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Abstract: Traditional biochemical research has resulted in a good understanding of many aspects of 

metabolism. However, this reductionist approach is time consuming and requires substantial 

resources, thus raising the question whether modern metabolomics and genomics should take over 

and replace the targeted experiments of old. We proffer that such a replacement is neither feasible 

not desirable and propose instead the tight integration of modern, system-wide omics with traditional 

experimental bench science and dedicated computational approaches. This integration is an 

important prerequisite toward the optimal acquisition of knowledge regarding metabolism and 

physiology in health and disease. The commentary describes advantages and drawbacks of current 

approaches to assessing metabolism and highlights the challenges to be overcome as we strive to 

achieve a deeper level of metabolic understanding in the future.  
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1. Background 

Historically, our understanding of metabolism was achieved by piecing together data 

meticulously obtained by reductionist biochemical and genetic approaches, predominately in bacteria. 
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While unquestionably successful, these efforts required considerable research hours and vast 

resources. Further, they tended to advance the field incrementally over a span of decades. In the 

current era of rapid technological advances, some consider this pace unacceptably slow, and a  

cost-benefit analysis raises the question whether modern technologies, and in particular various 

omics methods, can accelerate the rate of progress in metabolic and physiological understanding 

without compromising the high-quality standards of traditional methods. 

The disciplines of genomics and metabolomics continue to evolve and have proven to be game 

changers in biological data acquisition, but they are not without shortcomings. While these 

technologies can generate datasets of unprecedented volume and oftentimes technically excellent 

quality, the demonstration of biological relevance and reliability has not always been maintained. 

Genomic approaches come with the caveat that gene sequences are several steps removed from the 

actual function of metabolic and physiological processes, which implies uncertainty regarding 

genome-based metabolic insights. Indeed, targeted studies have suggested that transcriptomic and 

proteomic changes often do not correlate well [1–5]. Metabolomics, while providing data closer to 

cellular function, is currently limited by difficulties in reproducibly quantifying metabolite 

concentrations across replicates and experiments. Also, metabolomic data alone are not particularly 

informative regarding the processes governing a pathway system. We suggest that future 

understanding of metabolic network structure and function is best achieved by the simile of a three-

legged stool: an approach that tightly combines classical biochemical-genetic experiments with 

global omics techniques and a pipeline of computational methods of analysis. The analogy appears to 

be suitable since in the absence of any one leg, the stool cannot stand, but when all legs are present, a 

three-legged stool is exceptionally stable. Similarly, the simile aptly describes the need for successful 

integration of the three indicated approaches in efforts to understand metabolic systems.  

2. Metabolism is central to understanding biology 

A well-balanced and robust network of biochemical processes is a fundamental feature of any 

living system. Metabolism, directly or indirectly, affects all cellular functions and is thereby at the 

very heart of our understanding of life. While genes often receive credit or blame in health and 

disease, perturbations in metabolism, resulting in the accumulation of a toxic metabolite, or the lack 

of a needed metabolite, are associated more directly with pathology [6,7]. In fact, a fundamental 

question in biology is how the relatively small number of products encoded in the genome can 

generate the diverse and seemingly unlimited number of phenotypes observed in organisms from 

bacteria to humans. In other words: How are the products that are encoded in the genome (genotype) 

functionally integrated and regulated to result in metabolic pathways and processes that together 

generate the vast variety of robust and efficient physiologies (phenotypes) found in living cells?  

The current body of metabolic knowledge is the culmination of decades of research hours, in 

which genetic and biochemical experiments, both in vivo and in vitro, defined biochemical reactions, 

their regulation, and associations with other cellular processes. This collective scientific effort 

generated advances that were then painstakingly pieced together into an enormous fundus of 

scientific articles and textbooks that describe our cumulative metabolic knowledge. More recently, 

these data have been morphed into comprehensive websites like KEGG [8], MetaCyc [9], BRENDA [10]. 
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These printed and electronic resources are invaluable for studies that involve biological systems. The 

current data inventories are comprehensive but certainly not complete; a realization that emphasizes 

the continued need for the discovery of new metabolic components and their modes of regulation. 

