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Abstract: Uremic vascular calcification (VC) commonly occurs during advanced chronic kidney
disease (CKD) and significantly increases cardiovascular morbidity and mortality. Uremic toxins
are integral within VC pathogenesis, as they exhibit adverse vascular influences ranging from
atherosclerosis, vascular inflammation, to VC. Experimental removal of these toxins, including
small molecular (phosphate, trimethylamine-N-oxide), large molecular (fibroblast growth factor-23,
cytokines), and protein-bound ones (indoxyl sulfate, p-cresyl sulfate), ameliorates VC. As most uremic
toxins share a gut origin, interventions through gastrointestinal tract are expected to demonstrate
particular efficacy. The “gastrointestinal decontamination” through the removal of toxin in situ or
impediment of toxin absorption within the gastrointestinal tract is a practical and potential strategy to
reduce uremic toxins. First and foremost, the modulation of gut microbiota through optimizing dietary
composition, the use of prebiotics or probiotics, can be implemented. Other promising strategies
such as reducing calcium load, minimizing intestinal phosphate absorption through the optimization
of phosphate binders and the inhibition of gut luminal phosphate transporters, the administration of
magnesium, and the use of oral toxin adsorbent for protein-bound uremic toxins may potentially
counteract uremic VC. Novel agents such as tenapanor have been actively tested in clinical trials
for their potential vascular benefits. Further advanced studies are still warranted to validate the
beneficial effects of gastrointestinal decontamination in the retardation and treatment of uremic VC.

Keywords: aortic calcification; chronic kidney disease; chronic kidney disease-mineral bone disorder;
indoxyl sulfate; vascular calcification; vascular smooth muscle cell; oral adsorbent; uremic toxin

Key Contribution: Uremic toxins play an integral role in the pathogenesis of uremic vascular
calcification, and removal of these toxins are expected to improve vascular calcification. We outline
multiple VC ameliorating approaches through gastrointestinal barricading or absorption retardation
for uremic toxins.

1. Introduction

Patients with impaired renal function, or chronic kidney disease (CKD), exhibit a high
cardiovascular risk [1], which is frequently attributed to co-existing morbidities such as hypertension,
diabetes, and dyslipidemia. Kidney-specific risk factors such as anemia, chronic inflammation,
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and mineral-bone disorders further compound the risk. Among the spectrum of cardiovascular diseases,
vascular calcification (VC) is particularly dreadful because of its multifactorial pathophysiology and
limited therapeutic options [2]. Studies from large CKD and end-stage renal disease (ESRD) cohorts
report a high VC prevalence, up to 65% in the Chronic Renal Insufficiency Cohort (CRIC) [3] and 74%
in the ESRD population [4]. The observed cardiovascular risk increases substantially during transition
from non-dialysis CKD to ESRD, likely because of the progression of subclinical vascular lesions,
especially VC. The inexorable path from VC to cardiovascular mortality has prompted researchers to
identify useful diagnostic markers to predict the presence and course of VC, including protein-based [5],
biochemistry-based [6], microRNA-based [7,8], and image-based ones [9].

Much has been learned from the pathophysiologic studies involving VC. Uremic toxins play
a particularly critical role in the process of uremic VC, and targeted removal of these toxins may be an
important approach for managing uremic VC. However, the existing literature fails to emphasize the
multifaceted role of uremic toxin removal through the gastrointestinal route. In the following sections,
we will provide an overview of the relationship between uremic toxins and VC; the plausible options for
mitigating the adverse influences posed by uremic toxins; and, most importantly, the under-recognized
role of gastrointestinal tract-based elimination of these toxins.

