by differential expression of 

AlphaV, Thy, 6C3, CD 15, and CD 200 (13). These cells are distinct from the MSC in 

that they do not give rise to adipocytes, fibroblasts, hematopoietic, or muscle cells (33). 
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Furthermore, mSSCs defined a lineage tree of skeletal stem and increasingly fate-restricted 

progeny, which had differential ability to generate bone, cartilage, and bone marrow stroma 

(Figure 1). In addition, pathways were defined that play a role in directing the differentiation 

of skeletal stem and progenitor cells. Specifically, to address a large unmet clinical need, 

osteogenesis and chondrogenesis could be directed from mSSCs through manipulation of 

local niche signaling (13).

Building upon these findings, Worthley et al. demonstrated that the expression of a bone 

morphogenetic protein (BMP) antagonist, Gremlin 1, defines a specific population of SSCs 

in the mouse bone marrow (15). The so-called “osteochondroreticular” (OCR) cells self-

renew, generate osteoblasts, chondrocytes, and bone marrow stromal cells, but do not give 

rise to adipocytes. These OCR stem cells are concentrated within the metaphysis of long 

bones and are implicated in bone development, remodeling, and fracture repair. OCR cells 

show great theoretical promise for skeletal tissue engineering, as these cells have been 

harvested from a donor animal, expanded in vitro, and transplanted both directly and serially 

into the femora of fractured recipient animals, resulting in osteochondral differentiation in 

the callus (15). Mizuhashi et al. also characterized a population of PTHrP+ chondrocytes 

in mice that possessed stem cell characteristics with overlapping immunophenotype to the 

mSSC as characterized by Chan et al. (13) and Mizuhashi et al. (35). On comparison of 

the mSSC to the mouse hematopoietic stem cell (HSC) tree, it is reasonable to deduce 

that mSSCs defined by varying surface markers and lineage tracing techniques reported by 

different groups may indeed overlap and/or fit together in a more complex lineage tree, 

similar to that of the HSC. As many studies confirmed that specific adult SSCs exist in the 

mouse, and given the conservation of skeletal genes in mice and humans (36), the search for 

human SSCs continued.

Early efforts to isolate non-HSCs in human bone relied on the ability of bone marrow 

cells to adhere to plastic plates. However, these cultures of MSCs contained heterogenous 

mixtures of cells with indeterminate potential and inconsistent contribution to many 

overlapping lineages such as bone, cartilage, fat, muscle, fibroblast, endothelial cells, and 

stroma. Likely, these cells represent a population comprised of multiple distinct stem cells 

rather than a uniform purified skeletal stem cell (14). Identification of several specific cell-

surface proteins led to enrichment for skeletogenic activity in MSCs and ultimately resulted 

in the identification of osteogenic, chondrogenic, and adipogenic lineages (14, 37). Building 

upon these findings and following characterization of the mSSC, significant progress was 

made to identify a homogenous human SSC population and its lineally related downstream 

progenitors. Using a set of mSSC-specific genes and their human orthologs in combination 

with rigorous single cell analyses, FACS isolation, and in vivo differentiation assays, Chan et 

al. were enabled to define an immunophenotype that characterized the human skeletal stem 

and increasingly fate-restricted progenitor cells characterized by differential expression of 

PDPN, CD146, CD 73, and CD164 (Figure 2) (14).

SKELETAL STEM AND PROGENITOR CELL RESPONSE TO INJURY

Stem and progenitor cells mediate homeostasis and regeneration in postnatal tissue and 

alterations in tissue microenvironment are known to influence stem cell behavior. A 
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true SSC should respond to injury, and previous studies report that bone injury induces 

progenitor expansion (32, 38). Skeletal fracture may thus activate a distinct subset of 

skeletal stem and progenitor cells in mice that mediate tissue regeneration and repair 

(39). Worthley et al. have described OCR SSCs to be involved in fracture repair (15). 

However, as endochondral bone formation has been found to occur through the bone 

cartilage and stromal progenitor (BCSP), which is derived from the SSC (13), these 

cells may also participate in long bone fracture healing. Using a model of transverse, 

mid-diaphyseal femoral fractures with intramedullary fixation, progenitor expansion was 

observed to precede ossified callus formation at multiple time points (39).

