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Summary
Background Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease, and among the non-inva-
sive tests, controlled attenuation parameter (CAP) and liver stiffness measurement (LSM) have shown better diag-
nostic performance in NAFLD. This meta-analysis aimed to evaluate the performance of CAP and LSM for
assessing steatosis and fibrosis in NAFLD.

Methods We searched the PubMed, Web of Science, Cochrane Library, and Embase databases for relevant articles
published up to February 13th, 2022, and selected studies that met the inclusion and exclusion criteria, and evaluated
the quality of evidence. Then we pooled sensitivity (SE), specificity (SP), and area under receiver operating character-
istic (AUROC) curves. A random effect model was applied regardless of heterogeneity. Meta-regression analysis and
subgroup analysis were performed to explore heterogeneity, and Fagan plot analysis was used to evaluate clinical
utility. This meta-analysis was completed in Nanjing, Jiangsu and registered on PROSPERO (CRD42022309965).

Findings A total of 10537 patients from 61 studies were included in our meta-analysis. The AUROC of CAP were 0¢
924, 0¢794 and 0¢778 for steatosis grades ≥ S1, ≥ S2 and = S3, respectively, and the AUROC of LSM for detecting
fibrosis stages ≥ F1, ≥ F2, ≥ F3, and = F4 were 0¢851, 0¢830, 0¢897 and 0¢925, respectively. Subgroup analysis
revealed that BMI ≥ 30 kg/m2 had lower accuracy for diagnosing S ≥ S1, ≥ S2 than BMI<30 kg/m2. For the mean
cut-off values, significant differences were found in CAP values among different body mass index (BMI) populations
and LSM values among different regions. For diagnosing S ≥ S1, ≥ S2 and = S3, the mean CAP cut-off values for
BMI ≥ 30 kg/m2 were 30¢7, 28¢2, and 27¢9 dB/m higher than for BMI < 30 kg/m2 (P = 0¢001, 0¢001 and 0¢018,
respectively). For diagnosing F ≥ F2 and = F4, the mean cut-off values of Europe and America were 0¢96 and 2¢03
kPa higher than Asia (P = 0¢027, P = 0¢034), respectively. In addition, the results did not change significantly after
sensitivity analysis and the trim and fill method to correct for publication bias, proving that the conclusions are
robust.

Interpretation The good performance of CAP and LSM for the diagnosis of mild steatosis (S ≥ S1), advanced liver
fibrosis (F ≥ F3), and cirrhosis (F = F4) can be used to screen for NAFLD in high-risk populations. Of note, the accu-
racy of CAP for the detection of steatosis in patients with obesity is reduced and requires specific diagnostic values.
For LSM, the same diagnostic values can be used when the appropriate probes are selected based on BMI and the
automated probe selection tool. The performance of CAP and LSM in assessing steatosis in patients with obesity,
moderate to severe steatosis, and low-grade fibrosis should be further validated and improved in the future.
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Research in context

Evidence before this study

In recent years, research has found that among the non-
invasive tests, controlled attenuation parameter (CAP)
and liver stiffness measurement (LSM) using Fibroscan�

equipment exhibited high accuracy in quantifying stea-
tosis and fibrosis in patients with NAFLD. However,
although CAP and LSM have been used to evaluate
steatosis and fibrosis in many studies, the results were
inconsistent, especially for the population with obesity
and different probes. Detailed pooled estimates of the
accuracy of CAP and LSM for assessing steatosis and
fibrosis in NAFLD are needed. We searched the PubMed,
Web of Science, Cochrane Library, and Embase data-
bases for relevant articles published up to February
13th 2022. Then we pooled diagnostic indexes to ana-
lyze the diagnostic accuracy of CAP and LSM and calcu-
lated mean cut-offs. Meta-regression analysis and
subgroup analysis were performed to explore heteroge-
neity according to the cut-off value, BMI, probe type,
and region, and Fagan plot analysis was used to evalu-
ate clinical utility.

Added value of this study

According to our meta-analysis results, overall, the
diagnostic performance of CAP decreased with the
severity of steatosis while the diagnostic performance
of LSM increased with the aggravation of fibrosis. Sub-
group analysis showed that CAP was less accurate in
patients with obesity, the mean CAP cut-off values for
BMI ≥ 30 kg/m2 were significantly higher than for BMI
< 30 kg/m2. However, for LSM, the accuracy was similar
between different subgroups. The lower LSM values
obtained with the XL probe in patients with obesity
were partially offset by the higher LSM values generated
in patients with obesity, resulting in an insignificant dif-
ference in LSM values.