An important contribution of experimental approaches is the definition of paradigms, patterns 

that correlate with the presence of certain enzymes, gene regulation, or other cellular properties. 

Paradigms might include structural features of a protein that predict the involvement of a specific 

cofactor or catalytic activity, DNA binding sites that suggest inclusion in a regulon, or phenotypes 

that predict the presence of a pathway or function. Significantly, a paradigm has hallmark features 

that can be used to predict (or at least postulate) the presence of a regulon and/or metabolic pathway. 

For instance, if addition of exogenous cAMP reverses a nutritional phenotype, one immediately 

invokes the paradigm of catabolite repression [11]. Such a finding then predicts, and indirectly 

supports, a number of pathway properties that had not been directly tested. The value of a well-

documented paradigm is that it minimizes (but does not eliminate) the experimental work necessary 

to arrive at reliable conclusions, thereby reducing the need to reinvent the wheel in studies of each 

new organism. While this strategy naturally comes with some caveats, and exceptions do occur, it 

has turned out to be an effective approach to advance our knowledge of diverse organisms.  

3. Generation of fundamentally new knowledge remains challenging, and essential 

Extrapolations from paradigms relieve some experimental redundancy. However, further 

accumulation of new knowledge is critical for defining additional paradigms that move our 

understanding of metabolism forward. This new knowledge is highly dependent on experimental 

rigor and data validation, but the required data acquisition is likely to be costly and time-consuming. 

The advent of omics technologies brings hope that transcriptomic and metabolomic data will offer 

new metabolic insights in a more cost- and resource-efficient manner, as long as it is ascertained that 

these data are of sufficient rigor and pass biological vetting, as described below. 

The increasing ability to generate system-wide snapshots of the inner workings of a cell has 

raised our expectations of what is possible and led some bold scientists to conclude that a full 

understanding of the living cell is just around the corner. The truth might not be quite as rosy. On the 

positive side, vast datasets can be generated with comparatively little effort. They shed light on 

correlations between data points in a way that was not possible with the piecewise approach that 

dominated experimental biology prior to the advancement of global technologies. Computational 

methods of machine learning and big data analysis can quantify these often complicated, nonlinear 

correlations and allow the investigator to make predictions and generate hypotheses in the context of 

the whole cell. The value of such a systems-level approach is that it can uncover trends that would 

not be seen if one was looking at the read-out of one or a few metabolites or enzymes. No doubt, 

pursuing hypotheses that were extracted from global datasets has collectively resulted in the 

generation of a substantial body of new biological knowledge.  

On the negative side, the vast increase in data generated per unit of effort sometimes leads to a 

relaxed standard for proof of biological significance, as if somehow the sheer mass of data would 

obviate the need for deeper biological queries that are more difficult and time consuming to pursue. 

This risk of a decreased demand for rigor can negatively affect our mechanistic understanding by 
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overlooking salient data, or worse, drawing invalid conclusions that may take hold and become 

propagated in the literature. Moreover, the dissemination of data from high-throughput technologies 

has resulted in a subliminal trend where one is tempted to accept the results of large-scale 

experiments without appropriate critique or analyses of potential caveats. This ready acceptance 

raises a number of questions: Are we willing to accept conclusions based on cursory analysis, just 

because so many data points appear to support them? Due to the fact that many conclusions are now 

drawn by machine learning experts, is there a noticeable risk that the data are biologically 

inconsistent with our existing body of knowledge? Are we getting intellectually lazy?  

If conclusions based on the global results of an omics analysis appear to conflict with our 

intuition or knowledge base, what should our response be? Are we skeptical of the new technology 

and experimental design, which may include presumably error-free robotic execution of the 

mechanics of the experiment? Or do we question past results obtained by traditional experimentation? 

