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Objectives: Mood disorders are a kind of serious mental illness, although their molecular
factors involved in the pathophysiology remain unknown. One approach to examine the
molecular basis of mood disorders is co-expression network analysis (WGCNA), which is
expected to further divide the set of differentially expressed genes into subgroups
(i.e., modules) in a more (biologically) meaningful way, fascinating the downstream
enrichment analysis. The aim of our study was to identify hub genes in modules in
mood disorders by using WGCNA.

Methods: Microarray data for expression values of 4,311,721 mRNA in peripheral blood
mononuclear cells drawn from 21 MDD, 8 BD, and 24 HC individuals were obtained from
GEO (GSE39653); data for genes with expression in the bottom third for 80% or more of
the samples were removed. Then, the top 70% most variable genes/probs were selected
for WGCNA: 27,884 probes representing 21,840 genes; correlation between module
genes and mood disorder (MDD+BD vs. HC) was evaluated.

Results: About 52% of 27,765 genes were found to form 50 co-expression modules with
sizes 42–3070. Among the 50 modules, the eigengenes of two modules were significantly
correlated withmood disorder (p < 0.05). The saddlebrownmodule was found in one of the
meta-modules in the network of the 50 eigengenes along with mood disorder, 6 (IER5,
NFKBIZ, CITED2, TNF, SERTAD1, ADM) out of 12 differentially expressed genes identified
in Savitz et al. were found in the saddlebrown module.

Conclusions: We found a significant overlap for 6 hub genes (ADM, CITED2, IER5,
NFKBIZ, SERTAD1, TNF) with similar co-expression and dysregulation patterns
associated with mood disorder. Overall, our findings support other reports on
molecular-level immune dysfunction in mood disorder and provide novel insights into
the pathophysiology of mood disorder.
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INTRODUCTION

Mood disorders including major depressive disorder (MDD) and
bipolar disorder (BD) are a kind of serious mental illness and are
the third leading cause of the global disease burden (Collins et al.,
2011; Murray et al., 2012; Jabbi et al., 2020). Themolecular factors
involved in the pathophysiology of MDD remain challenging
(Gagne et al., 2020). Despite their diagnostic distinction, multiple
approaches have shown considerable sharing of risk factors
across the mood disorders (Coleman et al., 2020). Various
hypotheses regarding the pathogenesis of mood disorders,
such as the hypothesis of disturbed neuroplasticity (Christoffel
et al., 2011) and the inflammatory (Leonard and Maes, 2012;
Zeng et al., 2019), have been proposed. Many studies suggested
that neural immune activation may be a primary pathway
influencing the observed changes in key neuroendocrine and
neurotrophic systems (Miller et al., 2013). Substantial evidence
supports the changes in mRNA expression in proinflammatory
genes and the elevated levels of peripheral inflammatory markers
in mood disorder patients (Kohler et al., 2018; Wiedlocha et al.,
2018). However, there is no definitive evidence to support the
belief of shared inflammation and neurological abnormalities of
molecular biology in mood disorders (Savitz et al., 2013).

Mood disorders share several genetic associations, and can be
combined effectively to increase variant discovery (Coleman
et al., 2020). Several genome-wide association studies (GWAS)
in MDD and BD have indicated that the genetic heterogeneity
architecture of mood disorder is complex, with many
polymorphisms of small effect contributing to the clinical
phenotype (Okbay et al., 2016; Ciobanu et al., 2018; Wray
et al., 2018). A recent meta-analysis was conducted using
results from the Psychiatric Genomics Consortium (PGC)
genome-wide association studies for MDD and BD using data
including those from 23andMe and UK Biobank to identify
numerous shared and disorder-specific associations between
mood disorders. In addition, clinical heterogeneity has been
recognized as a major limiting factor for robust
characterization of gene expression alterations in MDD. For
example, the first RNA sequencing study of 463 lifetime MDD
cases, consisting of a mixture of individuals with current and
remitted MDD, found no differentially expressed genes between
cases and controls (Mostafavi et al., 2014). For BD,
neuroimaging-guided RNA-sequencing in two studies showed
gene-expression changes associated with disease morbidity and
related suicide mortality in an independent postmortem cohort
(Jabbi et al., 2020).