Murphy et al. also identified that mSSCs could be re-activated in the setting of a 

microfracture bone injury (40). Marecic et al. further identified injury induced phenotypic 

changes in the BCSP progenitor cells. Notably, the progenitor cells harvested from 

fracture calluses had significantly increased plating efficiency, as determined by colony 

number, significantly greater viability, and markedly reduced apoptotic activity. In addition, 

fracture-induced BCSPs had greater osteogenic potential when assayed both in vitro and 

in vivo in a heterotopic kidney capsule transplantation model. Using transcriptional and 

translational analyses, a highly potent regenerative cell type, the fracture-BCSP (f-BCSP), 

was thus identified that recapitulated many gene expression patterns involved in perinatal 

skeletogenesis (39).

Building on this work in human bone, hSSCs have also been found to be amplified in 

soft callus fracture specimens when compared to their frequency in uninjured skeletal 

tissues that were obtained from patients undergoing bone graft procedures (14). To further 

examine the activation of hSSC in response to injury, our group has established a new 

human bone xenograft mouse model to evaluate the effects of skeletal injury in human limb 

bones in a more controlled setting. Following transplantation and engraftment of human 

fetal phalangeal grafts (obtained from 18-weeks-old fetuses) into the flanks of 5-days old 

immunodeficient mice, uni-cortical fractures were induced on the xenografted phalangeal 

bones. This resulted in significant localized expansion of hSSCs relative to unfractured areas 

in the same bone. Therefore, consistent fracture induced expansion of both mSSC and hSSC 

in response to injury has been observed (14, 39), which has also been replicated in other 

SSC populations (15, 41).

SKELETAL STEM AND PROGENITOR CELL NICHE RESPONSE TO 

SYSTEMIC CONDITIONS

Schofield first proposed the concept of a stem cell “niche” where stem cells are supported 

by a specialized micro-environment within tissues which promote their long-term stem 

cell activity (15, 42). Niches are able to balance the production of stem and progenitor 

cells to maintain tissue equilibrium (43) and niche activity is carefully regulated to ensure 

appropriate stem cell function (42, 44, 45). Tissue injury demonstrates the dynamic 

relationship between stem cells and their niches. A decline in niche function and the 

inability to guide local self-renewal contribute to reduced tissue homeostasis and repair 
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in a number of systems (15, 46). In addition, changes in circulating systemic factors have 

also led to decreased stem cell activity (42, 47–52).

It has been proposed that interactions between SSCs and their downstream progeny act 

to maintain an appropriate pool of SSCs through paracrine signaling (53). In a mouse 

model of diabetes mellitus, high serum concentrations of tumor necrosis factor alpha has 

been shown to directly repress the expression of Indian hedgehog (Ihh) in mSSCs and in 

their downstream progenitors, leading to deficient niche signaling and impaired SSC bone 

regeneration (54). Furthermore, conservation of repressed Ihh signaling in human skeletal 

progenitors obtained from freshly dissected femoral and knee specimens in osteoarthritic 

diabetic patients undergoing total joint arthroplasty has been appreciated (54). In mouse 

models of obesity, ectopic adipocyte accumulation in the bone marrow is believed to 

contribute to age-related impairment of bone regeneration (55–57).

Heterotopic ossification (HO), defined by the formation of extra-skeletal bone which 

occurs in patients with substantial trauma or BMP type 1 receptor mutations (58, 59), 

likewise highlights the interplay between progenitor cells and their associated niche in the 

pathogenesis of disease. Agarwal et al. examined if known mouse osteoprogenitor cells 

which contribute to normal bone development are involved in HO (60). Importantly, BCSPs 

were found to be enriched at sites of HO, participating in de novo bone formation both in a 

trauma-induced mouse model for HO and in a transgenic mouse expressing a constitutively 

active type I Activin A receptor involved in BMP signaling leading to increased HO 

susceptibility. They further demonstrated that the BCSPs in HO undergo osteogenic and 

chrondrogenic differentiation on the basis of osteocalcin, osterix and sox9 expression. These 

results further support that BCSPs play a conserved role in post-natal bone formation given 

their shared presence in normally developing bone, healing fracture callus, and in de novo 
ectopic bone formation (60).