2. The Development and Propagation of Uremic VC

Generations of work have provided us with a deeper insight into how VC spawns and grows
in the uremic environment. The prior theory of passive mineral deposition surrounding necrotic
cores in the layers of the vascular wall has now been replaced by an active cell-mediated theory of
osteoid matrix deposition, performed mainly by the phenotypically transformed vascular smooth
muscle cells (VSMCs) [10]. A simplified anatomical classification divides VC into intimal and medical
involvement, but there are frequent overlaps of the calcification process involving the two vascular
layers. A multifaceted and integrated view of VC pathogenesis in patients with CKD seems to be
a better explanation. These include osteoblastic trans-differentiation of VSMCs from metabolic noxious
stimuli, divalent ion deregulation, the downregulation of endogenous calcification inhibitors, excessive
levels of oxidative stress [2], chronic inflammation, and even the dysfunctional epigenetic machineries
involving several vascular wall constituent cells [11]. Moreover, the precipitators of VC (e.g., uremia,
diabetes mellitus, and vascular ageing) and the resultant VC are dually responsible for the propagation
and the adverse consequences.

3. Uremic Toxins as a Significant Contributor to VC

Among the pathogenesis of VC, uremic toxins expectedly assume importance over time as CKD
progresses. A majority of the uremic toxins exhibit adverse vascular effects, ranging from atherosclerosis,
vascular inflammation, to VC. Clinical studies consistently show that levels of multiple uremic toxins
closely correlate with the severity of uremic VC. Large cohort studies have shown that higher serum
phosphate levels are independently associated with an increased mortality and accelerated progression
of VC among CKD patients [12], while an elevated serum uric acid level also predicts worse survival
among those with ESRD [13]. Serum levels of other uremic solutes such as trimethylamine-N-oxide
(TMAO) have been reported to be surrogate markers of atherosclerotic burden among CKD patients [14].
Higher serum protein-bound uremic toxins such as indoxyl sulfate (IS) are also associated with a
greater prevalence of aortic calcification and vascular stiffness among CKD patients [15] and paralleled
the severity of VC among patients with ESRD [16]. It is then reasonable to infer that uremic toxins,
besides as a surrogate for the degree of renal function decline, can directly contribute to the emergence
of uremic VC.

4. Classification of Uremic Toxins

As proposed by the European Uremic Toxin (EUTox) workgroup [17], candidate uremic toxins are
recognized when they are retained during periods of renal function decline. An increasing proportion
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of these compounds is revealed to exhibit harmful health influences. These uremic toxins can be simply
divided according to their molecular size, water solubility, and protein-binding status. We will provide
a brief outline of some of the well-established VC-relevant uremic toxins below.

4.1. Small Molecular Eeight Less Than 500 Da

These are prototypic, including urea, creatinine, calcium, inorganic phosphate, and polyamines [17],
although currently, some researchers have excluded calcium and phosphate from this list. Classic uremic
toxins such as urea, once thought to be health-neutral, and have been found to induce alterations in
intestinal barrier, facilitating bacterial translocations and endothelial dysfunction [18]. The list of small
molecular uremic toxins now evolves to include uric acid and acrolein because of their close relationship
with oxidative metabolism of endogenous proteins and lipids. Trimethylamine (TMA) and TMAO
have also been shown to increase stepwise with deteriorating renal function, and the administration of
these molecules to experimental animals can induce renal damages, vascular inflammation, and alter
cholesterol metabolism [19].

Small Molecular Uremic Toxins and Uremic VC

Experimentally, a myriad of evidence indicates that the retention of small molecular uremic
toxins, such as inorganic phosphate, precipitates VC. The model of phosphate-induced osteoblastic
trans-differentiation of VSMCs has assumed widespread popularity as an experimental approach for
studying VC [2]. Mechanisms underlying the phenotypic switch include not only the upregulation
of Wnt/β-catenin, bone morphogenetic protein (BMP), and pro-inflammatory nuclear factor-κB
(NF-κB) signaling, as well as the suppression of Klotho expression, but also potentially epigenetic
anti-calcification machineries [20,21]. Inorganic phosphate was also shown to retard the process of
osteoclastogenesis through downregulating miR-223 and potentially de-inhibiting the osteoblastic
activity in uremic blood vessels [22]. TMAO, another small uremic solute, is also shown to promote
vascular inflammation and VC through activating inflammasomes and inducing NF-κB expressions [23].
Exposure to monosodium urates and increased uric acid concentrations, in an in vitro model,
also induces an upregulation of Wnt3a and RUNX2 expressions in cultured VSMCs [24].