To elucidate the relationship between inflammation and
neuroimaging abnormalities, Savitz et al. conducted a whole
genome expression analysis of peripheral blood mononuclear
cells and identified 12 differentially expressed genes including
TNF and others that related to neurological disorders and/or
apoptosis between patients with a mood disorder and healthy
controls. There was mounting evidence that was associated with
functional and chemical abnormalities within and beyond the
neural reward circuitry and was linked to elevated peripheral
levels of inflammatory biomarkers in depression (Ely et al., 2021).
An Ingenuity Pathway Analysis on these differentially expressed

genes yielded two gene networks centered around TNF and
related to cell circle and kinase anomalies, respectively. The
authors also found that the expression levels of some of these
differentially expressed genes were significantly correlated with
morphometric abnormalities of the left sgACC, hippocampus,
and caudate. However, there are some limitations in a traditional
pathway analysis using IPA, for example. One of the limitations is
that the gene networks and regulatory indicated in these networks
are modeled based only on currently available knowledge. To
fully utilize the gene expression information captured by the
microarray data, in this study, we conducted a co-expression
network analysis for the microarray data generated in and
downloaded from GSE using the WGCNA approach, which
was a systems biology approach developed for creating gene
network models to explore and identify key functional
modules and hub genes.

As far as molecular biology is concerned, genes do not act in
isolation. In mood disorder, genes interaction within each other
with complex networks might be disrupted. At the same time,
gene expression data do not function in isolation but rather are
highly multidimensional with complex non-linear biological
processes. Molecular interactions are not captured by
traditional statistical methods (Ciobanu et al., 2020). Weighted
gene co-expression network analysis (WGCNA) is a hypothesis-
free systems biology approach that identifies “modules” of co-
regulated, and therefore functionally related, genes in a given
phenotype (Langfelder and Horvath, 2008), extending classic
bivariate approaches (Ciobanu et al., 2018). WGCNA: A
systems biology approach developed for analysis of
transcriptomic data, providing more information than a set of
differentially expressed genes. Used sophisticated algorithms and
information on correlation patterns among genes, WGCNA is
expected to further divide the set of differentially expressed genes
into subgroups (i.e., modules) in a more biologically meaningful
way, fascinating the downstream enrichment analysis (Wang
et al., 2017).

In this study, we aimed to investigate the relationship between
global gene co-expression profiles and mood disorder subgroups.
Microarray data for expression values of 4,311,721 mRNA in
peripheral blood mononuclear cells drawn from 21 MDD, 8 BD,
and 24 HC individuals were obtained fromGEO (GSE39653). We
applied WGCNA and explored the correlation of co-expressed
modules 1) construct a gene-gene similarity network; 2) divide
the network into modules (group genes with similar expressions);
3) correlate traits to gene modules; and 4) identify hub genes in
modules. We then sought molecular-level immune dysfunction in
mood disorder and provide novel insights into the
pathophysiology of mood disorder.

METHODS

mRNA Microarray Data Acquisition
Microarray data of GSE39653 was downloaded from the National
Center for Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO, http://www.ncbi.nlm.org/geo/) database, which
includes expression levels of 4,311,721mRNA in peripheral blood
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mononuclear cells drawn from 21 MDD, 8 BD, and 24 HC
individuals. Details on the recruitment of subjects, sampling
and processing of the blood samples, and microarray
experiment were given in. Briefly, the mood disorder patients
met DSM-IV criteria for recurrent primary MDD in a current
major depressive episode or BD in a current major depressive
episode with a moderate-to-high Hamilton Depression Rating
Scale score and did not receive any psychotropic medications for
at least 3 weeks. The healthy control individuals had no personal
or family history of psychiatric illness. Quantile normalization
and log-transformation were performed for the expression data.