If we choose the latter, does it represent an inappropriate infatuation with newness and technological 

advancement? Clearly, it is necessary to be aware of the pitfalls and caveats of all methods, but it 

seems that they are particularly insidious in the realm of omics. As a remedy, we suggest here a 

strategy of combining traditional and omics approaches in efforts to understand metabolism in the 

most efficient and reliable manner. Specifically, the significant potential of omics approaches should 

be tempered by rigorous, intrinsic quality checking and by extrinsic vetting against the traditional 

body of biological knowledge.  

4. Defining metabolic potential from gene sequences: pros and cons 

Improvements in sequencing, and correlations between sequence and function, allow the rapid 

annotation of genomes, which in turn can be used to predict the metabolic processes that occur in 

poorly characterized, or even non-culturable microorganisms. This inference strategy, which has 

become very popular, is based on the reasonable assumption that metabolic systems in related 

species are more similar than different, an assumption generally supported by genomic and 

functional analyses. Indeed, this strategy has resulted in efficient predictions regarding the metabolic 

capacity (phenotype) of an organism based on the enzymes encoded by its genome (genotype). For 

instance, based on our understanding of the TCA cycle and the enzymes required for its function, we 

can classify organisms as competent or incompetent to utilize succinate based on the genomic 

presence of the required enzymes. Moreover, this conclusion is made without an experiment, a pure 

culture or even a complete genome. Of course, these annotation-dependent, functional predictions 

and metabolic models are not without caveats. But even if they were 100% accurate, our 

understanding of the relationship between genotype and phenotype would remain critically 

incomplete, as we discuss next.  

At issue are two core shortcomings of the genome-homology-based strategy of metabolic 

reconstruction and its ability to provide physiological insights. First, the existence of a particular 

gene, coding for an enzyme of interest, is a necessary but not sufficient condition for the enzyme to 

be active, and the litany of possible regulatory interventions, including induction, repression, post-

translational modification, and others, in the chain of processes from DNA to active protein is long. 

Also, it is essentially impossible to detect single amino acid exchanges that could not only influence 
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enzyme activity, but even substrate specificity. In addition, annotation and metabolic modelling are 

often strongly impaired in understudied bacterial and archaeal phyla due to high numbers of 

hypothetical proteins. As a consequence, the inference of metabolic network architecture from gene 

sequence, transcription profiles or proteomics is quite indirect. Second, assuming the isolated 

enzymes do have the function ascribed by their genomic annotation, using this activity to define 

metabolic potential incorrectly assumes that, when the parts are the same, the metabolic network 

structure and its function will be the same. It has by now become clear that this is not always a valid 

assumption, reducing the confidence with which metabolism can be reconstructed simply from 

genome information [12–14]. It seems fair to say that, at present, we do not have the means to 

predict metabolic state or function reliably from knowledge of the network components encoded in 

the genome. 

So, what is lacking? The inference from a genome yields the prediction of a metabolic network. 

This network contains nodes (metabolites) and connecting edges (reactions; enzymes). The 

connectivity is of obvious importance, but it is insufficient to understand the true capacity of the 

system, because critical contributors to the metabolic system structure cannot yet be extracted from 

genome sequence. Critically, the amount and type of material that normally flows, or can potentially 

flow, through a particular enzymatic reaction is not discoverable from the genome sequence. 

Secondly, genome annotation depends on known pathways and paradigms and is therefore not able 

to predict new or recruited pathway structures. Finally, one might add that it is difficult to retrieve 

the regulatory structure of a pathway solely from genome sequence. 

Two specific examples will illustrate these challenges. First, a system that feeds back on itself 

(e.g., Figure 1) may exhibit qualitatively different responses, depending on the kinetic properties of 

the involved enzymes. With exactly the same structure, but with different values of the various 

kinetic parameters associated with enzymes and metabolite pool sizes, the system may respond to a 

change in input by: moving to a different state; briefly over- or undershooting; exhibiting damped 

oscillations; or entering a pattern of sustained oscillations [15,16]. Because the distinguishing 

numerical details cannot be gleaned from genome information, the true phenotypic behavior of the 

pathway cannot be predicted. 

The second example illustrates that predictions of pathway integration, and thus network 

behavior, are not reliable if any of the relevant metabolites have roles outside the primary pathway. 

