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Abstract: Atheroprotective properties of human plasma high-density lipoproteins (HDLs) are de-
termined by their involvement in reverse cholesterol transport (RCT) from the macrophage to the
liver. ABCA1, ABCG1, and SR-BI cholesterol transporters are involved in cholesterol efflux from
macrophages to lipid-free ApoA-I and HDL as a first RCT step. Molecular determinants of RCT
efficiency that may possess diagnostic and therapeutic meaning remain largely unknown. This review
summarizes the progress in studying the genomic variants of ABCA1, ABCG1, and SCARB1, and
the regulation of their function at transcriptional and post-transcriptional levels in atherosclerosis.
Defects in the structure and function of ABCA1, ABCG1, and SR-BI are caused by changes in the
gene sequence, such as single nucleotide polymorphism or various mutations. In the transcription
initiation of transporter genes, in addition to transcription factors, long noncoding RNA (lncRNA),
transcription activators, and repressors are also involved. Furthermore, transcription is substantially
influenced by the methylation of gene promoter regions. Post-transcriptional regulation involves
microRNAs and lncRNAs, including circular RNAs. The potential biomarkers and targets for athero-
protection, based on molecular mechanisms of expression regulation for three transporter genes, are
also discussed in this review.

Keywords: ABCA1; ABCG1; atherosclerosis; cholesterol efflux; gene expression; SCARB1

1. Introduction

Despite years of scientific community efforts in treating and preventing cardiovascular
disease, atherosclerosis remains the primary cause of the most significant morbidity and
mortality worldwide. Atherosclerosis is a chronic inflammation of the subendothelial layer
of an artery with the accumulation of lipids and fibrous elements. The nature of cellular and
molecular events in atherogenesis has been elucidated and described [1–4]. An increase
in serum cholesterol is believed to be one of the major risk factors for the development
of atherosclerosis in humans [3]. Approximately two-thirds of human plasma cholesterol
is carried by low-density lipoproteins (LDL), and one-third by high-density lipoproteins
(HDL) [5]. Triglyceride-rich very low and intermediate-density lipoproteins are one of the
sources of cholesterol-rich low-density lipoproteins; LDL deliver cholesterol to peripheral
cells, and cholesterol turnover is normally balanced by cholesteryl ester formation at
cholesterol excess with subsequent cholesterol transport by high-density lipoproteins to the
liver [6]. Low HDL-C level as a causal factor for coronary heart disease has been challenged
as a result of Mendelian randomization studies [7] and a failure of most clinical trials aimed
to have therapeutic benefit at raising HDL-C concentrations [8]. Measurements of the
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total HDL-C may possess a limited value due to the heterogeneous nature of the HDL
structure and function, and the quantity or quality [9] of these particles may diversely
vary in the low HDL-C level associated cardiometabolic disease [10]. However, certain
HDL species may have a significant atheroprotective role by participating in reverse
cholesterol transport (RCT) from macrophages to the liver for subsequent elimination.
Molecular mechanisms of RCT and the roles of the main participants are described in
a large number of reviews [5,11–16]. The first stage of RCT is cellular cholesterol efflux.
Cholesterol efflux is inversely associated with the risk of atherosclerotic cardiovascular
disease (CVD) [17–20]. In addition, stimulation of efflux has been shown to lead to the
regression of atherosclerotic lesions [21]. The accumulated data from clinical, molecular
biology, and biochemical studies, have substantially contributed to understanding the role
of RCT in atherogenesis and given rise to treatments of atherosclerosis. The efficiency of
cholesterol efflux from cells and the cholesterol movement between HDL particles depends
on the abundance of cholesterol transporters in the macrophage membrane, extracellular
acceptors, and enzyme and receptor activities (Figure 1). ATP-binding cassette (ABC)
transporters ABCA1, ABCG1, and scavenger receptor class B1 (SR-BI) play a key role in
cholesterol efflux from macrophages and foam cells in atherosclerotic plaques. Notably,
the lipid-free/lipid-poor form of the major HDL apolipoprotein (Apo) ApoA-I is the most
efficient acceptor of cholesterol effluxed by ABCA1. However, various HDL particles accept
cholesterol effluxed by ABCG1 and SR-B1.

While the biochemical events in the RCT pathway have been studied thoroughly, it
is still not clear how changes in the functioning of ABCA1, ABCG1, and SCARB1 affect
atherosclerosis progression. The normal functioning of cholesterol transporters is con-
ducted and controlled at several primary levels, that is, genomic, transcriptional, and
post-transcriptional levels (Table 1).

Changes at the genome level, such as nucleotide substitution in the gene sequence or
single-nucleotide polymorphism (SNP) and other mutations, can lead to defects in protein
structure and function. Gene function is further regulated at the transcriptional level by
proteins that ensure the availability of the DNA sequence for transcription, including
methyltransferase and deacetylase enzymes, and by factors involved in transcription ini-
tiation, such as long noncoding RNA (lncRNAs), transcription repressors, transcription
activators, and transcription factors. At the post-transcriptional level of expression regula-
tion, RNA stability plays a key role. RNA stability can be affected by noncoding RNAs,
including lncRNA, microRNAs (miRNAs), and circular RNAs (circRNAs).

Table 1. Expression regulation levels of three cholesterol transporter genes in different cell compartments known to influence
their function.

Expression Regulation Levels
(Cellular Compartments) Participants ABCA1 ABCG1 SCARB1

Genome (nucleus)
SNPs/mutations • • •

Transcription (nucleus)
methylation of the promoter region • • •

transcription activators • • •
transcription repressors • •

transcription factors • • •
lncRNAs • • •

Post-transcriptional regulation
(cytoplasm) lncRNAs interacting with miRNA •

lncRNAs interacting with proteins or
DNA • •

miRNAs • • •
circRNA •

•, known regulation level.



J. Cardiovasc. Dev. Dis. 2021, 8, 170 3 of 44

J. Cardiovasc. Dev. Dis. 2021, 8, x  3 of 45 
 

 miRNAs ● ● ● 

 circRNA ●   

●, known regulation level. 

 

Figure 1. The major steps in the reverse cholesterol transport (RCT) pathway. RCT denotes choles-

terol movement from peripheral tissue cells, macrophages in particular, to the liver. The dash ar-

rows correspond to cholesterol transport by ABCA1, ABCG1, and SR-B1 transporters to different 

cholesterol acceptors and solid arrows correspond to the transitions between different lipoprotein 

structures. Lipid-free/lipid-poor apoA-I is an exclusive acceptor of cholesterol and phospholipid 

molecules exported by ABCA1, while both nascent discoidal HDL and mature spherical HDL2 and 

HDL3 particles accept lipid molecules exported by ABCG1 and SR-B1. The initial complex of apoA-

Figure 1. The major steps in the reverse cholesterol transport (RCT) pathway. RCT denotes cholesterol
movement from peripheral tissue cells, macrophages in particular, to the liver. The dash arrows cor-
respond to cholesterol transport by ABCA1, ABCG1, and SR-B1 transporters to different cholesterol
acceptors and solid arrows correspond to the transitions between different lipoprotein structures.
Lipid-free/lipid-poor apoA-I is an exclusive acceptor of cholesterol and phospholipid molecules
exported by ABCA1, while both nascent discoidal HDL and mature spherical HDL2 and HDL3
particles accept lipid molecules exported by ABCG1 and SR-B1. The initial complex of apoA-I, with a
few molecules of cholesterol and phospholipid with pre-β1-mobility at agarose gel electrophoresis,
continues to accept more cholesterol and phospholipid molecules and transforms to a discoidal HDL
particle with pre-β-mobility. Discoidal HDL is an efficient substrate for cholesterol esterification
catalyzed by lecithin-cholesterol acyl transferase (LCAT) with the appearance of HDL3 and HDL2
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as the first and the second products with α-mobilities in sequential reactions of HDL maturation. The
backward regeneration of HDL3 from HDL2 particles with the concomitant dissociation of lipid-free
apoA-I is catalyzed by phospholipid-transfer protein (PLTP). Cholesteryl ester (CE) molecules in
both HDL3 and HDL2 particles are selectively removed by the SR-B1 molecule in the hepatocyte
membrane (direct RCT) or exchanged with LDL on triglyceride by cholesteryl ester transfer protein
(CETP). CE-enriched LDL particles bind to the LDL-receptor (LDLR) in the hepatocyte membrane
and internalize (indirect RCT). Finally, cholesterol in both unmodified and modified to bile acid
forms enters the intestine for subsequent excretion with feces.

Here we review the available data on the expression of ABCA1, ABCG1 and SR-B1
in patients with atherosclerosis, CVD, and animal models of atherosclerosis. We analyze
the data for changes in the sequence of transporter genes and disturbances in regulating
their function on transcriptional and post-transcriptional levels that lead to atherosclerosis.
The emerging role of noncoding RNAs is also discussed. Furthermore, the present review
addresses the medical application of the accumulated data and outlines the clinical im-
portance of biomarkers and targets associated with the expression regulation of ABCA1,
ABCG1, and SR-B1.

2. ABCA1

The membrane-associated protein ATP binding cassette transporter A1 (ABCA1),
which mediates the transport of lipid molecules across membranes, is encoded by ABCA1.
ABCA1 is an integral membrane protein with a size of 240 kDa and contains 2261 amino
acids. This protein comprises two transmembrane domains and forms a channel for
ATPase-dependent transport of lipids, including cholesterol, phospholipids, and other
lipophilic molecules, across the cell membrane [22]. Experimental studies provide evidence
that ABCA1 interacts with ApoA-I, including ApoA-I coupled with phospholipids and
cholesterol, and is essential for nascent (pre-β1) HDL biosynthesis, thereby promoting
cholesterol efflux from cells of peripheral tissues, in particular, macrophages [23]. Thus, as
seen in Figure 1, ABCA1 functions at the initial stage of RCT.

2.1. Expression Changes in Atherosclerosis

As a result of the fact that RCT impairment underlies the atherosclerotic process,
the expression of the ABCA1 transporter should be changed in atherosclerosis. Indeed,
numerous studies have shown altered ABCA1 expression during the atherosclerotic process.
The messenger RNA (mRNA) of ABCA1 was significantly increased, but ABCA1 protein,
in contrast to mRNA levels, was significantly reduced in the carotid plaques compared
with control arteries [24,25]. It can be assumed that this divergence of changes in the levels
of mRNA and protein from ABCA1 in atherosclerosis is associated with post-translational
regulation. According to these studies, the level of ABCA1 is also reduced in the plasma of
patients with coronary atherosclerosis [26]. Many factors that affect the transport, activity,
and expression of ABCA1 have been described [27]. In addition, it was also suggested
that such a decrease in ABCA1 content is associated with its degradation by proteinase
MMP-9 [28]. The ABCA1 activity is also regulated by the calpain-mediated proteolytic
degradation of the ABCA1 protein [29]. In other studies, the level of ABCA1 mRNA was
also decreased in macrophages of patients with atherosclerosis, and the content of ABCA1
was decreased [30,31]. The authors suggested that the level of ABCA1 mRNA and the level
of ABCA1 in macrophages may be essential factors in the development of atherosclerosis.
At the same time, these authors showed that the level of ABCA1 mRNA is reduced in the
leukocytes of patients with atherosclerosis. A decrease in the level of ABCA1 mRNA was
also recently found in the peripheral blood mononuclear cells (PBMCs) of patients with
coronary artery disease [32].

Thus, ABCA1 expression changes in tissues modified and damaged by atherosclerosis,
such as plaques, macrophages, and mononuclear blood cells of patients with atherosclerosis.
A significant increase in ABCA1 mRNA levels in macrophages and plaques is accompanied
by a decrease in the ABCA1 level, which is considered a result of the post-translational reg-
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ulation of protease degradation and may play a role in the development of atherosclerosis
due to RCT impairment. Together, the changes in expression of ABCA1 in patients with
atherosclerosis and atherosclerotic diseases have been well confirmed experimentally.