Construction of Weighted Gene
Co-Expression Network
First, the microarray data were preprocessed as follows. Data for
genes with expression in the bottom third for 80% or more of the
samples were removed (Ballouz et al., 2015). The top 70% most
variable genes/probs were selected for the construction of the co-
expressed network. Using the preprocessed and transformed
data, a co-expressed network was constructed using the
WGCNA R package (Zhang and Horvath, 2005). Briefly, a
correlation matrix for all pair-wise correlations of transcripts
was calculated and then transformed into a weighted adjacency
matrix with a soft threshold power set to beta = 5 to achieve
approximate scale-free topology (model fit R̂2 > 0.88 while the
mean connectivity was kept as large as possible). The connection
strengths were then used to calculate the topological overlap
(TO), which is a pair-wise measure of two genes’ similarity with
other genes in the network. Genes were then hierarchically
clustered using 1-TO as the distance measure and modules of
genes were identified using a dynamic tree-cutting algorithm
using the following parameters: minimum modulesize = 30,
deepSplit = 4, mergeCutSize = 0.15, and maximumBlockSize
= 5000.

Quantification ofModule–Trait Associations
The first principal component of eachmodule defined the module
eigengene (ME). Genes weakly corrected with the ME (Pearson
correlation coefficient<0.3) were removed from the module. For
each gene, Pearson correlation coefficient was calculated with the
eigengenes of all modules and defined as the model membership
(kME). If a gene had the highest correlation and with correlation
p < 0.05 with the eigengene of a module other than the module it
was assigned to initially in the hierarchical clustering, it would be
reassigned to this module. Associations between mood disorder
(MDD or BD) andMEs were determined by Pearson correlations.
Finally, MEs along with the traits were clustered based on their
correlation, and the meta-modules were identified to represent
groups of correlated modules and/or the traits, which was the
affection status of mood disorder in this case.

Identification of Hub Genes, Functional
Annotation, and Gene Ontology Analysis
For modules, significantly associated with mood disorder, the top
hub genes were identified as those with the highest intramodular

connectivity K_IM, representing the highly connected genes
within a module. Functional annotation was performed for
those hub genes using the Database for Annotation,
Visualization, and Integrated Discovery (DAVID). Gene
Ontology (GO) analysis was then performed using the
function hyperGTest in the R package Gostats.

Functional Annotation and Enrichment
Analysis
We drew a histogram bymapping the GO (Ashburner et al., 2000;
Tweedie et al., 2009) function of genes in modules of interest to
the corresponding secondary features. The Pearson Chi-Square
test was applied to indicate significant relationships between the
two input datasets if all the expected counts were greater than.
The top five annotation clusters for each analysis were focused on
as these clusters are more likely to contain biologically
meaningful annotations as these clusters have the highest
enrichment score. Then we implemented GO enrichment
analysis based on a hypergeometric test. The p-value <0.05
was used as the enrichment cut-off criterion.

RESULTS

Data Preprocessing
After removing genes with expression in the bottom third for 80%
or more of the samples, the top 70%most variable probes (27,884,
representing 21,840 genes) for 29 patients withmood disorder (21
MDD and 8 BD) and 24 HC were selected for WGCNA.

WGCNA Analysis
Weighted gene co-expression networks construction and gene
modules identification. Using the preprocessed data for all 53
participants, a weighted co-expression network was constructed
using the WGCNA package. The hierarchical clustering
procedure and the dynamic tree-cutting algorithm resulted in
50 modules (Figure 1 and Supplementary Table S1), each of
which is assigned a unique color label and visualized in the color
band underneath the cluster tree in Figure 1. These modules
ranged in size from 42 genes in the thistle2 module to 3070 in the
turquoise module. Among all 27,765 probes, 13,240 (47.7%) were
found to belong to none of the 50 proper modules and were put in
an improper module (gray).