Consider the diagram in Figure 2, which represents an actual metabolic pathway, although with 

significant simplifications [17–21]. The figure schematically compares two similar organisms. The 

crucial point of the comparison is that phenotypes are governed by the integration and regulation of 

all metabolic components, not simply by the presence of the component enzymes.  

Figure 2a depicts the flux through the pathway during balanced growth of Organism 1, where 

metabolites A–E are present at their nominal concentrations. Genotypic analysis would reveal that 

enzymes Enz1–Enz4 are indeed encoded by the genome and correctly predict that Organism 1 can 

synthesize product E. Figure 2b represents essentially the same pathway in Organism 2. Genome 

analysis would again demonstrate the encoding of enzymes Enz1–Enz4, and support the notion that 

Organism 2 can synthesize compound E. However, it is quite possible that the pathway flux during 

balanced growth is different from the flux in Figure 2a, and that, for instance, the concentration of 

metabolite C is significantly elevated. This quantitative difference could be due to any number of 
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possibly subtle changes in the relevant enzymes (e.g., less active enzyme Enz3, more active enzyme 

Enz1 or Enz2, both effects simultaneously, or other constellations). Importantly, the altered flux 

pattern and elevated level of metabolite C can have profound phenotypic implications by inhibiting 

processes or systems outside the pathway or activating others.  

 

Figure 1. Illustration pathway with feedback. A linear metabolic pathway (blue arrows) 

generates metabolite Z, where Z exerts feedback (green arrows) onto the reaction step 

between metabolites X and Y. This feedback could also occur in the form of competitive 

or allosteric inhibition. Here, it is not purely metabolic, but affects the production of a 

transcription factor TF, which promotes expression of gene G, which codes for enzyme E 

that catalyzes the conversion of X into Y. How does the pathway respond to a change in 

input? Intriguingly, the answer is complicated: without numerical values determining 

flux rates and effector strengths, it is impossible to predict its responses. The metabolites 

may assume a new steady state, they may exhibit damped oscillations, or they may even 

assume a mode of ongoing (limit cycle) oscillations. Adapted from [15,16].  

 

Figure 2. Schematic illustration of pathway interactions in two organisms. A generic 

pathway containing enzymes Enz1–Enz4, generating metabolites A–D and forming 

product E is shown. Panel a: diagram of the pathway in Organism 1 at equilibrium 

growth. Panel b: in Organism 2, metabolite C accumulates during equilibrium growth 

and affects the function of other pathways negatively or positively. 

Thus, although the genomes of the organisms represented in Figure 2a, b encode exactly the 

same enzymes, standard genomic analyses would incorrectly predict the two organisms to have the 

same phenotype: Yes, they can both synthesize product E, but the analysis would fail to recognize 

TF

X Y ZInput

GE
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any phenotypic consequences of the altered level of metabolite C, which could be significant for the 

fitness of the organism. 

The two examples illustrate the importance of an additional layer of information flow that, on 

top of the stoichiometric network of connections, determines metabolic behavior. The subtle 

intricacies of this layer of control and regulation are responsible for the plasticity and adaptability 

that is characteristic of metabolic systems and critical for their responsiveness to perturbations due to 

external or internal signals [15–17,22–27]. Critically, these subtleties are not detectable in the 

network structure of a pathway, i.e., its connectivity, but are fine-tuned, quantitative features of the 

mechanisms that control them. While intuition fails in this situation, higher-order metabolic 

properties are, at least in theory, deducible by combining information from gene expression with 

global measures of metabolites and the support of efficacious computational models. 