4.2. Large Molecular (Middle Molecule) Uremic Toxins

These large molecules are more difficult to tackle compared with small molecular ones, because of
the inefficient removal using conventional dialysis modalities. The terminology of these molecules can
be diverse, ranging from middle molecules [25], large molecules [26], to large middle molecules [27],
but the members of this category of uremic toxins are essentially similar. These toxins, including
fibroblast growth factor-23 (FGF-23); leptin; interleukin families such as interleukin-1β (IL-1β), IL-6,
and IL-18; tumor necrosis factor-α (TNF-α); and advanced glycation endproducts (AGEs), also play
an important link between CKD and cardiovascular morbidity [26].

Large Molecular (Middle Molecule) Uremic Toxins and Uremic VC

Similarly, several studies have demonstrated that TNF-α and interferon-γ exposure induced VSMC
calcification in cell models, and this process was reversible upon anti-inflammatory treatments [28].
These inflammatory cytokines are partially responsible for VC development through upregulating
NF-κB and Wnt-3a/7a expressions, and activating early osteoblast differentiation signals such as Msx2
and osterix [29]. AGEs also exhibit a VC-inducing capacity through increasing the expressions of AGE
receptors, elevating oxidative stress severity and triggering VSMC apoptosis [30]. These uremic toxins
collectively account for the heightened risk of vasculopathy, especially VC, observed in patients with
CKD and ESRD [2,12].
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4.3. Protein-Bound Uremic Toxins

These are among the most influential factors that contribute to adverse influences including
several prototypes such as IS and p-cresyl sulfate (pCS) [31]. Dietary aromatic amino acids, after being
deaminated and decarboxylated by colonic microbes, become phenolic compounds such as p-cresol,
which is processed to pCS through detoxification in liver as well as colonic mucosa. Dietary tryptophan,
on the other hand, is converted to indole by colonic microbes, which is further metabolized by liver
into IS. Both IS and pCS act as typical uremic toxins by showing direct cytotoxic effects to hepatic cells,
myocardium, and renal tubular cells, in animal experiments and human studies [32].

Protein-Bound Uremic Toxins and Uremic VC

Their crucial role in the pathogenesis of VC is increasingly recognized [33]. Aside from stimulating
the activity of various NADPH oxidases (Nox) and suppressing anti-oxidant levels, IS causes higher
oxidative stress and alters the proliferative ability/survival of cardiomyocytes and VSMCs, thus setting
the background of subsequent VC appearance in uremic patients [34]. In the uremic environment,
IS has also been found to induce CpG hypermethylation involving Klotho in VSMCs, silencing these
instrumental calcification inhibitors and predisposing them to the development of VC [35]. Vasoactive
miRNAs, including miR-29b [36] and miR-125b [21], have been shown to be suppressed, leading
to Wnt-7b/β-catenin up-regulation in IS-triggered VC in experimental models. The VSMC fate of
progressive phenotypic change to osteoblast-like cells upon IS exposures also involves PI3K/Akt
pathway upregulation [37]. Specifically, high phosphate condition can upregulate PiT-1 expressions
and increase calcium deposition in treated VSMCs [38]. In addition, IS activates the proinflammatory
macrophages through notch signaling to accelerate atherogenesis and potentially VC [39]. It is also
demonstrated that CKD rats undergoing long-term pCS feeding had greater aortic and peripheral
arterial calcifications, accompanied by coagulation cascade activation and aggravated inflammation [40].
In light of findings from these reports, protein-bound uremic toxins, in serum levels approximating
those in ESRD patients, appear to be a main driving force for perpetuating VC and aggravating
its severity.