Co-Expression Modules Correlated With
Mood Disorder
To identify modules related to mood disorder, we correlated each
of the 50 module eigengenes with the mood disorder status. As
shown in Table 1, the saddlebrown module and the lightcyan
module were significantly associated with mood disorder. The
saddlebrown module, which was positively associated with mood
disorder, included 10 out of the 26 genes that were found in
Coleman et al. (2020) to be differentially expressed between
patients with mood disorder and heathy controls. Among
these 10 genes, the following 6 are protein coding genes:
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ADM, CITED2, IER5, NFKBIZ, SERTAD1, and TNF, which were
mostly related to neurological features or psychiatric illness. The
lightcyan module was negatively associated with mood disorder,
and did not include any of the 26 differentially expressed genes
identified in Coleman et al. (2020). This implies that the lightcyan
module might represent some pathway which may not be
identified using differential expression analysis of individual
genes. It should be noted that 6 coding genes in the
saddlebrown module that were differentially expressed are all
over-expressed in the mood disorder cases. The saddlebrown
module was also found in the same meta-module in the network
of the 50 eigengenes along with mood disorder, as shown in
Figure 2. In the same meta-module, there were two more
eigengenes representing the darkmagenta module and the
darkolivegreen module.

Identifying Hub Genes From Candidate
Modules
Hub genes for the saddlebrown and lightcyan1 modules were
extracted and ranked based on the intramodular connectivity

values (Wang et al., 2017). Thus, we identified the hub genes from
the saddlebrown module (Table 1 for the saddlebrown module).
Among the 12 genes identified in Savitz et al. (2013) as
differentially expressed between controls and cases (mood
disorder), 6 appeared in the saddlebrown module
(Supplementary Table S2).

Functional Annotation of Mood Disorder
Correlated Modules and GO Analysis
Hub genes for the saddlebrown and lightcyan1 modules were
extracted and ranked based on the intramodular connectivity
values. The top hub genes were annotated using the GeneCard
website. Most of the hub genes in the saddlebrown module were
related to the similar function of RNA processing, in which
mRNA 5′-splice site recognited, mRNA cis spliced via
spliceosome, and branching involved in labyrinthine layer
morphogenesis. Moreover, most of the hub genes in the
lightcyan1 module were related to the similar function of
regulating steroid hormone secretion. GO analysis for the hub
genes of these two modules suggested the genes were enriched in

FIGURE 1 |Module-MD vs. Control relationship. Each row corresponds to amodule eigengene. Each cell contains the corresponding correlation in the first line and
the p-value in the second line. The table is color-coded by correlation according to the color legend. Among them, red represents a positive correlation and blue
represents a negative correlation.
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the regulation of corticosteroid hormone secretion. Interestingly,
10 of the 19 GO terms pathway in these two modules were
associated with the steroid hormone secretion pathway, including
negative regulation of steroid hormone secretion (GO:2000832,
p = 2.29E−05) and regulation of corticosteroid hormone secretion
(GO:2000846 p = 6.31E−04) (Table 2).

DISCUSSION

In this study, we utilized the WGCNA to explore the gene co-
expression modules networks for expression values of 4,311,721
mRNA in peripheral blood mononuclear cells drawn fromMDD,
8 BD, and 24 HC individuals were obtained from GEO
(GSE39653) (Savitz et al., 2013). We identified 50 co-
expression modules in which the number of eigengenes ranged
in size from 42 to 13,240 genes. Two co-expression modules
(saddlebrown and lightcyan1) showed striking correlation with
the phenotypic trait between MD and healthy controls. Among
the 12 genes identified in Savitz et al. as differentially expressed
between controls and cases (mood disorder), 6 (IER5, NFKBIZ,
CITED2, TNF, SERTAD1, ADM) appeared in module
saddlebrown. Based on the GO pathway analysis, biological
function of the saddlebrown module and lightcyan1 module
were found to be focused on inflammation and neurological
response and RNA processing.