Implications of all the available evidence

Considering the good performance of CAP and LSM for
the diagnosis of mild steatosis (S ≥ S1), advanced liver
fibrosis (F ≥ F3), and cirrhosis (F = F4), they can be used
to screen for NAFLD in high-risk populations. For the
population with obesity, higher CAP diagnostic values
and more accurate tools for non-invasive detection of
steatosis are needed, while the same LSM diagnostic
values can be used for patients with obesity when
selecting the appropriate probe based on BMI and the
automated probe selection tool. The performance of
Fibroscan in detecting steatosis in patients with obesity,
moderate to severe steatosis, and low-grade fibrosis
needs to be further explored and improved.
Introduction
With the prevalence of obesity and type 2 diabetes melli-
tus (T2DM), non-alcoholic fatty liver disease (NAFLD)
has become the largest chronic liver disease in devel-
oped countries,1 and in the general population, the esti-
mated prevalence of NAFLD is 25¢24%.2 Nonalcoholic
steatohepatitis (NASH) is the inflammatory subtype of
NAFLD. With time, NASH can progress to cirrhosis,
hepatocellular carcinoma (HCC), and end-stage liver
disease.1,3 Besides, growing evidence shows that NAFLD
is a multisystem disease, affecting extra-hepatic organs
and regulatory pathways, with an increasing risk of
T2DM, cardiovascular (CVD), and chronic kidney dis-
ease (CKD).4 Therefore, it is necessary for the early diag-
nosis of NAFLD and to take steps to prevent its
progression.

So far, liver biopsy is still regarded as the gold stan-
dard for NAFLD diagnosis.1 However, it is limited by
invasiveness, cost, sampling error,5 and procedure-
related complications.6 Thus, there is an urgent need to
develop reliable tools for noninvasive diagnosis of
NAFLD/NASH.

In recent years, the use of transient elastography
(TE) with Fibroscan� equipment (Echosens, Paris,
France) to obtain controlled attenuation parameter
(CAP) and liver stiffness measurement (LSM) has been
seen as a promising tool for noninvasive quantifying
hepatic steatosis and fibrosis, respectively,7,8 and
showed low failure (3¢2%), high reliability (> 95%)
rates, and high reproducibility.9 Besides, the develop-
ment of the XL probe for patients with obesity has
solved the limitations of the clinical application of CAP
and LSM.10−12 Studies found unreliable measurements
were independently associated with body mass index
(BMI) ≥ 30 kg/m2, while 83% of patients (BMI ≥ 30 kg/
m2) who could not be measured with the M probe could
be measured with the XL probe.10 In patients with obe-
sity, due to thicker subcutaneous fat, the skin-liver cap-
sule distance (SCD) is more than 25 mm, and the XL
probe can increase the detection depth (35-75 mm vs M:
25-65 mm) to improve the measurement success rate.
www.thelancet.com Vol 51 Month , 2022
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In addition, the new version of the FibroScan equip-
ment includes an automatic probe selection tool that
measures SCD and suggests which probe to use (M:
SCD < 25 mm, XL: SCD ≥ 25 mm). In clinical practice,
physicians can select probes based on BMI and the auto-
mated probe selection tool.13 However, as the use of
CAP and LSM became more popular, results began to
diverge, particularly regarding differences in diagnostic
accuracy and cut-off values between different BMI pop-
ulations and between different probes. Earlier, several
meta-analyses had discussed the accuracy of CAP or
LSM alone in NAFLD patients,14,15 but few studies were
included, with only nine studies, which might lead to
relatively limited conclusions.

Hence, we did this meta-analysis with the aim of
comprehensively evaluating the performance of CAP
and LSM for assessing steatosis and fibrosis in NAFLD/
NASH.

Methods

Search strategy and selection criteria
This meta-analysis was conducted following the Pre-
ferred Reporting Items for a Systematic Review and
Meta-analysis of Diagnostic Test Accuracy Studies
(PRISMA-DTA) guidelines.16 The protocol for this
meta-analysis was registered with PROSPERO
(CRD42022309965) https://www.crd.york.ac.uk/PROS
PERO/#recordDetails.