2.2. Studies of Overexpressing and Knockout Mice

Studies of the overexpression and knockout of ABCA1 in mice cells provide in-
sight into its role in the pathogenesis of atherosclerosis. Such studies were conducted
mainly on models of atherosclerosis with the knockout of crucial participants in its
pathogenesis—Ldlr, ApoE, and the use of a specific high-cholesterol diet. Macrophage
ABCA1 is a major contributor to cholesterol efflux, and RCT in vivo; 3H-cholesterol from
labeled Abca1−/− macrophages injected into Abca1+/+ mice has returned to serum, liver,
bile, and feces by 50% less compared with controls [33]. However, ABCG1 and SR-BI also
promote macrophage RCT in vivo [34,35]. Overexpression of human ABCA1 enhanced
macrophage cholesterol efflux to ApoA-I; increased plasma cholesterol, cholesteryl esters,
free cholesterol, phospholipids, HDL–cholesterol (HDL-C), and ApoA-I and ApoB levels;
and led to the accumulation of ApoE-rich HDL1 [36]. Endothelial expression of human
ABCA1 in mice on a high-fat, high-cholesterol (HFHC) diet increased plasma HDL-C by
40% and reduced diet-induced aortic lesions by 40% [37]. Overexpression of Abca1 in
macrophages of Ldlr−/− mice on a Western-type diet also reduced the level of atheroscle-
rosis [38]. By contrast, bone marrow transplantation from Abca1−/− mice to ApoE−/− or
Ldlr−/− mice, that is, selective inhibition of ABCA1 in macrophages, led to an increase of
atherosclerosis regardless of the HDL level [39–41].

These studies in mice indicate that normal Abca1 functioning can prevent the devel-
opment and progression of atherosclerosis and are potential therapeutic targets; however,
other transporters also efflux to HDL and make a significant contribution to RCT in vivo.

2.3. Expression Regulation
2.3.1. Changes at the Genome Level

The ABCA1 gene encoding ABCA1 protein is located at 9q31 and contains 50 exons. The
changes in the ABCA1 sequence regulate its expression at the genome level (Table 1). Due
to the role of ABCA1 in mediating cholesterol efflux from the cells at the initial stage of
RCT, the mutations in its gene, which affect the expression of ABCA1 or lead to defects
in its protein structure, should disrupt free cholesterol and phospholipid transport across
the plasma membrane, the formation of nascent HDL-C particles associated with the
development of atherosclerosis and CVD.

To date, numerous mutations in human ABCA1, including many SNPs, have been
described and lead to various phenotypic manifestations. The best-known is Tangier dis-
ease (TD), which was originally described by Fredrickson et al. in 1961 [42]. TD is an
autosomal recessive genetic disorder in which both alleles carry mutations leading to the
loss of function of ABCA1 [43–47]. The disease is characterized by the changes in serum
levels—an almost disappearing HDL, very low ApoA-I, and decreased LDL, the accumu-
lation of CEs in some tissues, and the impaired functioning of different organs. At the
same time, TD is developed in some people with compound heterozygosity of mutations
in ABCA1. For example, carriers of both nonsense mutation R282X and missense mutation
Y1532C in ABCA1 [48], patients with compound heterozygote intronic mutations c.1195-
27G > A ac.1510-1G > A causing aberrant splicing of ABCA1 mRNA [49], and patients with
compound heterozygosity for missense variants p.Arg937Val and p.Thr940Met [50] were
diagnosed with TD. All these mutations lead to a severe decrease or loss of function of
ABCA1, therefore, their carriers should have reduced cholesterol efflux. Indeed, experi-
ments in vitro confirm that cells expressing these mutations elicit significantly less efflux
than the wild-type ABCA1 [45,47,48,50]. Among patients with TD, the percentage of cases
with premature coronary artery disease (CAD) is increased, but not in all cases [43,46,47].
Patients with TD can carry different mutations and have a decreased LDL level; therefore,
it could be supposed that the risk of premature CAD development depends on both factors:
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the degree of loss of ABCA1 function and LDL/HDL ratio [51]. Carriers of heterozygote
mutations, in only one ABCA1 allele, are classified as having familial HDL deficiency
(FHD), characterized by an HDL level below 50% and reduced level of ApoA-I in serum,
and less severe forms of the disease. Many studies have found an increased risk of develop-
ing CAD in patients with FHD, while CAD is more common in heterozygotes with lower
cholesterol efflux values [51–54]. In some studies, the association of reduced HDL levels
with increased CAD risk in patients with FHD was not found, likely due to mild mutations
in ABCA1 in these patients [55–57]. Thus, such a high risk of developing CAD is probably
connected to the degree of loss of ABCA1 function and premature atherosclerosis, which
are found in most patients with FHD [51]. The importance of the LDL/HDL-C ratio as a
predictor for CAD in patients with FHD was also confirmed [58].

Some SNPs of ABCA1 revealed in studies are described. Polymorphisms rs2230806
(R219K), rs4149313 (M8831I), and rs9282541 (R230C), of ABCA1 are associated with the
development and severity of CAD [59–62]. Similarly, for some SNPs, a less common
variant is often associated with decreased CAD risk. Therefore, the K allele of rs2230806
is significantly associated with a decreased risk of CAD, especially in Asian and Iranian
populations and people of European ancestry [59,60,62]. A recent meta-analysis also
confirmed the effect of R219K in the ABCA1 on the level of HDL-C and TG, which may
result in different risks of CAD [63]. However, most of the mentioned SNPs of ABCA1
were not detected through the genome-wide association studies (GWAS) as remarkable
factors associated with CVD. The effect of SNPs on ABCA1 expression depends on their
location in the DNA sequence. Some SNPs localize in the promoter or coding region and
can be expected to affect the expression of ABCA1 and consequentially the risk of disease
development. This may be because this SNP in the ABCA1 affects the functionality of
HDL particles rather than their number. Less common alleles of −565C/T and −191G/C
polymorphisms in the promoter of ABCA1 also predicted a lower risk of coronary heart
disease [61,64]. The I883M variant, SNP in the coding region, is associated with higher
HDL-C levels together with an increased risk of CAD development [61,64]. As can be
seen from most genome studies presented, mutations in ABCA1 cause the loss of its
function to promote the reduction of cholesterol efflux, HDL levels, and increase the risk of
atherosclerosis and CVD.

2.3.2. Changes at the Level of Transcription Regulation

The regulation of ABCA1 expression at the transcriptional level involves events that
affect the binding of the transcription factor to the promoter region of this gene and,
thus, can affect the transcription initiation (Table 1). At the transcriptional level, the
expression of ABCA1 can be regulated by enzymes, e.g., methyltransferase, deacetylase,
other proteins that affect the transcription initiation, and lncRNA, which can interact with
different participants of the transcription initiation. This type of regulation leads to an
acceleration or deceleration of ABCA1 transcription, which affects the rate of synthesis of
its protein product.

Methylation of cytosine in the CpG islands of the promoter region impedes the interac-
tion of the binding site in the promoter region with transcription factors that downregulates
transcription. Experiments in ApoE −/− mice have shown that the increased methylation of
the promoter region of ABCA1 decreases its expression and promotes atherosclerosis devel-
opment [65]. Histone methyltransferase enhancers of zeste homolog 2 (EZH2) and DNA
methyltransferase 1 (DNMT1) are consecutively involved in this methylation. Polycomb
protein EZH2 mediates DNMT1 expression activation and methyl-CpG-binding protein-2
(MeCP2) recruitment, stimulating the binding of DNMT1 and MeCP2 to ABCA1 promoter
and promoting ABCA1 gene DNA methylation and atherosclerosis. The increased methy-
lation of the ABCA1 promoter was also found in patients with early atherosclerosis [66].
These studies are consistent with those showing that the methylation frequency of this
site is a factor in CAD development [67,68]. At the same time, the correlation of the DNA
methylation level with the blood HDL level may not be observed.
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Furthermore, at the stage of transcription initiation, the central role is played by the
transcription factors that interact with specific recognition sites on the gene promoter
and ensure the activation or repression of transcription. Nuclear receptors LXR (liver X
receptors) and RXR (retinoid X receptor) are the key activators of ABCA1 transcription.
Unlike most receptors located on the cell membrane, nuclear receptors are located in the
cell nucleus and are simultaneously transcription factors. Nuclear receptors LXR and RXR,
acting as a heterodimer, bind to the DR4 element in the ABCA1 promoter and activate
its transcription [69–73]. LXR/RXR is activated by small hydrophobic ligands, such as
retinoic acid and hydroxycholesterol, inducing ABCA1 expression, cholesterol efflux, and
promoting RCT. At the same time, unsaturated fatty acids suppress the stimulatory effects
of oxysterols and retinoids on the expression of ABCA1 mRNA, apparently also through
the DR4 element [74,75]. Interestingly, LXR/RXR also activates stearoyl-CoA desaturase,
which can generate ABCA1-suppressing monounsaturated fatty acids from their saturated
precursors. In this case, the activation of LXR/RXR by saturated fatty acids may decrease
the ABCA1 content due to increased desaturation. This mechanism of ABCA1 reduction is
likely to occur in cholesterol-loaded macrophages exposed to saturated fatty acids when
the activation of LXR/RXR can counteract the enhanced transcription of ABCA1 [76]. The
pattern of association between LXRα, RXRα, and ABCA1 mRNA expression was found in
carotid plaques rather than controls [24,25].

There is evidence that other proteins play a role in activating ABCA1 transcription by
LXR/RXR. Thus, the deacetylase sirtuin 1 (SIRT1) seems to contribute to the transcription
activation of ABCA1 by LXR/RXR. SIRT1 is a transcription activator for LXRα. Oxidized
LDL (oxLDL) promotes lipid accumulation and foam cell formation from monocytes by
decreasing the level of SIRT1 that decreases the transcription of its target gene ABCA1
(Table 1) [77]. In addition, endonuclease EEPD1, encoded by EEPD1, the LXR target,
promotes LXR-stimulated cholesterol efflux by regulating the abundance of ABCA1 at
the plasma membrane [78]. Peroxisome proliferator-activated receptor gamma (PPAR-
γ), another nuclear receptor, activates ABCA1 transcription and promotes cholesterol
efflux [79]. Moreover, a transcriptional repressor, a protein product of the zinc finger
gene 202 (ZNF202), binds to the ABCA1 promoter and inhibits its activity, downregulating
cholesterol efflux [80].

Research in the past decade has shown that lncRNA, a subclass of noncoding RNAs
with a length greater than 200 nucleotides, is widely expressed and has a critical role
in gene regulation [81]. Depending on their specific interactions with DNA, RNA, and
proteins, lncRNAs can regulate the expression of genes, including participation in promoter
activation during transcription initiation and splicing, and alter the stability and translation
of cytoplasmic mRNAs. The mechanisms of lncRNA biogenesis, localization, and functions
in transcriptional, post-transcriptional, and other levels of gene regulation are described
in detail in another review [82]. At the transcriptional level, lncRNAs can regulate the
expression of genes, including participation in promoter activation during transcription
initiation. Thus, lncRNAs localized on chromatin can interact with chromatin modifier
proteins, affecting their binding and activity at DNA regions of target genes, such as
promoters that lead to activation or suppression of their transcription [82]. The involvement
of such lncRNA in the pathogenesis of atherosclerosis has also been found. Studies in mice
have shown that lncRNA MeXis (macrophage-expressed LXR-induced sequence) plays a
role in protecting the body from atherosclerosis; it stimulates macrophage cholesterol efflux
capacity to ApoA-I and reduces the formation of atherosclerotic lesions in vivo [83]. MeXis
interacts with transcription coactivator RNA helicase DDX17 and facilitates its action to
enhance LXR-mediated Abca1 expression. Therefore, MeXis promotes the activation of
Abca1 expression, cholesterol efflux, and exhibits anti-atherosclerotic properties. Another
lncRNA, growth arrest-specific 5 (GAS5), localized in the nucleus of macrophages from the
cell line THP-1 (a human monocytic leukemia cell line) and increased cellular apoptosis
after their treatment with oxLDL [84,85]. GAS5 can promote lipid accumulation and inhibit
cholesterol efflux in THP-1 macrophage-derived foam cells. Studies in ApoE−/− mice have
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shown that GAS5 encourages the reduction of cholesterol efflux and HDL level in vivo,
while levels of TG, TC, and LDL are increased [84]. This is based on the interaction of GAS5
with EZH2, the catalytic subunit of the PRC2/EED-EZH2 complex, which methylates “Lys-
27” (H3K27me) of histone H3, repressing the transcription of ABCA1 due to a consecutive
pattern: EZH2 induces DNMT1 expression and stimulates its binding to ABCA1 promoter,
thereby promoting ABCA1 gene DNA methylation. GAS5 interacts with EZH2 and recruits
it to the promoter region of ABCA1, which inhibits ABCA1 transcription and decreases
the effectiveness of RCT. GAS5 knockdown is considered to promote RCT and inhibit the
accumulation of intracellular lipids, preventing atherosclerosis progression.