The capacity for skeletal tissue repair and regeneration declines with aging and thus bone 

repair is deficient in aging patients. Josephson et al. recently delineated that age-associated 

inflammation (“inflamm-aging”) is the main culprit for skeletal stem and progenitor cell 

dysfunction seen with advancing age (47). In contrast to the organized inflammatory 

response which follows trauma, chronic pro-inflammatory cytokines inhibit regeneration in a 

variety of tissues including bone (61). Josephson et al. identified that NF-κβ plays a central 

role in inflamm-aging and that modification of the inflammatory niche represents a valid 

translational approach to functionally rejuvenate aged skeletal stem and progenitor cells. 

By using a pharmacological approach inhibiting NF-κβ activation (sodium salicyclate), 

they demonstrated a functional rejuvenation of aged skeletal stem and progenitor cells 

with decreased senescence, increased stem and progenitor cell proliferation and increased 

osteogenesis (61).

Ambrosi et al. analyzed and isolated hSSCs from callus tissue of 61 patients ranging 

from 13 to 94 years for functional and molecular studies (62). These studies revealed that 

advanced age significantly correlated with reduced osteogenic and chondrogenic potential. 

Their results suggest that geriatric hSSCs preferably acquire a fibrogenic fate, which leads 

to deficient healing. Transcriptomic comparisons revealed downregulation of skeletogenic 
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pathways such as Wnt and upregulation of senescence-related pathways in older vs. young 

hSSCs (62). Sirt1 has been proposed to increase stress resistance and cell death protection 

expression and was downregulated in geriatric hSSCs. As Sirt1 functions as a histone 

deacetylase, functional differences in hSSC may be epigenetically regulated during aging. 

Previous studies have shown increased lifespan and delayed aging by preserving Sirt 1 

expression (63–66). Consequences of hSSC aging may be reversible as agonists of the 

Sirt1 histone deacetylase significantly improved osteogenic differentiation of aged-impaired 

hSSCs (62).

Aging may also have a detrimental impact on bone by acting on the hematopoietic niche. 

Aged bone stroma can be affected by age-related disruption of the hematopoietic niche 

where myeloid differentiation is dominant during hematopoietic stem and progenitor cell 

expansion (18). The age related change in niche signaling has a resultant downstream 

effect of increased osteoclastogenesis in the setting of diminished skeletal stem and 

progenitor cell pool, thus further reducing skeletal bone mass (18). Taken together, in 

aging there are changes in local niche signaling that lead to skewing of skeletal lineages 

to a fibroblastic phenotype, increased osteoclastogenesis and pro-inflammatory cytokine 

production which reduce bone regeneration (18), reflecting the importance of the niche on 

skeletal homeostasis and repair/regeneration.

SKELETAL STEM CELL RESPONSE TO RADIATION

Osteonecrosis of the jaw can lead to significant loss of bone, loss of teeth and aesthetic 

deformity, resulting in significant disability and reduced quality of life (67). It is most 

commonly associated with radiation, when the radiation dose exceeds 50 Gy (68). Radiation, 

an important modality for treatment of many malignancies, has been shown to result in 

disorganization and coarsening of the stromal trabecular architecture (69), and this is 

also associated with a time-dependent loss of skeletal progenitors (70), limiting healing, 

and impairing normal homeostasis. Furthermore, this bone dysfunction has been found to 

correlate with reduced BCSP frequency in a mouse model of hind limb radiation prior 

to fracture injury. Reduced callus formation, prolonged healing, and significantly reduced 

BCSP osteoprogenitor expansion in the setting of prior radiation have all been observed 

(39), punctuating the important interplay between skeletal progenitors and the stromal 

niche. Sclerostin, a Wnt antagonist, has been recently proposed as a new target to reduce 

radiation induced osteopenia (71). Sclerostin knockout mice are insensitive to radiation 

(72–74). Chandra et al. hypothesized that neutralization of circulating sclerostin with a 

monoclonal antibody, leading to activation of the canonical Wnt signaling in bone, could 

treat osteoporosis by enhancing Wnt/β-catenin signaling and resulting in bone protection 

(71). The effect of Sclerostin and relevant methods of antagonism on skeletal stem cells and 

their progenitors offer an interesting focus of further investigation to aid patients undergoing 

radiation of the craniofacial skeleton.