A summary of the pathogenic connection between uremic toxins and uremic VC is shown in Figure 1.
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Figure 1. A schematic diagram showing the potential contribution of different size groups of uremic toxins,
from small molecules, large molecules, to protein-bound ones, to the development of uremic vascular
calcification. AGE, advanced glycation endproduct; BMP, bone morphogenetic protein; IL, interleukin;
IS, indoxyl sulfate; miR, microRNA; Pi, inorganic phosphate; TMAO, trimethylamine-N-oxide; TNF, tumor
necrosis factor; UA, uric acid; VSMC, vascular smooth muscle cell.
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5. Existing Options of Therapeutic Uremic Toxin Reduction for Managing VC

Judging from the importance of uremic toxins to cause uremic VC, it is tempting to devise
treatments against VC by lowering these toxins (Figure 2). There has been a call for adopting similar
strategy to manage other difficult-to-treat complications stemming from CKD [41]. Several approaches
have been attempted, as simply outlined below.
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Figure 2. A brief summary of existing strategies for reducing uremic toxin levels and their related
complications, especially uremic vascular calcification.

5.1. Extracorporeal Toxin Removal

Artificial kidneys aiming to remove circulatory uremic toxins are the cornerstones for this
toxin-directed approach. Conventional dialytic modalities efficiently extract small molecules like
inorganic phosphate and uric acid (Figure 2). However, for larger molecular toxins such as interleukins,
TNF-α, and FGF-23, alternative dialytic regimens are frequently required to enhance their removal.
The reduction of protein-bound uremic toxins through the existing dialytic modalities is particularly
difficult and inefficient. More complex material and biomechanical design are needed in order to
overcome these barriers [42].

5.2. Dietary Modification with Ketoacid Supplementation

Dietary manipulation is an alternative approach to reduce uremic toxins (Figure 2).
Several small-scale studies have shown that a very low protein diet combined with ketoacid
analogues supplementation potentially reduces uremic toxin production among patients with advanced
CKD [43]. Moderation of dietary animal proteins with an increasing fiber content was found to lower
protein-bound uremic toxin generation in patients with an estimated glomerular filtration rate (eGFR)
< 60 mL/min/1.73 m2 [44]. A substantial concern that long-term dietary approach for toxin reduction
may introduce malnutrition and neutralize the original benefits remains. Several features of these
dietary modifications are also challenging to patients’ perseverance [45].

5.3. Interventions through the Gastrointestinal Tract: An Emerging Approach

Treatments delivered through the gastrointestinal tract are now gaining attention in modern
research to manage toxin-related complications. Indeed, the importance of a kidney-gut axis has
been upheld in recent years. Progressive renal function impairment is frequently accompanied by
a deranged gastrointestinal bacterial homeostasis (dysbiosis), owing to uremia-induced gastrointestinal
motility and permeability changes via the direct effect of uremic toxins and/or their metabolites on
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colonic microenvironment [46]. Gut dysbiosis, in turn, contributes to adverse vascular remodeling
(kidney–gut–vascular effects) and an increased cardiovascular risk among patients with ESRD [46].
The altered host gastrointestinal microenvironment increases the rate of colonic protein fermentation,
leading to a greater production of IS and pCS, both experimental precipitators of uremic VC [46–48].
It seems to be promising to target the gastrointestinal tract, especially gut dysbiosis, as a means to
ameliorate cardiovascular morbidity and even VC in renal patients [49].

6. Gastrointestinal Decontamination for Toxin Removal and VC Counteraction

Apart from microbiota modulation, there are other plausible interventions aiming to reduce
uremic toxins through the gastrointestinal route. The concept of “gastrointestinal decontamination”
has been embraced by the healthcare community for treating poisoning for decades. Through
the timely removal of harmful substances and the prevention of gastrointestinal toxin absorption,
gastrointestinal decontamination assists in optimizing patient outcomes. Recently, this approach
is further adopted from diverse fields, for example, the use of non-absorbable antibiotics to exert
gastrointestinal decontamination on attenuating intestinal inflammation and reducing the risk of
graft-versus-host disease in patients undergoing hematopoietic stem cell transplantation [50] and
selective decontamination of the digestive tract (SDD) in critically ill patients with various infections
(ventilator-associated pneumonia, and resistant bacteria colonization) [51,52]. Based on these relevant
and positive findings, we propose and repurpose that “gastrointestinal decontamination” may be
reasonably adapted for uremic toxin to ameliorate uremic VC, as detailed below (Figure 3).
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6.1. Gastrointestinal Phosphate Unloading