Thus, at the transcriptional level, the expression of ABCA1 is regulated by lncRNA in
different directions—the influence of GAS5 suppresses ABCA1 transcription and promotes
the development of atherosclerosis, the influence of MeXis, by contrast, facilitates and
increases the transcription of ABCA1 and prevents the development of atherosclerosis.

2.3.3. Changes at the Level of Post-Transcriptional Regulation of Expression
miRNAs

In the post-transcriptional regulation of ABCA1 expression, noncoding RNAs, in-
cluding miRNAs, lncRNAs, and circRNAs, play an essential role (Table 1). MiRNAs are
short noncoding RNAs (18–25 nucleotides in length) that can bind to the recognition el-
ement on the 3′-untranslated region (3′-UTR) of the ABCA1 mRNA thereby degrading
it or inhibiting its translation and, thus, negatively controlling ABCA1 expression. The
human genome encodes over 1800 miRNAs [86]. It is believed that miRNAs can regulate
over half of human protein-coding genes [87]. The biogenesis and mechanism of miRNA
actions are well understood and described in detail [88,89]. To exert their regulatory func-
tion, miRNAs assemble with Argonaute (AGO) proteins into miRNA-induced silencing
complexes (miRISCs) and mediate the post-transcriptional silencing of complementary
mRNA targets [90]. The miRNA binding sites are usually located in the 3′-UTR of mRNA.
The binding of miRNA to mRNA occurs due to the complementarity of the bases and
leads mainly to the suppression of their expression. For miRNA binding to the target
mRNA, a small region of 6–8 nucleotides, the “seed region”, is critical [91]. The degree of
complementarity between this miRNA region and the target mRNA largely determines
the mechanism of miRNA-mediated gene silencing [90]. Complete complementarity of the
sequences degrades mRNA by catalytically active AGO proteins. The partial mismatch
involves the additional AGO protein partners to mediate silencing, and GW182 is one
of the most important partners. Silencing occurs through a combination of translational
repression, deadenylation, decapping, and mRNA degradation [90]. The noncomplete
complementarity of microRNA and mRNA targets determines the miRNA-dependent
silencing of complementary mRNA. The ability to inhibit expression with incomplete com-
plementarity of miRNA and mRNA sequences may result in a single miRNA suppressing
translation of multiple mRNAs [92]. Individual miRNA modulates (mainly reduces) the
expression of hundreds of genes, albeit to a small extent (1.5–2 times) [93,94]. In addi-
tion to interaction with mRNA and post-transcriptional regulation of gene expression,
miRNA can exert post-translational functions. The direct binding of miRNA to proteins
that modulate protein function has been observed recently [95,96]. The mechanisms that
modulate miRNA activity, stability, and cellular localization through alternative processing
and maturation, sequence editing, post-translational modifications of Argonaute proteins,
transport from the cytoplasm, and regulation of miRNA-target interactions were reviewed
elsewhere [97]. Many miRNAs play a role in the post-transcriptional regulation of ABCA1
expression. This is due to the length of the 3′-UTR of the ABCA1 gene, which is more than
3.3 kb, which is much longer than the average length (slightly more than 1 kb) [98]. Due to
the length of 3′-UTR, ABCA1 includes many binding sites for miRNA [98]. Indeed, more
than a dozen miRNAs have already been identified, the target of which is ABCA1 (Table 2).
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Table 2. MiRNAs regulate the expression of ABCA1, ABCG1, and SCARB1 genes.

miRNA Target Expression Change in Cardiovascular Diseases (CVD) and Knockout
and Model Mice

In Vitro Effect on Lipid Level and
Reverse Cholesterol Transport (RCT)

In Vivo Effect on Lipid Level, RCT
and Atherosclerosis

miR-9 ABCA1 Plasma level of hsa-miR-9-3p decreased in patients with unstable angina
(UA) [99].

MiR-9-5p directly bound to the 3′-UTR
of ABCA1 and reduced its mRNA and
protein levels in macrophages [100].

miR-10b ABCA1/ABCG1 MiR-10b level increased in atherosclerotic plaques in humans [101].

MiR-10b directly bound to the 3′-UTR
of ABCA1/ABCG1 and suppressed their
expression and cholesterol efflux from
mouse peritoneal macrophages (MPMs)
and human THP-1 monocytes [102].

In ApoE−/− mice, miR-10b
suppressed the expression of
ABCA1/ABCG1 and RCT from
macrophages to feces, thus
contributing to the development of
atherosclerosis, the growth of
plaques and their instability in the
late stages [102,103].

miR-17 ABCA1

An increase in the level of miR-17-5p has been found in leukocytes of
patients with atherosclerosis [104], in plasma of patients with UA [105],
acute myocardial infarction (AMI) [106], CAD [107,108]. The serum level
of miR-17-5p was also associated with the development of ischemic heart
disease (IHD) [109] and the severity of CAD [110]. miR-17-3p levels also
increased in atherosclerotic plaques in humans [101]. However, a
decrease in the circulating miR-17-5p level has been found in patients
with CAD [111] and CHD [112].

MiR-17-5p directly bound to the 3′-UTR
of ABCA1 and suppressed its expression
in mouse macrophage RAW264.7 [104].

The level of miR-17-5p increased in
the macrophages of ApoE−/− mice
on a high-cholesterol diet [104].

miR-19b ABCA1

MiR-19b levels elevated in human atherosclerotic plaques and rat aortic
tissues of the abdominal aortic aneurysm (AAA) model [113,114], in
plasma of patients with AMI [115] and in plasma endothelial
microparticles (EMPs) of patients with UA [116].

MiR-19b directly suppressed ABCA1
expression and cholesterol efflux from
MPMs and macrophages derived from
human THP-1 monocytes [117].

In ApoE−/− mice, miR-19b
suppressed the expression of
ABCA1, RCT and the level of HDL
in plasma, thus increasing the size
of aortic plaques and contributing to
the development of
atherosclerosis [117,118].
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Table 2. Cont.

miRNA Target Expression Change in Cardiovascular Diseases (CVD) and Knockout
and Model Mice

In Vitro Effect on Lipid Level and
Reverse Cholesterol Transport (RCT)

In Vivo Effect on Lipid Level, RCT
and Atherosclerosis

miR-20a/b ABCA1

Changes in miR-20a expression in atherosclerosis-associated diseases are
multidirectional. Thus, the level of miR-20a increased in human aorta
with AAA [119] and in plasma of patients with UA as well [99,105]. In
contrast, the level of miR-20a decreased in blood cells of patients with
AMI [120] and in plasma of patients with CAD [111]. MiR-20b was also
low in blood cells of patients with the peripheral arterial disease (PAD)
[121]. Expression of miR-20a/b decreased in the liver of ApoE−/− mice on
a high fat diet [98].

MiR-20a/b bound to the 3′-UTR of
ABCA1 and suppressed its expression
and cholesterol efflux from THP-1- and
RAW 264.7-derived foam cells [98].

In ApoE−/− mice, miR-20a/b
reduced ABCA1 expression in the
liver, RCT efficiency and HDL
synthesis, thus contributing to the
development of atherosclerosis [98].

miR-23a ABCA1ABCG1

Increased values for miR-23a were associated with atherosclerosis-related
diseases, i.e., an increased miR-23a level has been detected in the plasma
of patients with acute ischemic stroke (AIS) with vulnerable carotid
plaques [122], in plasma of patients with UA [99] and in plasma and
PBMCs of patients with CAD [123–126]. miR-23a levels are correlated
with plaque development [122], stenosis degree [123] and poor clinical
outcomes in CAD [124]. OxLDL upregulated miR-23a expression in
macrophages [122]. However, miR-23a level in plasma decreased within
24 h of stroke onset in humans [127].

MiR-23a suppressed the activity of
3′-UTR of ABCA1 and ABCG1, reduced
their expression and cholesterol efflux,
that led to foam cell formation [122].

In ApoE−/− mice, miR-23a
suppressed ABCA1 and ABCG1
expression, promoted
atherosclerosis and increased plaque
vulnerability [122].

miR-24 SCARB1

The data are contradictory. Fatty acids increased the expression of miR-24
in HepG2 cells. The miR-24 levels significantly increased in the liver of
obese mice [128], in the plasma of patients with stable angina pectoris
(AP) [129], in PBMCs of patients with CAD [130]. However, miR-24 levels
reduced in blood of patients with atherosclerosis [131] and in plasma of
patients with familial hypercholesterolemia (FH) [132].

MiR-24 directly suppressed the
expression of SR-BI by binding to the
3′-UTR of mRNA, thus reducing the
selective uptake of HDL-CE by HepG2
and THP-1 cells [128,133]. In addition,
steroidogenesis reduced in
steroidogenic cells [128].

In ApoE−/− mice, miR-24 reduced
the expression of SR-BI and
promoted the formation of
atherosclerotic plaques [133].

miR-26a/b ABCA1

The level of miR-26a-1 increased in plasma of patients with AMI [134].
The level of miR-26b increased in plasma of patients with UA [99], while
miR-26a/b increased in EMPs of patients with UA [116]. Moreover, the
expression of miR-26b was significantly upregulated in atherosclerotic
plaques in humans [101]. However, miR-26b decreased in blood cells of
patients with peripheral arterial disease (PAD) [121].

In RAW 264.7, THP-1, HEK293T and
HepG2 cells, miR-26 bound to the
3′-UTR of ABCA1 and suppressed its
expression [135].
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miRNA Target Expression Change in Cardiovascular Diseases (CVD) and Knockout
and Model Mice

In Vitro Effect on Lipid Level and
Reverse Cholesterol Transport (RCT)

In Vivo Effect on Lipid Level, RCT
and Atherosclerosis

miR-27a/b ABCA1

The level of miR-27a increased in PBMCs of patients with CAD [32] and
in plasma of patients with UA [99]. The level of miR-27b significantly
increased in sclerotic intima samples and in serum of patients with
atherosclerosis obliterans [136], in plasma of patients with AAA [137], as
well as in PBMCs of the patients with CAD, and expression levels of
miR-27b were significantly correlated with the severity of stenosis [123].
The level of miR-27b elevated in the liver of C57BL/6J mice, as well as in
ApoE−/− female mice on a high-fat “Western” diet [138]. However, the
decreased levels of miR-27b were observed in blood cells of patients with
PAD [121] and in plasma of patients with CAD [111], as well as in
aneurysm tissues of patients with AAA [137]. A reduced level of miR-27b
is associated with heart failure, atherosclerosis, and the severity of PAD
symptoms [139].

MiR-27a/b directly targeted the 3′-UTR
of ABCA1, significantly reducing its
mRNA and protein levels in foam cells
derived from THP-1 and RAW 264.7, as
well as in HepG2 cells [140]. MiR-27a/b
also reduced cholesterol efflux from
THP-1 macrophages to apoA-I through
the suppression of ABCA1. A similar
effect of miR-27b on ABCA1 mRNA and
protein levels and cholesterol efflux
existed for Huh7 cells [141].

Modulation of miR-27b expression
in wild-type mice regulated ABCA1
expression in the liver but does not
affect lipid levels [141].

miR-28 ABCA1 1 The level of miR-28-5p increased in patients with UA [142,143].

miR-28-5p targeted the signal-regulated
kinase 2 (ERK2) and inhibited its
expression that led to increase of
ABCA1 expression in THP-1 derived
macrophages and HepG2
cells [142,143].

miR-30e ABCA1

The expression of miR-30e was significantly upregulated in the serum
exosome of patients with CAD [26], in atherosclerotic plaques in humans
[101], in plasma of patients with UA [99], and in blood cells of patients
with AMI [120]. Moreover, miR-30e is considered as a differential
biomarker for AMI [144]. However, there is evidence that miR-30e
expression reduced in PBMCs of patients with lower extremities arterial
disease (LEAD) [145] and in the whole blood of CAD patients [146].

MiR-30e directly targeted 3′-UTR of
ABCA1 and suppressed its protein
expression [26].

miR-34a ABCA1/ABCG1

All studies evidence the increase of miR-34a in atherosclerosis- associated
diseases. Thus, the level of miR-34a significantly increased in
atherosclerotic plaques in humans and in ApoE−/− mice [147,148], in
PBMCs of patients with LEAD [145], in plasma of patients with CAD
[126,149] and AP [129]. Upregulated miR-34a is considered as a universal
marker for AMI and UA [144].

In HepG2 cells, miR-34a directly
interacted with the 3′-UTR of ABCA1
and ABCG1 mRNA and suppressed
their expression [147]. Moreover,
miR-34a inhibited cholesterol efflux
from THP-1 and MPMs cells.