We searched the PubMed, Web of Science, Cochrane
Library, and Embase databases for relevant articles pub-
lished up to February 13th, 2022. Our search strategy
consisted of MeSH terms and entry terms with no
restrictions on the language of the articles. We also
scanned the reference lists of eligible articles for addi-
tional eligible articles that were not retrieved during the
literature search.

For example, in PubMed, we searched (“Non-alco-
holic Fatty Liver Disease” OR “nonalcoholic fatty liver
disease” OR “fatty liver” OR “nonalcoholic fatty liver dis-
ease*” OR “fatty liver*” OR “NAFLD” OR “nonalcoholic
steatohepatiti*” OR “NASH” OR “steatohepatiti*” OR
“liver steatos*” AND “transient elastography” OR “TE”
OR “controlled attenuation parameter” OR “CAP” OR
“liver stiffness” OR “LSM” OR “FibroScan” AND
“diagnos*” OR “assess*” OR “detect*” OR “qualif*” OR
“discriminat*” OR “distin*” OR “different*” OR
“predict*”). The details of the search strategy are pre-
sented in supplementary materials (Table S1).

The inclusion criteria were as follows: (1) Patients:
adult NAFLD/NASH patients; (2) Reference standards:
liver biopsy was used as the gold standard for the diagno-
sis of NAFLD/NASH; (3) Index test: steatosis and fibrosis
were assessed by using CAP and LSM of Fibroscan�

equipment (Echosens, Paris, France); (4) Steatosis and
fibrosis staging: steatosis was staged according to the
NASH Clinical Research Network scoring system.17
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Fibrosis was staged from F0 to F4 according to the
Kleiner score.17 If fibrosis was assessed according to
other scoring systems, data were transformed according
to Goodman’s method18 to unify results on the liver fibro-
sis staging; (5) Studies that provided sensitivity (SE), spec-
ificity (SP), sample size or enough information to get true
positive (TP), false positive (FP), true negative (TN) and
false negative (FN); (6) Studies included at least 20
patients to obtain good reliability.

The exclusion criteria were as follows: (1) Animal
experiments, review, conference abstracts, case reports
and meta-analyses; (2) Patients with morbid obesity:
BMI>40 kg/m2; (3) Full-text or sufficient data could not
be extracted.

Studies from the database were managed using End-
Note X9 software to remove duplicate articles. The
included articles based on inclusion and exclusion crite-
ria were screened by FQ and Y-JZ, who worked indepen-
dently. Disagreement was discussed with another
author (L-LX) and subsequently resolved via consensus.

The quality of eligible articles was independently
assessed by two investigators (FQ, Y-JZ) with the Qual-
ity Assessment of Diagnostic Accuracy Studies-2 (QUA-
DAS-2) checklist19 by Review Manager Version 5.4.1,
and any disagreement was resolved by the third investi-
gator (L-LX). The QUADAS-2 checklist included four
parts: patient selection, index test, reference standard,
and flow and timing. Each signaling question was
judged as “yes” or “no” or “unclear”. The risk of bias
and concern about applicability in each study were
judged as “high” or “low”, or “unclear”. Concern about
applicability assessment does not apply in the flow and
timing domain.

Extracted research information includes: (1) Back-
ground information: first author, publication year,
country, study design, sample size, age, sex, BMI, and
probe type; (2) Diagnostic parameters: cut-off values,
area under the receiver operating characteristic
(AUROC) curves, SE, SP, TP, FP, TN, FN. Then we con-
structed a diagnostic 2�2 contingency table. If the same
original article contains multiple groups of available
data, it would be divided into multiple independent
studies for data extraction. The process was performed
independently by FQ and Y-JZ. Any disagreements
were resolved by discussion and consensus.

Data analysis
To analyze the diagnostic accuracy of CAP and LSM in
patients with NAFLD/NASH, the summary SE, SP, pos-
itive likelihood ratio (PLR), negative likelihood ratio
(NLR), and diagnostic odds ratio (DOR) with their 95%
confidence interval (95% CI) and AUROC with standard
errors (SE) were calculated based on TP, FP, FN, and
TN. Further, we drew forest plots and constructed sum-
mary receiver operating characteristic (SROC) curves.