Tight control of the serum phosphate level reduces VC through the reduction of secondary
hyperparathyroidism, calcium phosphate product, and active mineralization protein deposition in
vascular cells [53]. In addition to the restriction of dietary organic and inorganic phosphate intake,
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several medications are also capable of removing phosphate or decreasing phosphate absorption from
the gastrointestinal tract.

6.1.1. Phosphate Binders

Each class of these phosphate binders has their strengths and drawbacks (Table 1) (part of the
content from [53,54]). Traditional phosphate binders, especially calcium-based ones, fail to decrease
VC extent, presumably because of the efficacy offset by their calcium burden. A recent cohort study
showed that calcium-based phosphate finders significantly increased the risk of cardiovascular events
compared with non-users among patients with pre-dialysis CKD [55]. Newer classes of phosphate
binders, including lanthanum carbonate and sevelamer, have been anecdotally shown to retard coronary
artery calcification and modestly lower pulse wave velocity in CKD and ESRD patients [56,57], as well
as mortality in CKD patients [58]. However, their ability to slow the extent of VC seems lost in those
with normal serum phosphate levels, casting doubt on the exact efficacy of these newer non-calcium
phosphate binders [59]. Iron citrate, a more recent member of phosphate binders, ameliorates vascular
calcification through decreasing gastrointestinal phosphate availability and absorption in animal
models of CKD and potentially in clinical settings [60]. Oral iron citrate administration is also found to
favorably modify extracellular matrices in vascular media constituents, reducing or even reversing
calcification [61]. These data evidently support that the reduction of gastrointestinal phosphate quantity
through selective binding can be a useful option for managing uremic VC. However, the use of
non-calcium-based phosphate binders in those with earlier stages of CKD has not consistently altered
the severity of CKD-mineral bone disorder (MBD) biochemically and anatomically. Furthermore,
the types of phosphate binders have been shown to affect the bioavailability of intestinal vitamin K as
an inhibitor of VC. An in vitro study hints at the possibility that calcium and lanthanum carbonate
potentially bind to vitamin K, preventing their absorption [62]. Furthermore, the vitamin K-lowering
effects of phosphate binders may also lead to impaired cholesterol metabolism [63], modifying the
subsequent risk of atherosclerosis and VC as well.

6.1.2. Inhibitors of Intestinal Phosphate Absorption

Inhibition of gastrointestinal phosphate absorption appears to be new plausible option for
reducing the vascular toxicity posed by phosphate. Several small molecules including nicotinamide
(a sodium/phosphate cotransporter inhibitor) and tenapanor (a minimally absorbed inhibitor of gut
sodium/hydrogen exchanger) stand at the forefront of this approach [64]. Although nicotinamide use
is shown to induce rapid and sustained reductions in serum phosphate levels among treated CKD
patients [65], a recent study casted doubt on the presumed benefit of nicotinamide on VC. Kaesler et al.
found that oral nicotinamide increased soft tissue calcification and VC in CKD mice as compared with
gastrointestinal magnesium carbonate administration [66]. Tenapanor, acting via a non-phosphate
binding mechanism, has been shown in animals to reduce intestinal paracellular and active transport
of phosphate, increasing stool phosphorus content, while lowering urinary phosphate excretion [67].
Tenapanor was first tested in phase I to II trials for its hypophosphatemic efficacy, with favorable
results generated [68]. A recent phase 3 randomized controlled trial demonstrated that tenapanor
administered twice daily significantly reduced serum phosphate levels by 1.0 to 1.2 mg/dL over 8 weeks
in hemodialysis patients [69]. This effect is also accompanied by a prominent reduction of FGF-23,
suggesting that potential vascular benefits may exist despite unwanted side effects of diarrhea [68].
Tenapanor has been approved for use in patients with irritable bowel syndrome with predominant
constipation in United States during 2019 [70], and is currently awaiting the approval of another
indication, for serum phosphorus control in patients with dialysis-dependent ESRD. More evidence is
currently needed to elucidate whether intestinal phosphate transport inhibition truly confers a vascular
benefit in patients with CKD and ESRD.
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Table 1. Comparisons of features between different phosphate binders.