In mice, the downregulation of
ABCA1 and ABCG1 by miR-34a
promoted RCT suppression to
plasma, liver and feces [147]. In
ApoE−/− and Ldlr−/− mice, miR-34a
promoted dyslipidemia, plaque
growth, and instability.
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miRNA Target Expression Change in Cardiovascular Diseases (CVD) and Knockout
and Model Mice

In Vitro Effect on Lipid Level and
Reverse Cholesterol Transport (RCT)

In Vivo Effect on Lipid Level, RCT
and Atherosclerosis

miR-92a ABCA1

The data on miR-92a expression in atherosclerosis are contradictory. The
increased level of miR-92a was found in plasma and plasma exosomes of
patients with the initial stage of atherosclerosis [150], with CAD [26,151],
in aneurysm tissues of AAA [119], in human coronary atherosclerotic
plaques [114], in plasma of patients with hypertension, especially with
thickening of the carotid artery wall [152], in plasma of patients with UA
[105], and with asymptomatic carotid artery stenosis, where it was
correlated with the degree of stenosis [153], in PBMCs of CAD patients
and in EMPs of patients with UA [116]. Moreover, upregulated miR-92a
is considered as a differential biomarker for UA [144]. However, miR-92a
expression decreased in the blood of patients with CAD [108,111,154],
CHD [112] and atherosclerosis [155], in plasma and atherosclerotic
plaques in PAD patients with cardiovascular events (CVEs) [156].

miR-92a directly targeted 3′-UTR of
ABCA1 and suppressed its protein
expression [26].

Increased expression of miR-92a
contributed to the development of
atherosclerotic plaques under the
influence of oxLDL in Ldlr−/−

mice [157].

miR-93 ABCA1

Mostly, miR-93 levels increased in atherosclerosis. Thus, increased
miR-93-5p level was detected in plasma of patients with critical coronary
stenosis [158], with UA [105], CAD [159] and in blood cells of patients
with AMI [120]. Moreover, miR-93 is considered as a universal biomarker
for both AMI and UA [144]. However, miR-93 level decreased in CAD
patients [160].

miR-93 directly targeted 3′-UTR of
ABCA1 and suppressed its protein
expression [160].

miR-96 SCARB1
MiR-96 level decreased in ApoE−/− mice on a high-fat diet [161]. The
level of miR-96 was significantly upregulated in THP-1 cells stimulated to
differentiate into macrophages.

miR-96 directly targeted 3′-UTR of
SCARB1, suppressed its protein
expression and HDL-C uptake by
HepG2 and other human liver cells
[161]. However, miR-96 increased
HDL-C uptake by THP-1 cells, probably
through the regulation of other
pathways of cholesterol delivery.

miR-101 ABCA1
IL-6 and TNF-α induced miR-101 expression in HepG2 cells and THP-1
macrophages [162]. During inflammation, miR-101 may promote the
intracellular accumulation of lipids, which results in atherosclerosis.

MiR-101 directly interacted with the
3′-UTR of ABCA1 and suppressed its
protein expression, that reduced
cholesterol efflux from cells to
apoA-I [162].
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Table 2. Cont.

miRNA Target Expression Change in Cardiovascular Diseases (CVD) and Knockout
and Model Mice

In Vitro Effect on Lipid Level and
Reverse Cholesterol Transport (RCT)

In Vivo Effect on Lipid Level, RCT
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miR-106b ABCA1
Level of miR-106b significantly decreased in plasma of patients with
CAD and was correlated with HDL level [108]. MiR-106b level increased
in plasma microparticles (MPs) of UA patients [105].

MiR-106b directly bound to the 3′-UTR
of ABCA1 and repressed its translation
[163]. In neuronal cells (Neuro2a),
miR-106b reduced ABCA1 levels and
cholesterol efflux.

miR-125a SCARB1
miR-125a level decreased in the coronary arteries of patients with
atherosclerotic plaques [164] and in the serum of patients with
atherosclerosis [165] but increased in atherosclerotic plaques [101].

MiR-125a directly targeted 3′-UTR of
SCARB1 and suppressed SR-BI
expression [166]. In rat/mouse Leydig
tumor cells, suppression of SR-BI
expression at mRNA and protein levels
under the influence of miR-125a led to a
decrease of HDL-CE uptake by cells
and a decrease in HDL-dependent
progesterone production. In mouse
Hepa1-6 cells, miR-125a also
suppressed SR-BI expression and
HDL-CE uptake. However, in HepG2
cells, such effect of miR-125a was not
found [161].

miR-128 ABCA1/ABCG1

In mice on a high-fat diet, the level of miR-128 decreased in the liver,
brain, and kidneys [167] but increased in the blood, brain, and heart [168].
miR-128-2 may prevent cholesterol efflux from cells at low
cholesterol [167].

MiR-128-2 targeted 3′-UTR of ABCA1
and ABCG1 and inhibited their
expression that led to the suppression of
cholesterol efflux from HepG2, MCF7,
and HEK293T cells [167]. Similar effects
for miR-128-1 were found in mouse
macrophages [169].

miR-128 is inversely correlated with
ABCA1 and ABCG1 expression
levels in different tissues of mice on
a high-fat diet [167].

miR-130b ABCA1

MiR-130b directly interacted with the
3′-UTR of ABCA1 and suppressed its
expression in HepG2 and in mouse
macrophages, that led to reducing the
cholesterol efflux [169].



J. Cardiovasc. Dev. Dis. 2021, 8, 170 14 of 44

Table 2. Cont.
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and Model Mice

In Vitro Effect on Lipid Level and
Reverse Cholesterol Transport (RCT)

In Vivo Effect on Lipid Level, RCT
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miR-143 ABCA1
MiR-143 was up-regulated and ABCA1 was down-regulated in PAH
patients [170]. MiR-143 level increased in human coronary atherosclerotic
plaques [114].

MiR-143 directly suppressed the
expression of ABCA1 in pulmonary
artery smooth muscle cells
(PASMCs) [170].

MiR-143 promoted the development
of hypoxia-induced pulmonary
arterial hypertension (PAH) in vivo,
presumably due to its influence on
ABCA1 expression [170]. The
studies with Ldlr−/− and Ldlr−/−

miR-143/145−/− double knockout
mice revealed the contribution of
these miRNAs to the development
of atherosclerosis [171].

miR-144 ABCA1

MiR-144 increased in the plasma of patients with UA [99] and CAD
[149,172,173], in monocytes of patients with hypertension [174].
However, miR-144 level was decreased in AAA tissue [137]. The level of
miR-144 was associated with AMI [175]. LXR ligands increased the
expression of miR-144 in mouse and human liver cells and macrophages,
that may be important in homeostasis [176]. FXR transactivated miR-144
which suppressed ABCA1 and cholesterol efflux [177].

MiR-144 directly interacted with the
3′-UTR of ABCA1 and decreased its
expression and cholesterol efflux to
apoA-I [175,176,178].

miR-144 reduced the levels of
ABCA1 and HDL in the liver and
plasma of mice [176,177]. In
ApoE−/− mice, miR-144-3p
decreased plasma HDL levels,
impaired RCT and promoted the
development of atherosclerosis
[175]. A high-fat diet induced the
development of atherosclerosis in
miR-144−/− mice [179]. miR-144
promoted lipid accumulation and
lipid disorder in F1-zebrafish [180].

miR-145 ABCA1

Data are contradictory. The level of miR-145 increased in the blood of
patients with PAH [170], in plasma of patients with AMI [106] and within
24 h of stroke onset [127]. Upregulated level of miR-145 is considered as a
biomarker for both AMI and UA [144]. The miR-145 levels are correlated
with the size of the infarction area and may predict a long-term clinical
outcome after AMI [181]. However, level of miR-145 decreased in the
plasma of patients with AMI [182] and in the plasma and blood of
patients with CAD, including very early onset [183], where it is correlated
with disease severity [111,146,184].

MiR-145 targeted 3′-UTR of ABCA1 and
suppressed its protein expression and
cholesterol efflux from HepG2
cells [178].

MiR-145 promoted a decrease in the
ABCA1 protein in the mouse
pancreas, as well as an increase in
total cholesterol levels and a
decrease in insulin secretion [178].
The studies in Ldlr−/− and Ldlr−/−

miR-143/145−/− double knockout
mice showed the contribution of
these miRNAs to the development
of atherosclerosis [171].
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Reverse Cholesterol Transport (RCT)
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miR-148 ABCA1

The expression of miR-148b reduced in the serum of patients with
atherosclerosis and in human aortic smooth muscle cells stimulated by
ox-LDL [185]. The level of miR-148-3p increased in the liver of rhesus
monkeys on a high-fat diet, as well as in mice (ob/ob) with genetically
determined obesity [186].

MiR-148 directly bound the 3′-UTR of
ABCA1 and suppressed its expression
[169,178,186]. As a result, miR-148
suppressed cholesterol efflux from
HepG2 and mouse macrophages [169].

In C57BL/6J and ApoE−/− mice on a
high-fat diet, miR-148 reduced liver
ABCA1 and blood HDL [169]. In
Ldlr−/− mice on a high-fat diet,
miR-148 contributed to a decrease of
ABCA1 in the liver and HDL in
blood [186].

miR-183 ABCA1

In macrophages derived from THP-1, IL-18 promoted an increase in
miR-183 expression with a concomitant decrease in ABCA1 expression
and cholesterol efflux, which may contribute to the development of
atherosclerosis [187].

MiR-183 directly interacted with the
3′-UTR of ABCA1 and suppressed its
expression [187].

miR-185 SCARB1

MiR-185-3p was upregulated in atherosclerotic mouse aorta [188].
miR-185 also increased in atherosclerotic plaques in humans [101].
However, in the liver of ApoE−/− mice on a high-fat diet, the miR-185
level decreased [161].

MiR-185 directly interacted with the
3′-UTR of SCARB1 and suppressed the
expression of SR-BI and HDL-C uptake
in THP-1 cells and human hepatic cell
lines [161].

miR-188 ABCA1 MiR-188-3p decreased in ApoE−/− mice with atherosclerosis [189].

In ApoE−/− mice with
atherosclerosis, miR-188-3p
upregulated ABCA1 level in serum
and promoted a decrease of lipid
accumulation within the vessels and
atherosclerosis [189].

miR-212 ABCA1 1 The miR-212 level decreased in plaques and macrophages of ApoE−/−

mice on a high-fat diet [190].

In THP-1 macrophages, miR-212
targeted SIRT1, which led to inhibition
of ABCA1 expression, decreased
cholesterol efflux and increased
intracellular lipid accumulation [190].
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miR-223 SCARB1/ABCA1 1

miR-223 increased in CVD i.e., in ApoE−/− mice [191], in serum, in the
vascular wall of patients with atherosclerosis obliterans [192], in the
plasma of patients with AMI [115], PAD with cardiovascular events
(CVEs) [156], unstable coronary artery disease (UCAD) [193], coronary
artery calcification (CAC) [194] and UA [99,105], in platelets of patients
with CAD [195], in atherosclerotic plaques of patients with PAD with
cardiovascular events (CVEs) [156], and in aneurysm tissues of patients
with AAA [119]. HDL-transported miR-223 elevated in patients with
hypercholesterolemia and in Ldlr−/− and ApoE−/− mice on a high-fat diet.
miR-223 increased in human hepatocytes with a high level of
extracellular cholesterol [196]. An increased miR-223 level is associated
with an increased risk of CVD [196]. MiR-223 expression is associated
with atherogenesis in CAD [197]. However, the expression of miR-223
decreased in PBMCs of patients with CAD with the lowest stenosis less
than 50% [198]. A reduced level of miR-223 is associated with heart
failure, atherosclerosis, and the severity of PAD symptoms [139]. In
THP-1 macrophages, miR-223 expression was significantly upregulated
bur had no effect on SCARB1 and HDL-C uptake [161]. A reduced
cholesterol level caused a decrease in the level of miR-223 in J774
macrophages and Huh7 cells [199].

MiR-223 directly targeted the 3′-UTR of
SCARB1, suppressed SR-B1 expression
and the uptake of HDL-C in human
hepatic cells [161,199]. miR-223 targeted
Sp3, the repressor of Sp1-directed
ABCA1 transcription. Thus, miR-223
promoted the indirect increase of
mRNA and protein levels of ABCA1, as
well as the cholesterol efflux to apoA-I
in Huh7 cells [199].