The threshold effect was analyzed by Spearman cor-
relation coefficient. Cochran’s Q statistic and I2 statistic
3

https://www.crd.york.ac.uk/PROSPERO/#recordDetails
https://www.crd.york.ac.uk/PROSPERO/#recordDetails


Figure 1. Study selection.
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were used to quantitatively evaluate the heterogeneity of
studies. When Cochran’s Q Statistic showed P ≤ 0¢10, it
was considered to show significant heterogeneity. Stud-
ies with I2 of 0-25%, 25-75%, and > 75% were consid-
ered to have low, moderate, and high heterogeneity,
respectively. A random effect model was applied regard-
less of heterogeneity. Meta-regression analyses were
performed to determine the source of heterogeneity.
According to the cut-off value, BMI, probe type, and
region, we conducted subgroup analyses. The groups
were as follows: cut-off value≥median value and<median
value; BMI < 30 kg/m2 and ≥ 30 kg/m2; M and XL probe,
Europe and America (EUR-USA) and Asia.

Moreover, according to an estimated prevalence of
25% of NAFLD in the general population, we used
Fagan plot analysis to evaluate the pre-test probabilities
of 25% and corresponding post-test probabilities in clin-
ical utility. Besides, sensitivity analysis was performed
to evaluate the robustness of the results, and Deeks’
funnel plot asymmetry test was used to investigate pub-
lication bias, and a P value < 0¢05 indicated a significant
publication bias. The trim and fill method was con-
ducted to rectify the funnel plot asymmetry caused by
publication bias.20 All statistical analyses were done
with Meta-Disc Version 1.4 and Stata Version 16.0. The
results were considered significant when P < 0¢05.
Role of the funding source
The funding source was used for article processing
charges. Beyond that, the funder of the study had no
role in study design, data collection, data analysis, data
interpretation, or writing of the report. The correspond-
ing author had full access to all the data in the study
and had final responsibility for the decision to submit it
for publication.

Results
Through database searches, 3167 records (PubMed:
1068; EMBASE: 715; Cochrane Library: 501; Web of Sci-
ence: 1384) were found. After removing duplicates,
2200 records remained, and 1920 records were
excluded after browsing titles and abstracts. The
remaining 280 records were evaluated in full text, and
219 articles were excluded. Finally, 61 articles were
selected for the meta-analysis. The specific screening
process is shown in Figure 1.
www.thelancet.com Vol 51 Month , 2022
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A total of 10537 patients from 61 articles were
included. The characteristics of the 61 included articles
are shown in supplementary materials (Table S2). In
these articles, 10 articles21−30 assessed the accuracy of
CAP for diagnosing and staging steatosis in NAFLD/
NASH, 39 articles31−69 evaluated the accuracy of LSM
for diagnosing and staging fibrosis in NAFLD/NASH,
and 12 articles70−81 evaluated both. Most of the included
studies were of good quality. The details are shown in
the supplementary materials (Figure S1a and b).

14 studies reported the diagnostic accuracy of CAP
for detecting S ≥ S1. The mean cut-off value and range
was 268.5 (233¢5-304) dB/m. The summary SE and SP
of 14 studies were 0¢84 (95% CI: 0¢83-0¢86, Figure S2a)
and 0¢86 (95%: 0¢81-0¢90, Figure S2b), respectively.
The pooled PLR, NLR and DOR were 4¢72 (95%: 3¢10-7¢
17, Figure S2c), 0¢16 (95% CI: 0¢11-0¢22, Figure S2d)
and 32¢97 (95% CI: 17¢40-62¢48, Figure S2e), respec-
tively. Finally, the summary AUROC was 0¢924
(SE = 0¢019, Figure S2f). Similarly, 26 and 25 studies
reported the diagnostic accuracy of CAP for detecting
S ≥ S2 and = S3 (Figure S3a-f, S4a-f), respectively. For
the accuracy of LSM in detecting F ≥ F1, ≥ F2, ≥ F3,
and = F4, we pooled 16, 44, 59, and 32 studies, respec-
tively (Figure S5a-f, S6a-f, S7a-f, S8a-f). The detailed
summarized diagnostic index data are shown in Table 1,
corresponding heterogeneity is shown in Table S4, and
the mean cut-off values are shown in Tables 2 and 3.