Phosphate Binders Binding Efficacy * Calcium Load * Effect on
FGF-23 Effect on PTH Effect on

1,25-(OH)2-vit D
Effect on
Survival Side Effects

Calcium-based
(carbonate, acetate, citrate) + + ~ +++ None Decrease Decrease None Hypercalcemia, ectopic calcification

Non-calcium-based

Magnesium-based + − ? Decrease Increase
(potential) None Diarrhea, magnesium overload

Iron-based + ~ ++ Decrease Decrease Increase
(potential) None Diarrhea, iron overload

Sevelamer + ~ ++ − Decrease Decrease Increase Improve Constipation, metabolic acidosis
(if HCl group)

Aluminum hydroxide +++ − ? Decrease ? None Aluminum toxicity, adynamic bone
disease, constipation

Lanthanum carbonate ++++ − Decrease Decrease None Improve Constipation

FGF-23, fibroblast growth factor-23; PTH, parathyroid hormone; vit D, vitamin D. * For describing the strength of influences (each column) associated with each phosphate binder,
the symbols +, ++, +++, and ++++ are used in order of perceived increasing efficacies. The minus (−) symbol represents the absence of such influence.
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6.2. Reduce Gastrointestinal Calcium Exposure

It should be emphasized that uremia is a state of calcium overload [71]. Prior studies suggested
that excess calcium load contributed to cardiac calcification in patients with ESRD [72]. Calcium load
from the consumption of calcium-based phosphate binders apparently contributes to worsening VC
through inducing unwanted hypercalcemia and compromised calcium dynamics. Clinically speaking,
a meta-analysis involving randomized controlled trials comparing different phosphate binders indicated
that calcium-based phosphate binders incur significantly more hypercalcemic episodes than sevelamer
(vs. calcium, relative risk [RR] 0.3) or lanthanum carbonate (vs. calcium, RR 0.16) [53]. Hypercalcemia
has been well iterated as a potential risk factor for VC occurrence and progression [5]. Experimentally,
higher ambient calcium concentrations directly lead to medial aortic calcification potentially through
up-regulating PiT-1 [73] and others. Furthermore, anecdotal reports revealed that dietary calcium
amount could similarly augment the risk of coronary artery calcium in patients with CKD [74]. It would
be prudent to limit the gastrointestinal exposure of calcium in order to attenuate subsequent risk of VC.

6.3. Magnesium Competition: A Value-Added Approach

Magnesium has gradually been recognized for its potent inhibitory effects on the calcification
process involving vasculature. Epidemiological studies have consistently revealed that serum
magnesium levels inversely correlate with the presence, the severity, and the rate of progression of
VC in patients with CKD and ESRD [75]. In animals with CKD, the gastrointestinal administration
of magnesium carbonate effectively controlled phosphate availability and lower serum phosphate
levels [76]. Moreover, magnesium carbonate dose-dependently attenuated serum parathyroid hormone
concentrations and lowered aortic calcium amount as compared with neutral results in the sevelamer
group. The mechanisms through which gastrointestinal magnesium delivery ameliorate VC include the
local competition for phosphate binding and, more instrumentally, the systemic effects of calcification
inhibition besides the phosphate-lowering efficacy [75]. Magnesium is shown to interfere with the
formation of calcium hydroxyapatite, inhibit VSMC L-type calcium channels, and alter the expression
of calcium-sensing receptors in parathyroid glands [75].

Consequently, gastrointestinal toxin decontamination based on magnesium administration may
theoretically bear both local and systemic benefits in terms of vasculo-protection.