In miR-223−/− mice the level of
SR-BI in the liver reduced, but total
cholesterol and HDL-C increased in
plasma. Cholesterol level increased
in the liver of these mice [199].

miR-301b ABCA1

MiR-301b directly bound to the 3′-UTR
of ABCA1 and suppressed its expression
in HepG2 and mouse macrophages, that
led to a decrease of cholesterol
efflux [169].

miR-302a ABCA1
Ox-LDL downregulated miR-302a expression in mouse macrophages
[200]. In the liver of Ldlr−/− mice on Western-type diet, miR-302a
decreased [201].

MiR-302a targeted 3′-UTR of ABCA1
and suppressed its protein expression in
primary mouse and human
macrophages, leading to suppression of
cholesterol efflux [200].

In Ldlr−/− mice on an atherogenic
diet, miR-302a suppressed ABCA1
expression in the liver and aorta
with a decrease of plasma HDL
level, that promoted the growth of
plaques, their instability and
inflammation [200].
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miR-361-5p ABCA1
MiR-361-5p directly bound to the
3′-UTR of ABCA1 and suppressed its
expression [202].

miR-378 ABCG1

MiR-378 levels increased in aortas during the progression of
atherosclerosis in ApoE−/−mice [203]. Plasma miR-378 expression was
significantly downregulated in patients with CAD [146,204], CHD [112].
Moreover, it is considered as biomarker for risk and severity of
CHD [112].

MiR-378 directly interacted with the
3′-UTR of ABCG1 and suppressed its
expression that led to downregulation
of cholesterol efflux from mouse and
human macrophages [203].

In ApoE−/− mice, miR-378
presumably downregulated ABCG1
expression in peritoneal
macrophages, leading to decreased
RCT and atherosclerosis
progression [203].

miR-486 ABCA1 1

The level of miR-486 increased in the plasma of obese children and is
associated with body mass index and other indicators of obesity [205].
The level of miR-486 elevated in the blood of patients with CAD [151]
and is associated with the risk of developing cardiovascular
diseases [109,206].

MiR-486 directly bound to 3′-UTR of
histone acetyltransferase-1 (HAT1) and
suppressed its expression with a
concomitant decrease in ABCA1
expression at both mRNA and protein
level, that led to cholesterol
accumulation in THP-1 cells [207].

miR-613 ABCA1
PPAR-γ, which induces the expression of a cascade of genes involved in
cholesterol efflux from macrophages, negatively regulated the expression
of miR-613 at transcriptional level [208].

miR-613 targeted 3′-UTR of ABCA1 and
suppressed its protein expression,
which led to inhibition of cholesterol
efflux from THP-1 cells activated by
PPAR-γ [208].

miR-758 ABCA1

The level of miR-758 decreased in cholesterol-enriched macrophages, as
well as in pancreatic macrophages and liver cells in mice on a high-fat
diet [209]. The level of miR-758 increased in plaques from patients with
hypercholesterolemia compared to plaques of patients with normal
cholesterol [210].

MiR-758 directly interacted with 3′-UTR
of ABCA1, suppressed its expression
and cholesterol efflux to apoA-I in
mouse and human macrophages [209]
and HepG2 cells [211].

1 indirect target.
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The greatest number of studies is devoted to the miR-33 functioning. In humans, there
are two isoforms, miR-33a and miR-33b; in mice, there is only one isoform of miR-33,
homologous to human miR-33a [212]. In mice, human hepatocytes, macrophages, and
some other cells, miR-33 suppress ABCA1 expression by directly binding to sites in
3′-UTR [212–215]. As a result, the cholesterol efflux from cells to the ApoA-I protein is
suppressed. In mice, miR-33 reduces Abca1 expression in macrophages and liver cells,
plasma RCT and HDL levels, as well as cholesterol levels and Abca1 expression [212,213].
In green monkeys, miR-33a/b suppresses ABCA1 expression in the liver and plasma levels
of HDL [216]. Studies in mice with specific mutations in the miR-33 binding sites of the
Abca1 3′-UTR, which prevents targeting by miR-33, revealed increased ABCA1 expression
in macrophages and liver, as well as enhanced cholesterol efflux and reduced foam cell
formation [217]. It is assumed that miR-33 contributes to a decrease in the stability of
ABCA1 mRNA and suppresses the translation of the ABCA1. Moreover, in Ldlr−/− mice
with bone marrow transplantation from these mice with Abca1 mutation, a decrease in
the rate of atherosclerotic plaque formation was observed, similar to that detected for the
same mice with bone marrow transplantation from miR-33−/− mice. Thus, miR-33 has a
proatherogenic effect primarily associated with ABCA1. Changes in miR-33 expression
are shown associated with atherosclerosis development in some conditions. In abdominal
aortic aneurysm tissues, mir-33 overexpression was found accompanied by decreased
ABCA1 [215]. In THP-1 macrophages, proinflammatory cytokines increase miR-33a-5P
levels, which inhibits cholesterol efflux from cells mediated by ABCA1 [218]. The level
of miR-33a is increased and accompanied by a decreased level of ABCA1 in monocytes of
patients with hypertension [174], in the plasma of patients with untreated hyperlipidemia,
who have an increased risk of atherosclerosis [219], and in abdominal aortic aneurysm
tissues [215]. In PBMCs and plasma of patients with CAD, miR-33a was also overex-
pressed [130,160,220]. However, in patients with CAD, the level of miR-33a in plaques
was reduced compared with levels in adjacent tissues with atherosclerosis [221]. miR-33b
has been suggested to post-transcriptionally regulate ABCA1 expression in atherosclerotic
plaques [210]. A significant upregulation of miR-758 and miR-33b was evidenced in plaques
from hypercholesterolemic patients when compared to plaques from normocholesterolemic
patients. In contrast, miR-33a expression was not different between “normocholesterolemic”
and “hypercholesterolemic” plaques [210].

Studies in miR-33−/− mice, including double ApoE−/− knockout, have shown that
miR-33 deficiency serves to raise HDL-C, increase cholesterol efflux from macrophages via
ABCA1, and prevent the progression of atherosclerosis [222,223]. The use of genetically
modified humanized mice showed that miR-33b has a similar effect in ApoE−/− mice [221].
A comprehensive analysis of the difference between the function of miR-33a and miR-33b
was performed using genetically modified mice. miR-33b was dominantly expressed in
the liver and induced increased atherosclerotic plaque [224]. Most studies on Ldlr−/−

mice using the systemic inhibition of miR-33 revealed that this miRNA promotes the
development of atherosclerosis [216,225–227]. Experiments to identify the role of miR-33 in
the development of atherosclerosis found a somewhat controversial effect on the HDL level.
An increase in circulating HDL levels and enhanced reverse cholesterol transport to the
plasma, liver, and feces was detected only in some studies [216,228]. Ouimet demonstrated
that miR-33 promotes the development of atherosclerosis by suppressing the genes of
autophagy and polarization in macrophages without involving RCT [226,227]. A study
in Ldlr−/− mice with miR-33 inhibition found an upregulated HDL with the ability to
promote cellular cholesterol efflux instead of the HDL level increase found by others [225].
In another study, the inhibition of miR-33 in hematopoietic cells only (not systemic) led
to the suppression of atherosclerosis in Ldlr−/− mice [228]. Some mouse studies indicate
potentially harmful effects of systemic miR-33 inhibition due to increased obesity, insulin
resistance, and blood triglyceride levels, probably due to the increased expression of genes
involved in fatty acid synthesis [228]. In general, the results of all these studies suggest
that miR-33 contributes to the development of atherosclerosis in mammals by affecting
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many processes, including the reduction of ABCA1 expression, which decreases the RCT
rate, at least under certain conditions.

The information on other miRNAs that modulate the expression of ABCA1 is given
in Table 2. It should be noted that most miRNAs usually affect different mRNAs, so their
effect on atherosclerosis development may not only be due to their influence on ABCA1.
Most miRNAs suppress the expression of ABCA1 by direct interaction with the 3′-UTR
of its mRNA. This reduces cholesterol efflux from cells both in vitro and in vivo. This, in
turn, promotes the development of atherosclerosis as shown in the ApoE−/− and Ldlr−/−

mouse models of this disease for several miRNAs, including miR-10b, miR-19b, miR-20a/b,
miR-92a, miR-144, miR-145, miR-148, miR-188-3p, and miR-302a.

It should be noted that most miRNAs usually target mRNAs of different genes, some-
times in the same regulatory cluster. The effect of such miRNAs on ABCA1 expression may
be indirect but may still have importance for atherosclerosis development. The miRNAs
directly targeting mRNAs other than ABCA1, having an influence on ABCA1 expression
(indirect target) were also included in Table 2. For example, mir-212, mir-223, and mir-486
directly target SIRT1, transcriptional repressor Sp3, and histone acetyltransferase-1 (HAT1),
respectively, which are involved in the regulation of ABCA1 expression and, thus, affect
its level.

LncRNAs

LncRNAs Upregulate ABCA1 mRNA through Competitive Interaction with miRNAs
LncRNAs play an essential role not only in the regulation of transcription but also in

the post-transcriptional regulation of gene expression. Some lncRNAs can compete with
mRNA for binding to miRNA and decrease the effect of miRNA, which suppresses the
expression of target genes and, thus, contribute to increasing the expression of these genes,
affecting various processes in the human body [229]. These lncRNAs are considered as
competing endogenous RNAs (ceRNAs). LncRNAs can affect the expression of the ABCA1
as a result of both the interaction with other proteins or DNA and competitive interaction
with miRNAs targeted ABCA1. LncRNA interacts with binding sites for miRNAs to
upregulate ABCA1 expression.

Several lncRNAs with ceRNAs properties are involved in the regulation of ABCA1
expression (Table 1). LncRNA with ceRNA properties include metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1). This 8.5-kB lncRNA is located at 11q13 and is
expressed in atherosclerotic plaques [230]. Simultaneously, the MALAT1 expression level
was significantly decreased in patients with atherosclerosis and oxLDL-stimulated THP-1
macrophages [231]. At the same time, miR-17-5p is highly expressed in the PBMCs of
patients with atherosclerosis and suppressing miR-17-5p can alleviate atherosclerosis in
ApoE−/− mice [104]. Computer analysis and studies in THP-1 macrophages revealed that
MALAT1 has a conserved miR-17-5p binding site, and miR-17-5p may directly target the
3′-UTR of ABCA1 [231]. MALAT1 knockdown increases macrophage oxLDL uptake and
downregulates the expression levels of ABCA1, but also SR-B1 and ApoE. Thus, MALAT1
can serve as a “sponge” to absorb miR-17-5p, positively regulating ABCA1 expression and
preventing cholesterol accumulation in macrophages.

LncRNAs that activate ABCA1 mRNA through competitive interaction with miRNAs
include cholesterol homeostasis regulators of miRNA expression (CHROME). The level of
lncRNA CHROME was elevated in the plasma and atherosclerotic plaques of CAD patients
and was upregulated through LXR in response to excess dietary cholesterol in vivo or
cellular cholesterol in vitro [232]. CHROME binds a number of miRNAs (miR-27b, miR-
33a, miR-33b, and miR-128) associated with cholesterol homeostasis and mediates their
destabilization or degradation that upregulates ABCA1 expression. Overexpression of
CHROME-1, CHROME-3, or CHROME-7 splicing variants reduced the levels of miR-27b,
miR-33a, miR-33b, and miR-128, upregulated 3′-UTR of ABCA1, and increased mRNA
levels of ABCA1 and cholesterol efflux from macrophages to ApoA-I acceptors.
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LncRNA GAS5 (growth-arrest specific transcript 5) can upregulate the expression
of ABCA1 by competitively binding with miR-33a-5p [233]. Indeed, the specific binding
sites between GAS5 and miR-33a-5p sequences, and between miR-33a-5p and ABCA1,
have been verified. In addition, lncRNA Maternally expressed gene 3 (MEG3) acts as a
ceRNA for miR-361-5p, regulating the expression of ABCA1 [202]. The 3′-UTR of ABCA1
mRNA contains miR-361 binding sites. Bioinformatics analysis and studies in vascular
smooth muscle cells (VSMCs) identified that lncRNA MEG3 contains one conserved target
site of miR-361-5p and miR-361-5p targeted with 3′-UTR of ABCA1 mRNA. Thus, MEG3
is ceRNA for miR-361-5p and further upregulates ABCA1 expression. The expression
of MEG3 was significantly decreased, and miR-361-5p was upregulated in VSMCs after
oxLDL treatment. The experimental data suggest that lncRNA MEG3 regulates miR-361-
5p and attenuates proliferation of VSMCs and apoptosis induced by oxLDL, which are
involved in the development of atherosclerosis.