Meta-regression analyses were performed according
to covariates including cut-off value, BMI, probe type,
study design, and region. The results showed that BMI
(P = 0¢0252), cut-off value (P = 0¢0313), probe type (P =
0¢0304), and region (P = 0¢0068) might be the possible
sources of heterogeneity (Table S3). Furthermore, we
conducted subgroup analyses according to the probe
type, BMI, cut-off value, and region. We found that M
probe, BMI < 30 kg/m2, low cut-off values, and Asia
groups showed higher AUROC in detecting S ≥ S1 and
≥ S2, while for diagnosing S = S3, F ≥ F1, F ≥ F2, ≥ F3,
and = F4, the AUROC of different probe types, BMI, cut-
off values, and regions were similar (Table 1, Figure 2).

Furthermore, we also compared the mean cut-off val-
ues between different subgroups. We found that there
were significant differences in CAP values among dif-
ferent BMI populations and LSM values among differ-
ent regions. For diagnosing S ≥ S1, ≥ S2, and = S3, the
mean cut-off values of BMI ≥ 30 kg/m2 were 30¢7, 28¢2,
and 27¢9 dB/m higher than BMI < 30 kg/m2 (P = 0¢
001, 0¢001 and 0¢018), respectively. For diagnosing F ≥
F2 and = F4, the mean cut-off values of EUR-USA were
0¢96 and 2¢03 kPa higher than Asia (P = 0¢027, P =
0¢034), respectively. Interestingly, there were also differ-
ences, although not significant, that seemed to follow a
pattern: higher mean CAP values for XL probes and
EUR-USA groups, and higher mean LSM values for M
probes and BMI ≥ 30 kg/m2 groups. Specifically, for
diagnosing S ≥ S1 and = S3, the mean cut-off values of
www.thelancet.com Vol 51 Month , 2022
XL probe were 23¢6 and 15¢7 dB/m higher than M
probe, respectively. For diagnosing S ≥ S1, ≥ S2
and = S3, the mean cut-off values of EUR-USA were 11¢
2, 16¢7, and 6¢3 dB/m higher than Asia. Moreover, for
diagnosing F ≥ F2, ≥ F3, and = F4, the mean cut-off val-
ues of M probe were 0¢87, 0¢67 and 1¢00 kPa higher
than XL probe, respectively. For diagnosing F ≥ F1, ≥
F2, and ≥ F3, the mean cut-off values of high BMI were
0¢54, 0¢72, and 0¢09 kPa higher than low BMI, respec-
tively (Tables 2 and 3, Figure 2).

To investigate the clinical utility of CAP and LSM for
hepatic steatosis grading and liver fibrosis staging,
respectively. We evaluated the pre-test probabilities of
25% and the corresponding post-test probabilities. For
diagnosing S ≥ S1, the Fagan plot analysis revealed a
PLR and NLR of 11 and 0¢09, respectively. A positive
CAP value demonstrated a 78% probability of correct
diagnosis and a negative CAP value demonstrated a 3%
probability of wrong diagnosis (Figure S2g). For diag-
nosing S ≥ S2 and S = S3, the Fagan plot analysis
revealed a PLR and NLR of 2 and 0¢26, 2 and 0¢36,
respectively, and the positive and negative post-test
probability were 44% and 8%, 43% and 11%, respec-
tively (Figure S3g, S4g). For diagnosing F ≥ F1, F ≥ F2,
F ≥ F3, and F = F4, the Fagan plot analysis revealed a
PLR and NLR of 4 and 0¢28, 3 and 0¢29, 5 and 0¢18, 8
and 0¢11, respectively, and the positive and negative
post-test probability were 55% and 9%, 52% and 9%,
61% and 6%, 72% and 4%, respectively (Figures S5-8g).