6.4. Oral-Activated Charcoal Administration

Oral charcoal-based removal of protein-bound uremic toxin may be a useful choice to counteract
VC. In vitro studies already support the feasibility of this approach [77]. Researchers already
harness oral adsorbents for managing uremic VC experimentally [78–84] and clinically [85–87].
The plausible mechanisms underlying this calcification-reduction effect of activated charcoal can be
multi-faceted, including less reactive oxygen species production, attenuated vascular ageing [80],
lowered inflammatory mediators, and fibrokines [82]. However, the dosage of oral-activated charcoal
and the duration of treatment could be effect modifiers [80,82]. Clinically, there were three studies
administering oral-activated charcoal as uremic toxin adsorbents to treat uremic VC in patients with
non-dialysis CKD (Table 2). A randomized controlled trial involving patients with earlier CKD (3 to 4)
found that 12 months of oral activated charcoal led to progressively lower coronary artery calcium
scores in the treatment group than those using calcium carbonate [86]. However, Sakaguchi et al.
revealed that this treatment did not slow down coronary artery calcification [87]. It may be more
reasonable to selectively choose patients with more severe CKD and a greater degree of VC to address
the utility of this approach.
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Table 2. Clinical studies focusing on the therapeutic effect of uremic toxin adsorbents on VC in patients with CKD.

Adsorbent Types Dose VC Measurement Methods Effects Baseline Renal
Function

Number of
Patients Reference

AST-120 5.1 ± 1.4 g/d Abdominal aortic calcifications in
abdominal CT

Lower aortic calcification
index in users

Stage 4 to 5
(pre-dialysis) 199 [85]

Activated charcoal 1.8–3.6 g/d Coronary artery calcifications in
multidetector CT

Lower coronary calcium
scores in users Stage 3 to 4 97 [86]

AST-120 6 g/d
Coronary artery calcifications and

thoracic aorta calcifications in
multidetector CT

No differences in coronary
calcium scores or aortic

calcification
Stage 3 to 4 96 [87]

CKD, chronic kidney disease; CT, computed tomography; VC, vascular calcification.
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6.5. Gut Microbiota Manipulation

Preliminary studies revealed that microbiota modulation through manipulating dietary
composition might attenuate the extent of atherogenesis in animal models [88]. The use of prebiotics
consisting of non-digestible carbohydrates to pre-emptively change microbiota [89] has also been tested
in patients with CKD and ESRD. Most of these clinical studies, albeit small-scale, yielded promising
results, such as lower pCS generation rates with reduced serum IS levels in treated patients [90,91].
The probiotics harnessing live microorganisms to improve host health are similarly expected to exert
a toxin-reduction effect. Indeed, the findings from pilot studies support the potential utility of probiotics
in attenuating serum markers of inflammation and oxidative stress among patients with ESRD [92,93].
Nevertheless, the influence of prebiotics and probiotics on cardiovascular outcome or VC has not been
tested. More vascular endpoints in design should be available in the near future.

7. Future Perspectives

The pathogenesis of uremic VC, from the current understanding, includes VSMC phenotypic
switch upon noxious metabolic stimuli; rising oxidative stress; a pro-inflammatory environment;
the declined anti-calcific factors; and, most importantly, the adverse influences posed by various
uremic toxins. Small- and large-size uremic toxins as well as protein-bound ones each predispose CKD
or ESRD patients to develop uremic VC. Interventions aimed to neutralize uremic toxins have since
been embraced as potential therapeutic options for uremic VC. The gastrointestinal tract serves as both
a source of uremic toxin generation and the route of treatment delivery. The concept of gastrointestinal
decontamination through the elimination or the prevention of toxin absorption within the gut can be
an integrative approach for ameliorating VC. Administration in combinations to target uremic toxins is
expected to counteract VC from different dimensions and act synergistically. The quest for an optimal
VC management strategy in CKD and ESRD is still underway [94]. Hopefully, we will be able to have
a new choice in our armamentarium against uremic VC through the gaining of more understanding
in this field.
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