5. Current metabolomics: pros and cons  

Broadly speaking, two complementary strategies are being pursued in metabolomics today. The 

first seeks to detect as many compounds in a biological sample as possible, despite the fact that many, 

if not most, cannot be identified as known metabolites. Nevertheless, this strategy can provide 

evidence of metabolic divergence, for instance by comparing the metabolomes of a healthy cell and a 

cancer cell [28–30]. The alternative to this global approach involves the more modest goal of 

monitoring and quantifying fewer compounds—maybe at the order of 100—of known  

identity [31,32]. Clearly, this alternative robs metabolomics of some of its appeal, but it is beneficial 

for interpretation and further analysis of questions such as those posed herein. Together, the two 

metabolomics approaches have the potential to facilitate understanding of the properties of 

metabolism. After all, the metabolic content of the cell at any given time reflects the consequence of 

all upstream activities, i.e., transcription, translation, flux control, pathway integration, as well as 

much of the downstream activity that is manifest in a healthy or abnormal phenotype.  

At least in principle, metabolomics can determine whether a specific metabolite is present, and 

at what concentration. Alas, what we need to understand metabolism is not only the concentration of 

each metabolite, but also details of the enzyme kinetics of each step. Whereas metabolomics appears 

to allow for the former need to be achievable in the future, the latter goal is currently impossible on a 

global scale, largely because each enzyme has distinct features and catalyzes different reactions. The 

hope is that the global snapshots of metabolites provided by metabolomics, combined with targeted 

traditional experiments, will one day provide the data needed to develop computational models of 

metabolism, and provide new insights into enzyme kinetics and pathway dynamics. 

6. The need for computational analysis 

In the past, paucity of data was usually the bottleneck of metabolic modeling; clearly, this 

situation has changed [33,34]. The sheer amount of information in a typical transcriptomics or 

metabolomics dataset leaves little doubt that computational means are needed to capture these 

datasets, organize them, and make them accessible. Effective mathematical and computational 

models are required to present the data in a useful format and allow them to be understood and 
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queried. Analysis based on these models allows us to identify inaccuracies and misconceptions in our 

current understanding of metabolic pathways, discover rules that govern the integration of high- and 

low-flux metabolic pathways, and predict the global effects of pathway disruption or metabolite 

accumulation.  

The first computational requirement for addressing a dataset is statistical analysis. The omics 

revolution has mandated expansions of biostatistics in entirely new directions. One deals with the 

fact that, in contrast to traditional experiments that investigated one or a few features with many 

replicates, metabolomic and genomic experiments target hundreds or thousands of features, often 

with comparably few replicates [35]. The second direction of statistical analysis evolved in response 

to exploratory omics experiments where it is a priori unclear what one might discover in the data 

output. The computational methods for extracting information from noise in these datasets fall into 

the domains of statistical machine learning, artificial intelligence, and big data analysis [36]. More 

often than not, these patterns are not identifiable with the unaided human mind as they consist of 

complex, typically non-linear correlations among the data. If a newly discovered pattern can be 

interpreted in terms of the biology of the investigated phenomenon, it ideally leads to a new 

hypothesis that correlates datasets to each other in a mechanistic, explanatory manner [37]. 

Hypotheses regarding the mechanisms governing a phenomenon may be straightforward, 

complicated, or possibly even counterintuitive. In the latter two cases, a casual mental analysis, or 

even a lab experiment, may not be sufficient to assess the veracity of the hypothesis. A potentially 

effective alternative of addressing this situation is the creation of an explanatory mathematical model, 

perhaps a dynamic model that is formulated as a set of nonlinear differential equations.  

Because multiple models may be formulated for the same system, arguably the most important 

inputs into the model design process are available data and the specific questions to be answered by 

the model, which will mandate structural features in the model that constrain the range of 

possibilities to some degree. If we follow the pipeline from raw data via statistics and machine 

learning toward testable hypotheses, both data and questions are given; however, data and questions 

can just as well come from traditional experiments.  

In addition to these considerations, a model structure must be chosen and implemented. The 

model structure includes variables that represent metabolites, enzymes, and modulators, as well as 

possibly other factors, and the equations that capture which of the variables contribute to changes in 

any of the variables over time. Typically, each equation contains terms contributing to increases 

(production) and decreases (utilization) of a variable. The existence or absence of these terms in each 

equation is dictated by the connectivity of the metabolic system. By contrast, the actual mathematical 

format of each term is a matter of debate, and while some defaults are being used time and again, it is 

in truth almost always impossible to choose objectively from among a variety of formulations [38–40]. 