The algorithm of WGCNA software could construct a gene
co-expression network to provide the expanded explanation of
gene expression information. As it has some advantages over
traditional approaches to differential expression analysis, the

software has been conducted for the gene expression pattern in
the mental illness (Geng et al., 2020). WGCNA analysis has been
widely used in transcriptional analysis of major depression,
schizophrenia, autism, and Alzheimer’s disease (Miller et al.,
2008; Voineagu et al., 2011; Ciobanu et al., 2020). Recently,
Belzeaux et al. collected a discovery queue and two duplicate
queues with similar designs by using WGCNA analysis, 9 of the
59 modules were associated with clinical improvement
(Belzeaux et al., 2016). Another study also reported that
WGCNA analysis explored candidate modules and central
genes associated with subsyndromic depressive symptoms
(SSD). Gene expression studies of SSD observed different
patterns between cases and controls, which may provide new
insights into the molecular mechanisms of SSD (Geng et al.,
2020). To the best of our knowledge, this is the first study that
used WGCNA to explore candidate modules and hub genes
associated with MD.

In the current study, the 6 hub genes (IER5, NFKBIZ,
CITED2, TNF, SERTAD1, ADM) appeared in module
saddlebrown were among the 12 differentially expressed
genes identified in Savitz et al. (2013) This indicates that a
significant proportion of differentially expressed genes related
to mood disorder may be tightly co-regulated, functionally
related, or in the same pathway. IER5, as an immediate early
genes/transcription factor, was likely to affect basic cellular
functions such as RNA and protein synthesis, neural
plasticity, neurotransmission, and metabolism (Cirelli and
Tononi, 2000). IER5 gene encodes an activator of HSF1
which was to control hippocampal PSA-NCAM levels
through the transcriptional regulation of

TABLE 1 | Two candidate modules speculated the critical role for the pathophysiology of MD.

Module Spearman_CC (p-value) Module Spearman_CC (p-value)

MEmediumpurple3 −0.012 (0.9) MElightcyan 0.017 (0.9)
MEskyblue 0.045 (0.8) MEviolet 0.15 (0.3)
MEpaleturquoise −0.2 (0.1) MEgrey60 −0.059 (0.7)
MEmagenta −0.077 (0.6) MEorange −0.21 (0.1)
MEsteelblue −0.21 (0.1) MEfloralwhite −0.027 (0.8)
MElightgreen 0.052 (0.7) MEplum1 0.097 (0.5)
MEroyalblue −0.042 (0.8) MEbrown −0.15 (0.3)
MEcyan −0.13 (0.3) MEpurple −0.15 (0.3)
MEdarkgrey −0.087 (0.5) MEsalmon −0.14 (0.3)
MEdarkred 0.037 (0.8) MEivory −0.11 (0.4)
MEorangered4 −0.082 (0.6) MElightsteelblue1 −0.042 (0.8)
MEdarkorange2 −0.059 (0.7) MElightcyan1 −0.33 (0.02)
MEdarkturquoise −0.03 (0.8) MEthistle2 −0.28 (0.05)
MEgreenyellow 0.079 (0.6) MEdarkgreen 0.047 (0.7)
MEbisque4 −0.045 (0.8) MEdarkslateblue 0.17 (0.2)
MEturquoise 0.025 (0.9) MElightyellow −0.17 (0.2)
MEred −0.02 (0.9) MEdarkorange 0.079 (0.6)
MEwhite −0.12 (0.4) MEplum2 0.28 (0.04)
MEblack 0.12 (0.4) MEbrown4 0.23 (0.1)
MEsienna3 0.089 (0.5) MEmidnightblue 0.037 (0.8)
MEdarkmagenta 0.18 (0.2) MEpink 0.11 (0.4)
MEdarkolivegreen 0.18 (0.2) MEskyblue3 0.079 (0.6)
MEsaddlebrown 0.42 (0.002) MEblue 0.14 (0.3)
MEtan 0.16 (0.2) MEgreen 0.2 (0.1)
MEyellow 0.17 (0.2) MEyellowgreen 0.22 (0.1)

MEgrey −0.15 (0.3)
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FIGURE 2 | Eigengene heatmap: The scatterplots of MM vs. GS in saddlebrown module exhibited very significant positive correlations.