LncRNAs Interacting with Proteins or DNA
At the post-transcriptional level, lncRNAs can form lncRNA-protein complexes isolat-

ing these proteins and blocking their function. They can also form base pairs with other
mRNAs and recruit proteins involved in the degradation of these mRNAs [82]. Currently,
several lncRNAs are found to affect the expression of ABCA1 at the post-transcriptional
level as a result of their interaction with other proteins or DNA. In THP-1 macrophages,
oxLDL significantly induced the expression lncRNA DYNLRB2-2, which upregulates
ABCA1 expression and stimulates cholesterol efflux [234,235]. The exact mechanism of reg-
ulation of ABCA1 expression by DYNLRB2-2 is not yet determined, but the involvement of
an increase in the level of G protein-coupled receptor 119 (GPR119), glucagon-like peptide
1 (GLP-1) [234], and a decrease of toll-like receptor 2 (TLR2), has been shown [235].

Several ncRNAs have been described that are involved in the downregulation of
mRNA ABCA1 and in the progression of atherosclerosis, including lnc-HC. The level of
lnc-HC also increases in rat hepatocytes in response to high cholesterol. Lnc-HC forms a
complex with the RNA-binding protein hnRNPA2B1; this complex is further bound to the
target mRNA Abca1 and shortens its life cycle [236]. It is assumed that in this way, lnc-HC
negatively regulates cholesterol metabolism, increasing the risk of metabolic syndrome,
which is a risk factor for cardiovascular diseases.

LncRNA “cyclin-dependent kinase inhibitor 2B antisense non-coding RNA” (CDKN2B-
AS1), also known as “antisense non-coding RNA in the INK4 locus” (ANRIL), is character-
ized by increased expression in atherosclerotic plaques, the promotion of lipid accumula-
tion, and a decrease in RCT rate in foam cells [237]. Overexpression of CDKN2B-AS1 led
to a significant decrease in ABCA1 protein and cholesterol efflux. The exact mechanism
of ABCA1 expression regulation by CDKN2B-AS1 has not yet been clarified. However, it
has been shown that CDKN2B-AS1 interact with the CDKN2B promoter and form complex
recruiting methyltransferase EZH2 and transcriptional repressor CCCTC-binding factor,
which increases the level of methylation of the CDKN2B promoter region and inhibits
its transcription.

The level of lncRNA taurine upregulated gene 1 (TUG1) is associated with the devel-
opment of atherosclerosis. The underlying mechanism is not apparent, but overexpression
of TUG1 downregulates the level of mRNA and protein expression from ABCA1 [238].

Thus, lncRNAs, namely DYNLRB2-2, lnc-HC, and CDKN2B-AS1, affect ABCA1 expres-
sion as a result of their interaction with other proteins or DNA, being involved to some
extent in the pathogenesis of atherosclerosis, contributing to the disease development in the
case of downregulation of ABCA1 expression (lnc-HC and CDKN2B-AS1) and preventing
its development in the case of its upregulation (DYNLRB2-2).

CircRNAs

CircRNA is a new and relatively poorly studied class of lncRNA, found predominantly
in mammalian cells [239–242]. CircRNAs have a covalently closed structure and are often
formed in protein-coding genes during backsplicing. CircRNAs do not undergo the action
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of exonucleases, have increased resistance, and have the ability to act as ceRNA [243].
CircRNAs with binding sites for miRNAs targeted ABCA1 also possess ceRNA activity
and positively regulate ABCA1 expression. There is evidence that circRNAs also regulate
Abca1 expression. Bioinformatic prediction and RNA pull-down assays determined that
circDENND1B absorbs miR-17-5p and promotes Abca1 expression [244]. Overexpression of
circDENND1B promotes cholesterol efflux reduced by oxLDL and is negatively related to
the foam cell formation and progression of atherosclerosis.

Together, circRNA circDENND1B and the considered above lncRNA MALAT1,
CHROME, GAS5, MEG3 function as ceRNAs and bind miRNAs that suppress the expres-
sion of ABCA1, which increases the level of ABCA1 mRNA and prevents the development
of atherosclerosis.

3. ABCG1

The membrane-associated protein ATP-binding cassette subfamily G member 1 or
ABCG1 is encoded by ABCG1. Protein ABCG1 consists of 203 amino acids, and for func-
tioning as a transporter, most likely must form homo- or heterodimers [245,246]. ABCG1
mediates the transport of lipid molecules, including cholesterol and phospholipids such as
sphingomyelin, across cellular and intracellular membranes. ABCG1 is highly expressed in
macrophages. Unlike ABCA1, which can efflux cholesterol to both ApoA-I and nascent
pre-β1 HDL particles, ABCG1 facilitates cellular cholesterol efflux predominantly to HDL
particles and promotes RCT [35,247]. It seems that ABCA1 and ABCG1 operate sequentially
to mediate lipid efflux from macrophages to ApoA-I and HDL (Figure 1).

3.1. Expression Changes in Atherosclerosis

As ABCG1 is involved in RCT, a change in its expression in atherosclerosis can
be expected. Indeed, in patients with atherosclerosis, the mRNA level of ABCG1, and
the content of ABCG1 in blood macrophages, are significantly reduced compared with
controls [248]. In addition, the level of mRNA in the monocytes of patients with occlusive
vascular lesions was lower than in patients with a smaller degree of stenosis and in the
control group. The authors concluded that the mRNA level of ABCG1 was inversely
correlated with the rate of artery occlusion. These findings are consistent with the earlier
results on ABCG1 expression in the study of macrophages from patients with type 2
diabetes, which significantly increases the risk of developing atherosclerosis [249]. This
study shows a significant decrease in ABCG1 mRNA and protein levels in macrophages,
and a correlated decrease in cholesterol efflux. Other researchers have also shown that
the expression of ABCG1 is reduced in PBMCs of CAD patients [32]. Together, these
studies indicate that decreased expression of ABCG1 in macrophages contributes to the
downregulation of cholesterol efflux to HDL particles and RCT impairment that leads to
the development of atherosclerosis.

3.2. Studies of Overexpressing and Knockout Mice

ABCG1, along with ABCA1, also contributes to RCT in vivo [35]. Cholesterol efflux
from macrophages to HDL specifically requires ABCG1 [250]. There is evidence that
for cholesterol efflux from macrophages, ABCG1 acts following ABCA1 when ABCA1-
mediated lipid efflux transforms ApoA-I into an efficient substrate for ABCG1-dependent
cholesterol efflux [251]. Abcg1−/− knockout mice showed the accumulation of a large
mass of lipids in macrophages and liver without changing the level of blood lipids [250].
Meurs et al. found that the Abcg1−/− effect on atherosclerotic development depends on the
lesion size; in early atherosclerotic lesions (<167 × 103 µm2), ABCG1 deficiency causes an
increase in atherosclerotic lesion development, but at lesion sizes >167 × 103 µm2, the role
of ABCG1 in atherogenesis switches from antiatherosclerotic to proatherosclerotic [252].
Bone marrow transplantation from Abcg1−/− mice into Ldlr−/− mice fed a Western diet led
to a significant decrease in lesion area at 11 weeks, which may be explained by registered
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induction of Abca1 and increase of ApoE secretion [253]. Enhanced Abca1 and decreased
Apoa1 expression in Abcg1−/− mice have also been registered by RNA-seq [254].

3.3. Expression Regulation
3.3.1. Changes at the Genome Level

ABCG1 is located on the 21q22.3 chromosome region and contains 23 exons. The
regulation of ABCG1 expression at the genome level includes modifications in the gene
sequence, changing its expression (Table 1). To date, no genetic disease caused by ABCG1
mutations has been documented. However, some polymorphisms identified in the ABCG1
locus can be functional and affect cholesterol efflux, increasing CVD susceptibility.

The association of several polymorphisms of ABCG1 with the risk of CAD and its
severity has been shown in some studies. Ser630Leu, g.−376C > T, and g.−311T > A
variants of the ABCG1 predicted a risk of myocardial infarction [255]. Thus, Ser630Leu, a
mutation leading to an amino acid substitution in ABCG1, increases the risk of developing
a myocardial infarction by seven times and coronary heart disease by six times. Moreover,
levels of ABCG1 mRNA were decreased in leucocytes of g.−376C > T heterozygotes
versus noncarriers due to reduced binding of the ABCG1 promoter to transcription factor
SP1. In contrast, ABCG1 polymorphism rs57137919 (−367G > A) showed a significantly
decreased risk for CAD and myocardial infarction in a Han Chinese population [256].
This polymorphism is accompanied by the downregulation of ABCG1 expression; ABCG1
protein was significantly lower in macrophages from patients with AA genotype and AG
genotype than patients with GG genotype. ABCG1 −257T > G polymorphism significantly
increases the risk of CAD in Japanese male patients, probably due to decreased transcription
activity of ABCG1 in the G allele of −257T > G polymorphism compared with that in the T
allele [257].

Thus, some of these ABCG1 SNPs have a protective role in the development of CAD
and MI, due to the contribution of ABCG1 expression to the RCT capacity. This is also
supported by the finding that the cholesterol efflux from cells to HDL, mediated by ABCG1,
shows an inverse correlation with lipid accumulation in the coronary artery wall of patients
with acute coronary insufficiency [258].

3.3.2. Changes at the Level of Transcription Regulation

The regulation of ABCG1 expression at the transcriptional level involves methyltrans-
ferase and deacetylase. The first can modify the nucleotide cytosine in the CpG islands in
DNA, and the second, amino acids in histone proteins. These modifications prevent in the
case of cytosine methylation or, conversely, facilitate in the case of amino acid deacetylation
in histone proteins the interaction of the binding site in the promoter region with a transcrip-
tion factor that activates ABCG1 transcription. The binding of the gene promoter region
with a transcription factor initiates transcription. LncRNAs also regulate ABCG1 expression
at the transcriptional level. They interact with different participants of the transcription
initiation and affect the binding of the transcription factor to the promoter region.

There are studies showing that the methylation of individual loci in the 5′-UTR or
promoter region of ABCG1 is associated with decreased expression of ABCG1 in blood,
increased triglyceride levels, carotid intima-media thickness, and an increased risk of
CAD [259–262]. Moreover, ABCG1 DNA methylation was found to be negatively associated
with baseline HDL-C and the change in HDL-C after simvastatin treatment [263]. This
association is apparently based on the finding that ABCG1 mediates cholesterol efflux and
the efflux of sphingomyelin and phosphatidylcholine, especially because cholesterol efflux
has some dependence on sphingomyelin concentrations [264,265]. Together, methylation
of the ABCG1 promoter region downregulates its transcription, and HDL-C deficit may
contribute to atherosclerosis.

Several factors are implicated in initiating the transcription of ABCG1. As in the case
of ABCA1, the nuclear receptor LXR/RXR heterodimer transcription factor can activate
ABCG1 transcription. There is evidence that in cultured macrophages, LXR/RXR het-
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erodimers bound to DR4 element in responsive elements LXRE-A and LXRE-B located
in ABCG1 activate their transcription, increasing cholesterol efflux to HDL [266,267]. In
addition, ABCG1 contains putative binding sites for SP1, PPAR-γ, and nuclear factor κB
(NF-κB) [79,268]. PPAR-γ activates ABCA1 and ABCG1 transcription and promotes choles-
terol efflux [79]. The zinc finger gene 202 (ZNF202) transcriptional repressor binds to
ABCA1 and ABCG1 promoters and inhibits their activity, which downregulates cholesterol
efflux [80].

SIRT1, known as a transcriptional activator, was also shown to play a role in ABCG1
transactivation by LXR. oxLDL promotes lipid accumulation and foam cell formation from
monocytes by decreasing the level of SIRT1, which is a transcription activator for the
LXRαα transcription factor, that decreases the transcription of its target gene ABCG1 [77].

LncRNAs can affect the expression of ABCG1 when transcription is initiated. In
VSMCs and THP-1 cell lines, oxLDL was found to reduce the expression of lncRNA
AC096664.3, which inhibits the expression of the transcription factor PPAR-γ, causing
a decrease in the level of the protein ABCG1 and increases cholesterol accumulation
in the cells, a crucial element of foam cell formation [269]. Overexpression of lncRNA
ENST00000602558.1 downregulated ABCG1 mRNA and protein expression that pro-
motes decreased ABCG1-mediated cholesterol efflux from VSMCs to HDL and increased
lipid accumulation in cells [270]. The mechanism of ABCG1 expression regulation by
ENST00000602558.1 is not determined, but ENST00000602558.1 directly binds to p65,
which can bind to the promoter region of ABCG1, which probably suppresses its expres-
sion. The decrease in the transcription level of ABCG1 under the influence of various
lncRNAs is one of the ways to form the foam cells from VSMCs and, thus, contributes to
the pathogenesis of atherosclerosis.