SKELETAL STEM CELL RE-ACTIVATION IN ENDOGENOUS MODELS

During regenerative processes, adult stem cell populations change not only in proliferation 

and location but also in their underlying gene-regulatory programs (75, 76), and in response 
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to injury, stem cells may reactivate a greater potential for differentiation (77). Distraction 

osteogenesis (DO), an endogenous form of bone tissue engineering, has been used clinically 

to generate new bone. It was initially developed by Ilizarov for lengthening long bones after 

a chance discovery following a patient’s misunderstanding of post-operative instructions 

(78). Following placement of an external fixator, rather than compressing a bone fracture 

along its long axis, gradual guided separation of osteogenic fronts was found to result in 

de novo bone growth across the gap (78, 79). In DO, a surgical fracture (osteotomy) is 

created and subsequent expansion along its long axis is performed which creates mechanical 

stimulation, inducing biologic responses promoting bone regeneration. DO is divided into 

three key steps: a latency period for callus development, a distraction period of gradual 

lengthening, and a consolidation period that allows the stretched callus to mineralize. 

Distraction forces have been found to promote callus reorganization with a fibrous center, a 

highly vascularized zone of developing bone, and a mineralizing zone of bone undergoing 

primary bone formation adjacent to the uncut host bone. When tension is applied to move 

the bony segments apart, mineralization occurs from the bony ends toward the fibrous center.

The use of DO in the mandible has increased over the past two decades to treat 

severe bone deficiency, as occurs in Pierre Robin Sequence (PRS) or other craniofacial 

syndromes associated with micrognathia (79, 80). Historically children with PRS required 

tracheostomies, but the implementation of DO has obviated this need to address the 

compromised airway in newborns with low operative morbidity and improved QOL 

(81). DO has also been used in distraction of the midface (maxillary deficiency and 

craniofacial synostosis), zygoma (Treacher Collins syndrome), maldevelopment of the 

cranial vault (craniofacial synostosis), and edentulous mandible and maxillary alveoli (79, 

81). Importantly, major bony structures of the face, including the maxilla and mandible, 

are derived from neural crest, and re-activation of neural crest transcriptional programs 

may be important for repair and regeneration of these skeletal elements (82, 83). In a 

mouse model of mandibular DO, Ransom et al. demonstrated that adult mSSCs revert to 

a developmentally plastic state, activating an embryonic neural crest-like transcriptional 

pattern (84). This was primarily driven through mechanical stimulation of focal adhesion 

kinase-mediated signaling pathways. Of note, the bone regenerated following DO may 

be associated with complications such as relapse, whereby the final length of the bone 

diminishes after the consolidation period. With a better understanding of the underlying 

biomechanics of mandibular osteogenesis and regulatory cues guiding SSCs, innovative 

clinical solutions in craniofacial skeletal regeneration can be developed.

The craniofacial sutures are a unique skeletal structure which continue to pose complex 

clinical dilemma in the setting of craniosynostosis, a condition which results from 

pathologic premature fusion of the cranial sutures. It has long been postulated that the 

suture mesenchyme is the niche of the SSCs essential for cranial morphogenesis. Recently 

an Axin-2 expressing stem cell population has been isolated from sutures and has been 

shown to contribute directly to calvarial defect repair and skeletal regeneration in a cell 

autonomous fashion (85). The only other marker to date capable of marking the cell 

population contributing to calvarial maintenance and injury repair is Gli1 (86). Maruyama 

et al. demonstrated that Axin 2 and Gli1 are co-expressed in a putative suture stem cell 

population which is predominantly found in calvarial bones, rather than bones of the axial 
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skeleton and which is activated in the setting of calvarial injury (85, 86). In addition, 

Debnath et al. characterized the “periosteal stem cell,” which they isolated from long bones 

and calvaria of mice (87). The PSC displays clonal multipotency and self-renewal and is 

activated in the setting of long bone injury, highlighting a key characteristic shared by 

other SSC populations (87). Further studies of clinical samples harvested from patients 

with craniosynostosis also suggest that Axin 2 may reasonably represent a marker for 

the stem cell population that undergoes depletion during premature ossification process 

occurring in craniosynostosis (88). While this work is still in its infancy, it suggests that SSC 

activation may indeed be detrimental in this clinical setting, contributing to the development 

of craniosynostosis (85, 86, 88).