In addition, goodness-of-fit and bivariate normality
analyses showed that the results were moderately robust
to detect steatosis and fibrosis at each stage (Figure S9-
15a and b). Furthermore, we used influence analysis
and outlier detection to identify relevant outliers (Figure
S9-15c and d). After we excluded the relevant outliers,
we found no significant changes in the overall results
(Table S5), also suggesting that the results are reliable.
We used Deeks’ funnel plot asymmetry test to assess
the publication bias. There was no evidence of publica-
tion bias among included studies in diagnosing S ≥ S1
(P = 0¢58, Figure S2h), S ≥ S2 (P = 0¢09, Figure S3h), F
≥ F1 (P = 0¢26, Figure S5h) and F ≥ F3 (P = 0¢71, Figure
S7h). However, publication bias was found in diagnos-
ing S ≥ S3 (P = 0¢00, Figure S4h), F ≥ F2 (P = 0¢03,
Figure S6h) and F = F4 (P = 0¢03, Figure S8h). The
results of the trim and fill method showed that for diag-
noses S ≥ S3, F ≥ F2, and F = F4, after adding 11, 15,
and 12 studies, respectively, there was no significant
asymmetry in the filled funnel plots, indicating no pub-
lication bias (Figures S4i, S6i and S8i), and no signifi-
cant changes in the pooled effect values and 95% CI (all
P = 0¢000), indicating that the results were stable.
Discussion
In this meta-analysis, we found that the AUROC of CAP
were 0¢924, 0¢794 and 0¢778 for S ≥ S1, ≥ S2 and = S3,
5



Category Subgroup Case (n) Sample (n) SE (95% CI) SP (95% CI) PLR (95% CI) NLR (95% CI) DOR (95% CI) AUROC (SE*)

S≥S1 14 2138 0¢84 (0¢83-0¢86) 0¢86 (0¢81-0¢90) 4¢72 (3¢10-7¢17) 0¢16 (0¢11-0¢22) 32¢97 (17¢40-62¢48) 0¢924 (0¢019)
Probe type M 6 621 0¢92 (0¢90-0¢94) 0¢91 (0¢84-0¢96) 6¢58 (3¢08-14¢08) 0¢09 (0¢07-0¢13) 84¢87 (37¢71-191¢01) 0¢969 (0¢011)

XL 2 176 0¢93 (0¢89-0¢97) 0¢89 (0¢52-1¢00) 5¢77 (1¢34-24¢81) 0¢08 (0¢04-0¢15) 73¢55 (11¢54-468¢99) /

BMI < 30 5 564 0¢92 (0¢90-0¢95) 0¢91 (0¢83-0¢96) 6¢98 (2¢97-16¢43) 0¢09 (0¢06-0¢13) 88¢20 (35¢61-218¢50) 0¢970 (0¢011)
≥30 9 1574 0¢82 (0¢80-0¢84) 0¢82 (0¢75-0¢88) 3¢72 (2¢57-5¢38) 0¢21 (0¢15-0¢28) 18¢64 (11¢25-30¢89) 0¢883 (0¢018)

Cut-off value ≥median 8 1539 0¢82 (0¢80-0¢84) 0¢83 (0¢75-0¢88) 3¢91 (2¢43-6¢31) 0¢18 (0¢13-0¢26) 21¢17 (10¢86-41¢26) 0¢887 (0¢018)
<median 6 599 0¢90 (0¢87-0¢92) 0¢90 (0¢82-0¢95) 6¢09 (3¢00-12¢35) 0¢12 (0¢06-0¢25) 59¢42 (22¢71-155¢45) 0¢950 (0¢022)

Region Europe and America 7 1242 0¢79 (0¢76-0¢81) 0¢80 (0¢72-0¢86) 3¢43 (2¢32-5¢08) 0¢26 (0¢21-0¢33) 16¢63 (10¢44-26¢28) 0¢876 (0¢019)
Asia 7 896 0¢92 (0¢90-0¢94) 0¢93 (0¢87-0¢97) 10¢24 (5¢42-19¢38) 0¢10 (0¢08-0¢12) 119¢49 (53¢97-264¢53) 0¢969 (0¢010)

S≥S2 26 3414 0¢79 (0¢78-0¢81) 0¢64 (0¢62-0¢67) 2¢28 (1¢96-2¢65) 0¢30 (0¢26-0¢36) 8¢61 (6¢39-11¢59) 0¢794 (0¢023)
Probe type M 12 1449 0¢82 (0¢79-0¢85) 0¢69 (0¢65-0¢73) 2¢80 (2¢09-3¢75) 0¢24 (0¢18-0¢32) 13¢74 (8¢29-22¢76) 0¢850 (0¢031)