3.3.3. Changes at the Level of Post-transcriptional Regulation of Expression

Noncoding RNAs, including miRNAs and lncRNAs, are involved in the post-
transcriptional regulation of ABCG1 expression (Table 1). Table 2 list miRNAs (miR-
10b, 23a, 34a, 128, 378) that inhibit the expression of ABCG1. Most of them, miR-10b,
23a, 34a, 378, have been shown to contribute to atherosclerosis development. miR-
27a and miR-146a-5p suppress ABCG1 expression indirectly by regulating the expres-
sion of other genes [32,140,271,272]. miR-33 directly interacts with 3′-UTR of Abcg1
and suppresses its expression, while miR-33 does not regulate ABCG1 expression in hu-
mans [222,223,228,273]. Indeed, the miR-33a–responsive element in the human ABCG1
gene is degenerate compared with the rodents’ sequences and does not confer miR-33a
responsiveness [213,273]. However, miR-33a-5P suppresses the expression of ABCG1 in
THP-1 macrophages [218]. Moreover, several reports identified miR-33b as a suppressor of
ABCG1 expression [210,221,274,275]. Thus, miR-33b reduces the expression of ABCG1 and
cholesterol efflux while no general opinion seems to exist on miR-33a influence on ABCG1
expression in humans.

There are some reports demonstrating the role of lncRNA in the regulation of ABCG1
gene expression. As mentioned above, for ABCA1, lncRNA CDKN2B-AS1 also significantly
decreases the ABCG1 level in human foam cells, inhibiting the expression of CDKN2B,
which can lead to the suppression of RCT and progression of atherosclerosis [237]. LncRNA
TUG1, which is associated with the development of atherosclerosis, reduces the expression
of not only ABCA1 but also ABCG1 at the RNA and protein levels, which probably decreases
RCT effectiveness and atherosclerosis progression [238]. Thus, at a post-transcriptional
level, lncRNAs are proatherogenic and inhibit the expression of ABCG1.

4. SR-BI

The membrane-associated protein scavenger receptor class B member 1 or SR-BI is
encoded by SCARB1 located at the 12q24.31 chromosome. The SR-BI receptor has various
ligands, such as phospholipids, cholesterol esters, and HDL. As presented in Figure 1,
the leading role of SR-BI in atherosclerosis is associated with its ability to bind HDL–
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cholesteryl esters (HDL-CE) and, thus, mediate the uptake of cholesterol esters by the
liver. HDL particles bind to SR-BI on the cell surface, and CEs are selectively delivered
to the cell. Besides in the liver, SR-BI is also expressed in macrophages and endothelial
cells, where it mediates cholesterol efflux, preventing the formation of foam cells and
the development of atherosclerosis. In addition, SR-B1 can bind Lp(a), a proatherogenic
lipoprotein particle-containing Apo(a) and LDL, probably through the lipid moiety and
mediates its intracellular uptake and plasma clearance [276].

4.1. Expression Changes in Atherosclerosis

As SR-BI is expressed not only in macrophages and endothelial cells but also in hepato-
cytes and, thus, are involved in RCT, its expression probably changes during atherosclerosis
development. Indeed, there is evidence for the change of SR-BI expression in patients
with atherosclerosis. A study of samples obtained during an autopsy after sudden death
revealed an increase in the content of SCARB1 mRNA in the intima of the aorta with
atherosclerotic lesions of varying severity compared with the intima of the aorta without
atherosclerotic changes [277]. In the monocytes of patients with hyperalphalipoproteinemia
compared with those with hypoalphalipoproteinemia, a decrease in the content of SCARB1
mRNA and a reciprocal correlation of the level of this mRNA with the level of HDL was
revealed [278,279]. These changes in the content of SCARB1 mRNA in atherosclerosis and
related conditions specifically indicate the contribution of expression alterations of SCARB1
to disease development.

4.2. Studies of Overexpressing and Knockout Mice

Studies in mice with Scarb1−/− knockout on a high cholesterol diet showed massive
accumulation of cholesterol-rich HDL in the circulation, reflecting impaired delivery to the
liver [280]. Scarb1−/− knockout studies in ApoE−/− and Ldlr−/− mice demonstrated that
SR-BI expression protects against atherosclerosis [281–284]. A significant increase in aortic
atherosclerotic lesion area was found in such double knockout mice. Overexpression of
SR-BI in atherosclerotic Ldlr−/− mice reduced atherosclerosis despite markedly reducing
HDL-C levels, likely due to increased HDL-C uptake in the liver [285]. It should be noted
that mice with Scarb1−/− knockout in the liver developed atherosclerosis to a lesser extent
than mice with global knockout of this gene, which also indicates the atheroprotective
role of this gene in peripheral tissues [286]. Transgenic mice overexpressing human SR-
BI in the liver showed increased plasma clearance of Lp(a) cholesteryl ethers, whereas
Scarb1−/− knockout mice had decreased plasma clearance [276]. Nevertheless, evidence
regarding the participation of SR-BI in mediating the cholesterol efflux from macrophages
with Scarb1−/− knockout is contradictory and varies from zero or minor contribution
SR-BI to the cholesterol efflux to substantial [35,287,288]. In addition, studies in vitro and
in vivo have shown the role of Scarb1 in macrophage phagocytosis of apoptotic cells in
atherosclerotic plaques [284,289]. Moreover, Scarb1−/− macrophages from Ldlr−/− mice
on the high cholesterol diet had downregulated mRNA levels of IL-1β, IL-6, TNF-α, matrix
metalloproteinase 9 (MMP-9), monocyte chemotactic protein 1 (MCP-1), and p65 of nuclear
factor NF-κB that suggest the role of Scarb1 in reducing inflammation [284].

Overall, studies in mice indicate the importance of the normal functioning of SCARB1
to prevent atherosclerosis development due to both its ability to contribute to the cholesterol
efflux, impede the formation of foam cells, and its ability to mediate uptake cholesterol
esters to the liver by binding HDL-CE.

4.3. Expression Regulation
4.3.1. Changes at the Genome Level

The changes in the SCARB1 sequence regulate its expression at the genome level
(Table 1). For SCARB1, two mutations and a number of SNPs were found to be associated
with an increased risk of cardiovascular disease. A homozygous variant of the P376L muta-
tion, in which leucine replaces proline 376 in SR-BI, was found in one patient by sequencing
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the coding regions of lipid-modifying genes in 328 people with extremely high plasma
HDL-C levels [290]. The P376L variant caused an almost complete loss of SR-BI function-
ality. The authors showed that this variant disrupted the post-translational processing of
SR-BI and abolished the selective uptake of HDL-CE in hepatocyte-like cells derived from
the induced pluripotent stem cells from a homozygous subject. Cholesterol and ApoA-I
levels in HDL were significantly increased in the homozygote and heterozygotes compared
with controls [290]. In a representative population, heterozygote carriers of the P376L
variant had a higher oxidized HDL and an increased risk of CVD than noncarriers [291].

For the missense mutation (P297S) with the loss of function of SCARB1, carriers
had decreased cholesterol efflux from macrophages, increased HDL-C plasma levels, and
decreased uptake of HDL-C by hepatocytes [292]. Thus, studies of SCARB1 mutation
revealed that despite the plasma elevation in HDL-C, carriers exhibit an increased risk of
CAD. Some rare mutations of SCARB1 were found in people with the high HDL-C and
high Lp(a) phenotype [293]. These mutations resulted in a partial or complete reduction
in cholesteryl ester uptake from HDL3 in vitro, but their impact on the development of
atherosclerosis is not clear.

A number of SNPs in SCARB1, such as rs4238001, rs10846744, and rs11057830, are
associated with HDL levels and the development of CVD [294–300]. However, some
genome-wide association studies revealed no correlation between CAD haplotypes and
the HDL level for several cases [298]. SNPs in SCARB1 associated with HDL, but not with
CAD development, have also been described [301].

It can be concluded that mutations of SCARB1 with the loss of function, impair SR-BI
as an HDL-C receptor, contribute to CVD development, including atherosclerosis, mainly
by reducing HDL-C absorption by the liver.

4.3.2. Changes at the Level of Transcription Regulation

Currently, only an indirect effect of methylation on SCARB1 expression has been
detected. The remarkable inhibition of SCARB1 mRNA and SR-BI protein was revealed
in atherosclerotic plaque of ApoE−/− mice and in THP-1 macrophage-derived foam cells
connected to the expression of DNA methyltransferase (DNMT3b) and decreased level of
transcription factor Sp1 [302]. This decreased expression of SR-BI promotes lipid accumu-
lation in foam cells. Interestingly, the decreased expression of SCARB1 was independent of
DNA methyltransferase activity of DNMT3b and connected with the interaction DNMT3b
with the N-terminal region of SP1, which prevented SP1 binding to SCARB1 promoter in
foam cells.

Many transcription factors are involved in the SCARB1 transactivation. In human
liver cells, besides LXR/RXR heterodimer, farnesoid X receptor 1 (FXR1) together with
LXR can bind to their recognition sites at SCARB1 sequence and transactivate this gene
in a synergistic manner [303]. In addition, in liver cells, SCARB1 can be transactivated by
transcription factors PPAR-γ and liver receptor homolog 1 (LRH1) [304].

LncRNA MALAT1 is found to regulate SCARB1 transcription. In THP-1 macrophages,
oxLDL promotes activation of MALAT1 transcription by NF-κB. In turn, MALAT1 binds
to b-catenin, the transcription coactivator, and promotes its accumulation on the binding
site of the SCARB1 promoter that activates its transcription probably through TCF4 and
PPAR-γ and upregulation of lipid uptake [305,306]. Liu et al. also reported that MALAT1
knockdown increases macrophage oxLDL uptake and downregulates the expression of
SCARB1 mRNA and SR-BI [231]. Thus, lncRNA MALAT1 affects the expression of SCARB1
as a result of interaction with other proteins, contributes to its transcription activation, and
prevents atherosclerosis development. Together, the transcription activation of SCARB1 is
regulated by many transcription factors, in particular, LXR/RXR, FXR1, LRH1, PPAR-γ,
SP1, and lncRNA MALAT1.
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4.3.3. Changes at the Level of Post-transcriptional Regulation of Expression

In the post-transcriptional regulation, some miRNAs, which target SCARB1 and sup-
press its expression, are associated with cholesterol accumulation underlying atheroscle-
rosis. A detailed description of the miRNAs that regulate SCARB1 expression is given in
Table 2. These are miR-24, -96, -125a, -185, -223, and -455. These miRNAs directly affect
the 3′-UTR of SCARB1 mRNA and inhibit its expression, consequently downregulating
HDL-CE uptake by liver cells. Upregulation of these miRNAs in humans could lead to
atherosclerosis development. However, the increase in the level of atherosclerosis is shown
only for miR-24. miR-223 promotes the accumulation of cholesterol in liver cells, which may
increase the risk of developing atherosclerosis. The role of other miRNAs that suppress
SR-BI expression in the development of this disease may still be established.

5. Medical Application of Data on the Transporter Genes Functioning in CVD

Transporters are essential participants in RCT, and the impairment of their function-
ing contributes to the development of atherosclerosis and CVD. The experimental data
described above for the features of the transporter genes functioning in atherosclerotic RCT
disruption can be assumed to identify new targets, which can be used to diagnose and treat
atherosclerosis. Such targets can be selected at both transcriptional and post-transcriptional
levels of transporter gene expression regulation.

5.1. Transcriptional Regulation of Expression

Substances that alter the expression of genes involved in CVD development at the
transcriptional level can be considered potential drugs for this disease. Currently, the most
intensely studied is apabetalone (RVX-208), a selective inhibitor of proteins containing
bromodomains and extraterminal domains (BET proteins), an epigenetic regulator of gene
expression, and the driver of atherogenesis [307]. RVX-208 has been shown to inhibit the
development of atherosclerosis in ApoE−/− mice [308]. The anti-atherogenic activity of
the BET inhibitor, RVX-208, was manifested through a combination of changes in lipid
content and anti-inflammatory activity. RVX-208 treatment upregulates ABCA1, ABCG1,
and SR-BI–mediated cholesterol efflux and serum levels of ApoA-I and HDL-C in studies
in vivo and in vitro [309]. In patients, oral RVX-208 treatment also increased ApoA-I, pre-
β-HDL, and HDL functionality. Apabetalone is also being considered as a candidate for
CVD therapy that effectively suppresses inflammation by inhibiting, in particular, IL-8
and TLR2, as well as proteins involved in plaque stability, such as the transcription factor
IRF1 in patients with CVD and several other genes involved in atherogenesis [310]. In
some clinical trials, apabetalone treatment led to plaque attenuation correlated with HDL
and VLDL plasma levels and fewer heart failure hospitalizations in patients with recent
acute coronary syndrome ACS [307,311]. However, there are clinical studies in which
the use of apabetalone did not significantly reduce the risk of cardiovascular disorders in
patients with type 2 diabetes after acute coronary syndrome [312] and the progression of
atherosclerosis in patients with CAD [313].