The final input to the model design consists of parameter values, such as reaction rates and inhibition 

constants, which convert the model from a symbolic structure into a model specifically addressing 

the given pathway system and possibly a given dataset. The actual process of determining suitable 

parameter values that are predictive for given datasets is often complicated [41–43]. 

Once a dynamic model has been diagnosed and fine-tuned, it is ready for analysis, which raises 

the question: what are reasonable expectations from a metabolic model? A few typical expectations 

are the following: the model should permit an adequate account of various structural and regulatory 
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features and be capable of faithfully capturing the movement of metabolites throughout the pathway 

system. It should fit the data reasonably well, and explain responses of the system to perturbations. 

Finally, the model should be able to make reliable qualitative or quantitative predictions regarding 

untested situations, explain why organisms with the same genetic or metabolic components can still 

act differently, and be useable to compute a state of the pathway system that is optimal with respect 

to a given objective.  

Of course, today’s models often fall short of these idealized features. These shortcomings are 

partially due to overly limited, incomplete, and noisy data. Additionally, we often do not realize the 

importance of factors outside, or even inside, the pathway that have an effect on pathway 

components. On the mathematical side, it is not clear what functions best represent metabolic 

processes. Mass-action, Michaelis-Menten, and power-law models are often used as defaults, but 

there is no objective guarantee that any of these are generally optimal or correct; in fact, many other 

representations have been proposed [38]. For related reasons, most models should be expected to fail 

when asked to predict responses to drastic changes in the organism or its environment. Such failure 

is often due to unknown and/or ill-characterized response systems or internal constraints and the fact 

that all mathematical representations are approximations which cannot be extrapolated arbitrarily 

with satisfactory accuracy. Furthermore, methods of parameter estimation have greatly improved in 

recent times, but they are still far from ideal or even failsafe for large systems at the scale of omics 

data. 

In spite of these unsurprising limitations, metabolic modeling has become a valuable 

complement to experimentation and will continue to improve the characterization of regulated 

pathway systems of increasing size. One should also mention that a quickly expanding repertoire of 

metabolic modeling methods permits the use of different types of data, including metabolic 

responses to gene knock-downs [44], mass spectrometry results, metabolic time series obtained from 

NMR measurements [45,46], in addition to more traditional results. 

Some of the models of the recent past have been confirmatory, by integrating available 

information into a model that fitted data reasonably well, and was explanatory or predictive. In 

particular, many models have demonstrated that important metabolic components were missing or 

misrepresented, which led to necessary experimental investigation and adjusted explanations. In 

other cases, unknown modes of regulation were predicted by the model analysis, and specific single 

and double knockdowns were proposed, purely based on computational results, to achieve desirable 

phenotypes. 

In a different vein, the field of flux balance analysis, with hundreds of publications, has been 

targeting the optimization of metabolic yields or fluxes, typically based on static, whole-organism 

models derived by inference from genome information [47,48]. To a lesser degree, but with the 

promise of increased accuracy and reliability, fully regulated, dynamic models have been used for 

similar optimization purposes [49,50]. In both cases, the models predicted optimal system responses 

to targeted alterations in enzyme amounts or activities. 
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7. Bacterial case study  

Bacterial systems provide several advantages over other organisms for increasing our 

understanding of the relationship between genotype and phenotype. In particular, the ability to define 

the genotype of the organism quickly, coupled with ease of phenotypic analysis, provides a rich 

system to obtain corollary data and test hypotheses rapidly. Significantly, these studies have broad 

applicability, since the resulting paradigms will be relevant to other organisms due to the 

conservation of key aspects of central metabolism across the domains of life.  

The purine/histidine/thiamine (PHT) node of metabolism in Salmonella enterica was recently 

described as a model system in a proof-of-principle study to integrate quantitative metabolite 

measurements and biochemical-genetic experimental approaches with mathematical modeling [51]. 

The lessons learned from this study can be summarized by two points. 