XL 4 357 0¢85 (0¢80-0¢90) 0¢52 (0¢44-0¢59) 1¢68 (1¢31-2¢17) 0¢24 (0¢11-0¢55) 7¢22 (3¢19-16¢31) 0¢707 (0¢054)
BMI < 30 12 1260 0¢85 (0¢82-0¢88) 0¢65 (0¢61-0¢69) 2¢60 (1¢91-3¢55) 0¢20 (0¢13-0¢29) 15¢29 (8¢83-26¢49) 0¢848 (0¢037)

≥30 14 1978 0¢76 (0¢74-0¢79) 0¢64 (0¢61-0¢67) 2¢06 (1¢79-2¢36) 0¢37 (0¢32-0¢43) 5¢83 (4¢52-7¢52) 0¢771 (0¢017)
Cut-off value ≥median 13 2079 0¢76 (0¢73-0¢78) 0¢63 (0¢60-0¢67) 2¢03 (1¢79-2¢29) 0¢38 (0¢34-0¢43) 5¢66 (4¢64-6¢90) 0¢770 (0¢016)

<median 13 1135 0¢86 (0¢84-0¢89) 0¢66 (0¢62-0¢70) 2¢74 (1¢97-3¢81) 0¢19 (0¢13-0¢29) 16¢75 (9¢32-30¢11) 0¢861 (0¢034)
Region Europe and America 9 1560 0¢77 (0¢75-0¢80) 0¢64 (0¢60-0¢68) 2¢21 (1¢79-2¢73) 0¢35 (0¢28-0¢45) 7¢03 (4¢47-11¢08) 0¢743 (0¢048)

Asia 14 1456 0¢81 (0¢78-0¢84) 0¢65 (0¢61-0¢68) 2¢37 (1¢85-3¢04) 0¢27 (0¢20-0¢36) 10¢20 (6¢35-16¢37) 0¢822 (0¢032)
S=S3 25 3549 0¢75 (0¢72-0¢78) 0¢62 (0¢60-0¢64) 2¢18 (1¢91-2¢49) 0¢41 (0¢36-0¢48) 6¢00 (4¢50-8¢01) 0¢778 (0¢020)
Probe type M 13 1773 0¢75 (0¢71-0¢79) 0¢63 (0¢60-0¢65) 2¢17 (1¢82-2¢58) 0¢37 (0¢28-0¢50) 6¢89 (4¢25-11¢16) 0¢792 (0¢035)

XL 4 357 0¢79 (0¢67-0¢88) 0¢63 (0¢57-0¢68) 2¢10 (1¢53-2¢90) 0¢34 (0¢21-0¢56) 6¢72 (3¢41-13¢23) 0¢817 (0¢049)
BMI < 30 12 1260 0¢76 (0¢70-0¢81) 0¢63 (0¢60-0¢66) 2¢13(1¢82-2¢50) 0¢42 (0¢32-0¢54) 5¢71 (3¢80-8¢58) 0¢755 (0¢033)

≥30 12 1965 0¢78 (0¢74-0¢81) 0¢62 (0¢59-0¢64) 2¢31 (1¢83-2¢91) 0¢39 (0¢33-0¢46) 6¢87 (4¢44-10¢64) 0¢810 (0¢023)
Cut-off value ≥median 11 1782 0¢71 (0¢66-0¢75) 0¢69 (0¢67-0¢72) 2¢62 (2¢06-3¢33) 0¢42 (0¢33-0¢52) 7¢17 (4¢31-11¢93) 0¢797 (0¢029)

<median 14 1767 0¢81 (0¢77-0¢85) 0¢55 (0¢53-0¢58) 1¢91 (1¢66-2¢20) 0¢39 (0¢32-0¢48) 4¢84 (3¢64-6¢44) 0¢754 (0¢032)
Region Europe and America 8 1531 0¢72 (0¢68-0¢76) 0¢61 (0¢58-0¢64) 2¢24 (1¢69-2¢97) 0¢46 (0¢38-0¢55) 5¢01 (3¢20-7¢84) 0¢767 (0¢029)