TABLE 2 | Functional annotation of modules and network analysis.

Module GOBPID p value OddsRatio ExpCount Count Size Term

lightcyan1 GO:2000832 2.29E−05 0 0.01 2 2 Negative regulation of steroid hormone secretion
lightcyan1 GO:2000847 2.29E−05 0 0.01 2 2 Negative regulation of corticosteroid hormone secretion
lightcyan1 GO:2000850 2.29E−05 0 0.01 2 2 Negative regulation of glucocorticoid secretion
lightcyan1 GO:0035933 2.27E−04 142.69 0.024 2 5 Glucocorticoid secretion
lightcyan1 GO:2000849 2.27E−04 142.69 0.024 2 5 Regulation of glucocorticoid secretion
lightcyan1 GO:0035929 6.31E−04 71.33 0.039 2 8 Steroid hormone secretion
lightcyan1 GO:0035930 6.31E−04 71.33 0.039 2 8 Corticosteroid hormone secretion
lightcyan1 GO:2000831 6.31E−04 71.33 0.039 2 8 Regulation of steroid hormone secretion
lightcyan1 GO:2000846 6.31E−04 71.33 0.039 2 8 Regulation of corticosteroid hormone secretion
saddlebrown GO:0006396 1.11E−05 5.19 3.215 13 678 RNA processing
saddlebrown GO:0000395 6.59E−05 437.17 0.014 2 3 mRNA 5′-splice site recognition
saddlebrown GO:0000185 6.06E−04 72.83 0.038 2 8 Activation of MAPKKK activity
saddlebrown GO:0046886 6.06E−04 72.83 0.038 2 8 Positive regulation of hormone biosynthetic process
saddlebrown GO:2000271 6.06E−04 72.83 0.038 2 8 Positive regulation of fibroblast apoptotic process
saddlebrown GO:0060670 7.77E−04 62.42 0.043 2 9 Branching involved in labyrinthine layer morphogenesis
saddlebrown GO:0008584 8.83E−04 10.4 0.432 4 91 Male gonad development
saddlebrown GO:0046546 8.83E−04 10.4 0.432 4 91 Development of primary male sexual characteristics
saddlebrown GO:0045292 9.68E−04 54.61 0.047 2 10 mRNA cis splicing via spliceosome
saddlebrown GO:0060712 9.68E−04 54.61 0.047 2 10 Spongiotrophoblast layer development
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polysialyltransferases, a process that might be involved in
neuronal and behavioral development in mice (Yamano
et al., 2020). Transcription of NFKBIZ mediates the
transcriptional response to TNF and IL-17A. In fibroblasts,
CUX1 and NFKBIZ mediate the synergistic inflammatory
response to TNF and IL-17A in stromal fibroblasts
(Slowikowski et al., 2020). Moreover, Harrison et al., Inagaki
et al., and Savitz et al. showed the correlations between
hemodynamic response of the amygdala to sad faces and
genes such as CFD and NFKBIZ which are involved in the
inflammatory response (Harrison et al., 2009; Inagaki et al.,
2012; Savitz et al., 2013). Su et al. reported that the NF-κB was
activated in the hippocampi of wild-type (WT) mice after
CUMS exposure by regulating the expression of cytokines.
Previous studies demonstrated that depression-like behaviors
caused by stress were dependent on HMGB1/TLR4/NF-κB and
TNF-α/TNFR1/NF-κB signalling pathways in CUMS-exposed
mice (Su et al., 2017; Liu et al., 2019; Lu et al., 2019). Arctigenin
exerts antidepressant-like effects by attenuating microglial
activation and neuroinflammation through the HMGB1/
TLR4/NF-κB and TNF-α/TNFR1/NF-κB signalling pathways
(Xu et al., 2020). CITED2 represses innate immune cell
pathogenic response by modulating broad inflammatory gene
programming in macrophages and protecting the host from
pathogenic inflammation (Pong Ng et al., 2020). SERTAD1,
which appeared to be essential for neuron death in trophic
support deprivation in vitro and in vivo and in models of DNA
damage, was associated with Alzheimer’s disease (Biswas et al.,
2010). It may therefore be a suitable target for neuropsychiatric
diseases, such as MD. Adrenomedullin (ADM) has been
confirmed as a vasorelaxant that is part of the first-line
protective (i.e., anti-inflammatory) response to toxic or
aversive stimuli such as lipopolysaccharide (LPS) (Wong
et al., 2005). Genome-wide association study (GWAS)
implicated a single nucleotide polymorphism (SNP) in the
vicinity of the ADM gene in a sample of subjects with type II
BD. In addition, a functional SNP in the ADM gene was
associated with response to paroxetine, an SSRI
antidepressant (Glubb et al., 2010). Recently, a whole
transcriptome RNA-sequencing study revealed 30 genes
(included ADM) differentially expressed in MDD compared
to controls (Mahajan et al., 2018). Together, these data implicate
neuro-inflammation in a large number of genes and functional
pathways in MD and playing a crucial role in MD. A growing
number of studies suggest behavioral and genetic function of the
central nervous system, as well as their involvement affected in
many neurologic and psychiatric conditions, such as
neurodegenerative diseases and mood disorders (Jeremic
et al., 2021). This mounting evidence on the involvement of
inflammatory/immune systems and their relationships with
neurotransmitters seems to represent intriguing avenues for
the development of real innovative therapeutic strategies of
mood disorders (Mucci et al., 2020). Neuro-inflammation is
potentially important in the pathophysiology of MD. Thus, the
current study has confirmed the 6 hub genes (IER5, NFKBIZ,
CITED2, TNF, SERTAD1, ADM) of neuro-inflammation
in MD.