Another complex area for craniofacial tissue engineering is the temporomandibular joint 

(TMJ) which is imperative for daily functions such as talking and eating. The TMJ is 

a complex joint formed between the temporal bone and the mandibular condyle that 

can be affected by inflammatory and degenerative arthritis and can affect 8–16% of the 

population (89–91). In the advanced stage, surgical interventions such as condylotomy and 

arthroplasty are recommended but in earlier stages, palliative therapies are pursued rather 

than restorative therapies. Recently, Murphy et al. demonstrated that aging is associated with 

a progressive loss of SSCs and diminished chondrogenesis in the joints of both humans 

and mice (40). They activated a regenerative response by performing microfracture surgery 

where the surgeon drills through denuded cartilage into the marrow cavity. They reported 

that microfracture surgery alone tended to form fibrous tissue but with localized co-delivery 

of BMP2 and soluble VEGF receptor antagonist in addition to microfracture, they were 

able to skew the resident stem cell differentiation toward articular cartilage (40). These data 

suggest that microfracture along with local delivery of BMP2 and soluble VEGF antagonism 

could hold promise for patients who suffer with TMJ arthritis and induce de novo articular 

cartilage formation (40).

LOOKING TO THE FUTURE OF CRANIOFACIAL TISSUE ENGINEERING

Mouse studies continue to power our understanding of skeletal development and 

regeneration. However, the characterization of human SSCs that have been identified in fetal 

tissue, adult fracture callus, and in xenograft models of injury holds enormous promise for a 

paradigm shift in the treatment of craniofacial defects and the understanding of pathogenetic 

mechanisms. In vitro methods to derive tissue specific stem cells, expand patient derived 

stem cells, and protocols to differentiate them into functional tissues are highly important 

topics in stem cell research and bioengineering. However, as has been seen with bone 

marrow derived MSCs (92), in vitro cell culture experiments are flawed with regard to the 

assessment of in vivo cell behavior and should not be considered as evidence of stem cell 

activity (18). SSCs should be able to self-renew, give rise to increasingly fate restricted 

progenitors, and differentiate into osteoblasts/osteocytes and chondrocytes, all on the clonal 

level in vivo without prior in vitro culture (24). We are only beginning to understand the 

diversity and the nature of skeletal stem and progenitor cells and how they actually behave 

in vivo. The discovery of a subset of human adult SSCs that can be readily purified from 

bone has broad potential applications in regenerative medicine. The hSSC exhibits all of the 

hallmarks of an early skeletal stem cell that can give rise to downstream lineage committed 
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progenitors that may be beneficial in skeletal replacement therapies. Further studies, aiming 

to understand the mechanisms by which SSCs interact with the environment, interact with 

downstream progenitors and regulate their lineage choice under disease conditions are likely 

to unlock the regenerative potential of these cells and open up further therapeutic avenues 

for craniofacial skeletal tissue engineering.
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FIGURE 1 |. 
Mouse skeletal stem cell and downstream progenitors (13). Skeletal stem cells (SSCs) 

and their progenitors can be isolated from mice bones on the basis of distinctive 

immunophenotypes using flow cytometry. The mSSC is shown at the apex of the stem 

cell tree with differentiation into increasing fate restricted progenitors. The multipotent bone 

cartilage and stromal progenitor (BCSP) gives rise to mouse cartilage progenitors, mouse 

osteoprogenitors, mouse B lymphocyte stromal progenitors, mouse 6C3 stromal cells, and 

mouse hepatic leukemia factor expressing cells. The immunophenotype of the cell surface 

markers are shown for each cell (13, 34). This figure is adapted from Chan et al. (13).
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FIGURE 2 |. 
Human skeletal stem cell and downstream progenitors (14). Skeletal stem cells (SSCs) 

and their progenitors can be isolated from human bones on the basis of distinctive 

immunophenotypes using flow cytometry. The hSSC is shown at the apex of the stem 

cell tree with differentiation into increasing fate restricted progenitors. The multipotent bone 

cartilage and stromal progenitor (BCSP) gives rise to cartilage progenitors, osteoprogenitors, 

and stromal cells. The immunophenotype of the cell surface markers are shown for each cell 

(14, 34). This figure is adapted from Chan et al. (14).
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