First, generating a symbolic model of the PHT node without parameter values was 

straightforward. However, when critical data were collected from the literature to facilitate the 

design of an initial, fully parameterized computational model, lack of information regarding key 

enzymes and the diversity and unequal quality of the data available in the literature stalled these 

efforts. We turned to metabolomics data with the assumption that they would provide a single source 

of high-quality metabolite concentrations with which to refine the model. This assumption was not 

borne out, and initial work to query the metabolomes of relevant strains under appropriate conditions 

highlighted weaknesses in this approach [51].  

Secondly, while several positive correlations between metabolomics data and past knowledge 

were extracted from these datasets, they relied on general, qualitative trends across metabolomics 

data from several biological replicates and experiments. Further, the differences we found were 

seldom supported by a measure of statistical quality, so that it was difficult to assign significance to 

metabolic differences that, according to past work, were assumed to be true. Ultimately, the 

limitations in the experimental results were found to be due to significant, unexplained variation 

among replicates [51]. The conclusion was that current metabolomics techniques appeared to be 

nominally valuable in confirming biological conclusions, but less reliable in identifying unexpected 

changes in metabolic state. It is highly likely that, as the technology improves and biological 

variation can be minimized or somehow taken into account, it will become feasible to use these 

approaches to generate data of the quality and quantity needed for mathematical models, but we have 

not yet reached this point. 

8. Future 

At present, it is difficult to obtain reliable, quantitative metabolomics data across samples and 

experiments using LCMS platforms. It is worth noting that transcriptomics as a technology went 

through growing pains, and standards and statistical criteria eventually arose in the field as the 

technology gained traction. Since those early days, the quality and reproducibility of the data have 

increased and made transcriptomics a critical and reliable tool in biomedical research. There is every 

reason to believe the same will be true for metabolomics as the field grows and experimental and 

computational biologists continue to refine laboratory approaches and statistical analyses.  
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A challenge with current LCMS metabolomics methods is the necessary disruption of the intact 

cell which generates unknowable effects on the metabolites in total. The future development of non-

invasive in vivo methods will be critical to quantify cellular metabolism accurately. Such approaches 

will eventually replace the best current efforts to replicate the pertinent features of the intracellular 

milieu, which we do not fully understand.  

In this vein, in vivo Nuclear Magnetic Resonance (NMR) spectroscopy provides an exciting 

possibility for non-invasive assessments of metabolite concentrations (e.g., [52–56]). Although these 

techniques are currently limited by the amounts of metabolites and numbers of species present, its 

applicability is certain to improve. Indeed, the combination of in vivo NMR approaches with 

traditional experimental approaches and sophisticated computational modeling has the potential to 

bring new insights into metabolism, as some case studies demonstrate [45,46,53,57,58].  

In summary, to understand the relationship between genotype and phenotype we must account 

for the connectivity between the metabolic components encoded in the genome as well as the cellular 

context that influences these connections and gives rise to phenotypic plasticity. Given the steep 

trajectory of technical innovation in the recent past, it is likely that new approaches will support 

future efforts to understand the subtleties of metabolism. Beyond technological innovations, it is 

mandatory that a workforce is created and nurtured that is well-versed in both experimental and 

computational work, trained to bridge the two fields, and able to communicate results effectively. 

Traditional biological science education programs are often devoid of a computational component, 

but a change in today’s curricular standards will pay dividends as we strive to understand the 

complex system of metabolism that is central to all living cells.  

9. Final thoughts 

A vision on the distant horizon, considered the Holy Grail in biology, could take the form of an 

animation of the inner workings of the cell, based on a comprehensive understanding of the complex 

systems of metabolism and physiology, and illuminating the processes in the Central Dogma as they 

proceed in pseudo-3-dimensional space. While we are far from realizing this vision, continuing 

efforts toward a deeper understanding of metabolism will require multiple, complementary 

approaches to advance the field toward this goal. The growing number of available data will demand 

not only methods of statistical data analysis and machine learning, but also the conversion of simple 

correlations among data into mechanistic, computational models that offer explanations and suggest 

novel hypotheses that are testable with combined experimental and mathematical methods. 
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