Therapeutic agents acting at the level of gene transcription are of great interest. As
the methylation of the promoter region of ABCA1 contributes to atherosclerosis develop-
ment [65,66], substances that inhibit methylation can prevent the downregulation of this
gene and promote cholesterol efflux. For example, N-phthaloyl-l-tryptophan 1 (RG108),
a DNMT1 inhibitor, and its maleimide derivatives can be considered as potential agents
for the treatment of atherosclerosis and CAD [314,315]. Procainamide, which is used
for the treatment of ventricular tachycardia, is also found to be a specific inhibitor of
DNMT1 [316,317]. Nanaomycin A, the specific inhibitor of DNMT3b, upregulates the
mRNA and protein expression of SCARB1 in foam cells [302]. Additional DNMT3B in-
hibitors may also be tested to affect SCARB1 expression [318].

Taking into account that the downregulation of SIRT1 decreases the transcription of
ABCA1 [77], the activation of SIRT1 may be considered as a potential therapy for atheroscle-
rosis and CVD. Some dietary supplements, including resveratrol, quercetin, and curcumin,
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upregulate SIRT1. Quercetin enhances oxLDL-impaired SIRT1 expression [319]. More-
over, in a clinical trial of subjects with hypertension, quercetin decreases the plasma level
of proinflammatory cytokines IL-1b and E-selectin [320]. Resveratrol has been shown
to protect against CVD and reduce the atherosclerotic area in ApoE−/− and LDLR−/−

mice [321,322]. Resveratrol suppresses lipid accumulation and foam cell formation from
THP-1 macrophages [323]. However, there is evidence that resveratrol is not a direct activa-
tor of SIRT1 [324]. Nevertheless, in clinical trials, resveratrol increases serum concentrations
of SIRT1 [325], decreases the plasma level of chemokines in healthy subjects [326], and
improves left ventricular systolic and diastolic functions in patients with stable CHD [327].
Curcumin has been reported to enhance cholesterol efflux by upregulating ABCA1 ex-
pression through activating AMP-activated protein kinase, its downstream target SIRT1,
and transcription factor LXRa in THP-1 macrophage-derived foam cells [328]. It should
be noted that the protective effect of these dietary supplements on atherosclerosis devel-
opment is also connected to the inhibition of inflammation, including as a result of SIRT1
activation [329–331].

5.2. Post-transcriptional Regulation of Expression
5.2.1. MiRNAs

The effect of miRNA on the expression of genes involved in the pathogenesis of
atherosclerosis and CVD, including transporters, is well characterized. The inhibition of
miRNAs targeting genes encoding the lipid transporters can be considered to treat these
diseases. There is a comprehensive overview of the medical application of miRNAs for
different therapeutic targets in cardiovascular disease [332].

The beneficial effects of inhibition of a variety of miRNAs have been shown in an-
imal models of CVD. For example, miRNAs miR-19b, miR-34a, and miR-33, as already
mentioned, suppress the expression of ABCA1 and are considered potential targets for
CVD therapy in humans [117,147,222,225,333]. For several of these miRNAs, therapeutic
molecules MGN-2677, MGN-5804, and MRG-110 inhibiting miR-143/145, -378, and -92a,
respectively, are already being investigated [334]. The first in-human study of a locked
nucleic acid-based antisense oligonucleotide MRG-110 inhibiting miR-92a was promising: a
single intravenous injection dose and time-dependently reduced miR-92a levels [335]. One
study has suggested the delivery of miRNAs into macrophages that promote cholesterol
efflux from foam cells to the liver for the treatment of CVD [336].

The combined antagonism of miR-148 and miR-128-1 is another promising therapeutic
approach to the treatment of dyslipidemia [337]. The inhibition of miR-148a increases
liver LDLR expression and decreases plasma low-density lipoprotein-cholesterol levels in
mice. MiR-128-1 regulates ABCA1 expression in macrophages and improves cholesterol
efflux from them. As miR-320b reduces HDL and ApoA-I mediated cholesterol efflux
from macrophages, the inhibitory effect may also be a promising therapeutic target for the
treatment of atherosclerosis [338].

Due to the fact that the level of many miRNAs changes in CVD, they can be used
to diagnose these diseases. Thus, the expression level of miR-223, which regulates the
expression of ABCA1 and SCARB1, can serve as a marker for the diagnosis of CVD [198,339]
and for the prognosis of the disease course [193,197]. The European patent EP2925884B1
describes using a biomarker panel of four miRNAs (miR-16, miR-27a, miR-101, and miR-
150) to predict a patient’s condition after acute myocardial infarction [340]. Patients with
acute myocardial infarction and high miR-16 and mi-R27a, and low levels of miR-150
and miR-101 are more likely to have worse left ventricular contractility than those with
normal levels.

The use of new integrated approaches for the treatment of dyslipidemia and CVD
is also considered. For some of them, the effect on the expression of transporters and
cholesterol efflux is confirmed. Lactobacillus acidophilus species are well-known probiotics
with beneficial cholesterol-regulating activity. L. acidophilus K301 increases the expression
of genes, such as ABCA1 and ABCG1, under the control of LXR, resulting in an increase in
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ApoA-I-dependent cholesterol efflux, suggesting the therapeutic potential of L. acidophilus
K301 as an anti-atherosclerotic agent [341]. Sonodynamic therapy (SDT) is a novel ap-
proach that involves a combination of low-intensity ultrasound and specialized chemical
agents known as sonosensitizers. SDT with 5-aminolevulinic acid as a sonosensitizer
(ALA-SDT) activates the PPAR-γ-LXRa/ABCA1 and ABCG1 pathway, increasing choles-
terol efflux, induces an anti-inflammatory response, and ultimately reduces the signs of
atherosclerosis [342].

5.2.2. LncRNAs

Noncoding RNAs are regulators of lipid metabolism, affecting the expression of genes
involved in the capture, esterification, and cholesterol efflux, and are also able to regulate
inflammatory processes; therefore, they can be considered as promising therapeutic targets
for the treatment of atherosclerosis and CAD [343]. Based on the results of experiments
aimed at increasing or decreasing the level of antiatherogenic or proatherogenic RNAs, this
approach has been suggested for CVD therapy.

Exposure to lncRNAs with antiatherogenic properties, such as upregulation of trans-
porter gene expression and activation of macrophage cholesterol efflux, is a potential
therapeutic targeting strategy for atherosclerosis treatment. Among lncRNAs provided in
the review, these criteria are met by MeXis, MALAT1, CHROME, and MEG3.

Considering lncRNA GAS5 as a target for the treatment of atherosclerosis in humans, it
can be seen that GAS5 has proatherogenic properties, promoting methylation of the ABCA1
promoter region [84]. Indeed, GAS5 suppression stimulates RCT, suppresses intracellular
lipid accumulation, and, as a result, decreases the progression of atherosclerosis. GAS5
also displays antiatherogenic properties interacting with miRNA; GAS5 can upregulate
the expression of ABCA1 by competitively binding with miR-33a-5p [233]. It should be
noted that polymorphism in the GAS5 promoter region, rs145204276 DEL/DEL, which
upregulates GAS5 transcription activity, was shown to decrease atherosclerosis risk in a
Chinese population [344].

Some lncRNAs highlighted in the review affect the expression of transporters at the
post-transcriptional level and can be used to predict the development of atherosclerosis
and CAD. As the level of some ncRNAs correlates with the outcome of CVD, in particular
acute myocardial infarction, the data for the ncRNA expression can also be used to diag-
nose the disease and predict its course [345,346]. For example, CDKN2B-AS1 (or ANRIL)
and MALAT1 can be used to predict the development of left ventricular dysfunction as
ANRIL was expressed at lower levels and MALAT1 expression was higher in patients with
myocardial infarction than in healthy volunteers [345].

5.2.3. CircRNAs

For a number of circRNAs, a change in expression was shown in various CVDs. In this
regard, some circRNAs can be considered as potential biomarkers of individual CVDs or
used to predict the disease course. Thus, the expression level of hsa_circ_0124644 (ROBO2
gene, roundabout guidance receptor 2) is significantly increased in the peripheral blood of
CAD patients and can be used as a diagnostic biomarker of CAD [347].

In addition to its linear form, lncRNA ANRIL also has a circular isoform (circANRIL)
associated with the atheroprotective 9p21 genotype [348]. CircANRIL functions were
independent of CDKN2B and miRNA absorption and capable of preventing pre-rRNA
maturation in macrophages by binding to pescadillo homologue 1, activating p53, and
thereby enhancing apoptosis and inhibiting proliferation. Carriers of the CAD-protective
haplotype at 9p21 showed significantly increased expression of circANRIL in PBMCs [349].
Thus, circANRIL appears to be used as a predictor of the positive outcome of CVD. CircRNA
named myocardial infarction-associated circular RNA (MICRA, gene ZNF609 (zinc finger
protein 609)), whose function is currently unknown, but probably connected to miR-150, is
associated with the outcome after myocardial infarction; patients with low levels of MICRA
in the blood were at high risk of left ventricle dysfunction after myocardial infarction [350].
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It is assumed that MICRA level can be used to predict the development risk of left ventricle
dysfunction after myocardial infarction.

Some patents describe circRNAs whose levels correlate with CVD. For example, the
inventors of the patent EP3054017A1 revealed that in the level of circRNAs detected by
them, U1 (DENN domain containing 4C gene, DENND4C), U2 (PDS5 cohesin associated
factor A gene, PDS5A), and U4 (zinc finger protein 292 gene, ZNF292) are increased in the
plasma of patients with CAD, and the levels of U1 and U4 in the plasma of patients with
acute myocardial infarction. CircRNA data are proposed to be used as biomarkers for the
diagnosis of CVD data.

6. Conclusions

Changing the function of cholesterol transporter genes has great potential for devel-
oping new approaches to anti-atherosclerotic drug therapy. A decrease in the expression of
these genes contributes to inhibiting RCT and the development of atherosclerosis, CAD,
and CVD, while an increase in their expression prevents the development of these diseases.
In that way, the normal functioning of transporter genes, and hence RCT, plays an essential
role in preventing the development of atherosclerosis.

Studies of the regulation of ABCA1, ABCG1, and SCARB1 expression at transcrip-
tional and post-transcriptional levels have revealed new proteins and ncRNAs involved in
their function. Many factors, particularly methyltransferases and miRNAs, suppress the
expression of transporter genes and contribute to atherogenesis in humans. For other fac-
tors, particularly those involved in the post-transcriptional regulation of the expression of
transporter genes, some lncRNAs and circRNAs, anti-atherogenic effects have been shown.

This accumulated knowledge regarding the peculiar problems of transporter gene
expression regulation in atherosclerosis and various CVDs can be applied in medicine to
diagnose and treat these diseases. The influence on the enzymes responsible for epigenetic
modifications at the level of transcription regulation of the lipid transporters is studied as
a therapeutic approach to treating atherosclerosis and CVD. Methyltransferase inhibitors
have shown promising results in activating the expression of lipid transporters. The most
encouraging is the activation of SIRT1 deacetylase by dietary supplements, which also
reduces inflammation. As miRNAs targeting ABCA1, ABCG1, and SCARB1 encoding the
lipid transporters have a suppressing effect on their expression, therapeutic molecules that
inhibit miRNAs are being investigated as a potential therapy for these diseases. However,
a single miRNA can suppress the translation of many mRNAs, thus regulating a wide list
of genes, and the overall effect may be difficult to predict. Therapy with agents based on
noncoding RNAs with activating effects on the expression of lipid transporters, particularly
some lncRNAs and circRNAs, may be considered as a potential therapeutic strategy for the
treatment of atherosclerosis. At the same time, these noncoding RNAs, including circRNAs
and miRNAs, are studied as diagnostic biomarkers for atherosclerosis and related CVD
and CAD. Thus, most reviewed agents regulating the expression of the lipid transporters,
on the one hand, are involved in the pathogenesis of atherosclerosis and related CVD, and
on the other hand, are promising targets for the treatment of these diseases.
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