Interestingly, we also found that the GO about the MD was
associated with the saddlebrown and lightcyan1 module. Ten of
the 19 GO terms pathway in two modules were associated with
the steroid hormone secretion pathway, which included negative
regulation of steroid hormone secretion (GO:2000832, p =
2.29E−05) and regulation of corticosteroid hormone secretion
(GO:2000846 p = 6.31E−04).

Growing evidence implicates involvement of endogenous
glucocorticoids in adverse health effects beyond neurological/
neurobehavioral outcomes (neurodegenerative disease, cognitive
decline, perceived stress, depression, and suicide) (Thomson
et al., 2016). These data provided insight into potential
biological mechanisms underlying health impacts and
susceptibility in neuropsychiatric diseases, such as MD.

Comparing the results of the WGCNA here with what Savitz
et al.’s results were, we think they found that the network of
saddlebrown module is clustered based on the similar function of
RNA processing. In our study, the RNA processing of mRNA 5′-
splice site was recognized, mRNA cis spliced via spliceosome, and
branching involved in the labyrinthine layer morphogenesis.
Recently, regulating gene expression through splicing, as a
novel mechanism, has been described and could contribute to
depression by changing gene expression (Le Francois et al., 2018).
Alternative splicing is a prevalent modification, especially in
human neuronal genes (Kang et al., 2011), resulting in a
greater diversity of RNA transcripts (Darnell, 2013; Raj and
Blencowe, 2015).

CONCLUSION

In this study, we appliedWGCNA to transcriptomic data from 21
MDD, 8 BD, and 24HC individuals that were obtained fromGEO
(GSE39653). We found a significant overlap for 6 hub genes
(ADM, CITED2, IER5, NFKBIZ, SERTAD1, TNF) with similar
co-expression and dysregulation patterns associated with mood
disorder. Interestingly, we also found that the GO about the MD
was associated with the saddlebrown and lightcyan1 modules.
These pathways in two modules were associated with the steroid
hormone secretion pathway and function of RNA processing,
which have been described could contribute to depression. Our
findings support other reports on molecular-level immune
dysfunction in mood disorder and provide novel insights into
the pathophysiology of mood disorder.
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