Asia 13 1535 0¢76 (0¢70-0¢81) 0¢63 (0¢60-0¢66) 2¢02 (1¢77-2¢30) 0¢44 (0¢36-0¢55) 4¢99 (3¢62-6¢88) 0¢744 (0¢030)
F≥F1 16 2264 0¢73 (0¢71-0¢75) 0¢80 (0¢76-0¢83) 3¢40 (2¢74-4¢20) 0¢29 (0¢23-0¢36) 12¢82 (9¢20-17¢86) 0¢851 (0¢016)
Probe type M 10 1369 0¢77 (0¢75-0¢80) 0¢80 (0¢76-0¢84) 3¢67 (3¢00-4¢48) 0¢27 (0¢21-0¢35) 14¢81 (10¢84-20¢24) 0¢863 (0¢013)

XL 1 57 / / / / / /

BMI < 30 10 1384 0¢78 (0¢75-0¢80) 0¢79 (0¢74-0¢83) 3¢37 (2¢63-4¢31) 0¢27 (0¢21-0¢35) 14¢09 (9¢90-20¢04) 0¢859 (0¢014)
≥30 6 880 0¢66 (0¢62-0¢70) 0¢81 (0¢76-0¢86) 3¢56 (2¢29-5¢53) 0¢32 (0¢21-0¢49) 11¢31 (5¢90-21¢68) 0¢842 (0¢039)

Cut-off value ≥median 9 1661 0¢71 (0¢68-0¢73) 0¢83 (0¢79-0¢86) 4¢00 (3¢26-4¢92) 0¢30 (0¢23-0¢40) 13¢67 (10¢17-18¢38) 0¢864 (0¢014)
<median 7 603 0¢80 (0¢76-0¢84) 0¢71 (0¢64-0¢78) 2¢66 (1¢93-3¢66) 0¢27 (0¢18-0¢40) 11¢54 (5¢51-24¢19) 0¢831 (0¢054)

Region Europe and America 5 810 0¢65 (0¢61-0¢69) 0¢80 (0¢74-0¢85) 3¢28 (1¢89-5¢70) 0¢33 (0¢20-0¢54) 11¢24 (4¢73-26¢70) 0¢844 (0¢053)
Asia 11 1454 0¢77 (0¢75-0¢80) 0¢80 (0¢75-0¢84) 3¢60 (2¢96-4¢38) 0¢27 (0¢22-0¢34) 14¢37 (10¢62-19¢44) 0¢860 (0¢013)

Table 1 (Continued)
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Category Subgroup Case (n) Sample (n) SE (95% CI) SP (95% CI) PLR (95% CI) NLR (95% CI) DOR (95% CI) AUROC (SE*)

F≥F2 44 6186 0¢76 (0¢75-0¢78) 0¢73 (0¢72-0¢75) 3¢18 (2¢69-3¢75) 0¢33 (0¢29-0¢37) 11¢06 (8¢90-13¢74) 0¢830 (0¢011)
Probe type M 22 3308 0¢77 (0¢74-0¢79) 0¢72 (0¢70-0¢74) 3¢07 (2¢47-3¢81) 0¢32 (0¢26-0¢38) 11¢04 (8¢24-14¢80) 0¢838 (0¢015)

XL 6 647 0¢82 (0¢77-0¢86) 0¢66 (0¢60-0¢71) 2¢55 (1¢54-4¢24) 0¢38 (0¢30-0¢49) 6¢48 (4¢35-9¢66) 0¢798 (0¢026)
BMI < 30 21 2787 0¢78 (0¢76-0¢80) 0¢73 (0¢71-0¢75) 3¢08 (2¢46-3¢85) 0¢31 (0¢26-0¢37) 10¢96 (8¢16-14¢71) 0¢836 (0¢015)

≥30 20 2894 0¢76 (0¢74-0¢78) 0¢74 (0¢72-0¢77) 3¢60 (2¢67-4¢86) 0¢32 (0¢27-0¢39) 12¢51 (8¢75-17¢89) 0¢849 (0¢016)
Cut-off value ≥median 23 3502 0¢73 (0¢70-0¢75) 0¢78 (0¢76-0¢80) 3¢57 (2¢95-4¢32) 0¢34 (0¢28-0¢40) 13¢10 (9¢39-18¢27) 0¢854 (0¢017)

<median 19 2544 0¢81 (0¢79-0¢83) 0¢66 (0¢63-0¢68) 2¢55 (2¢06-3¢15) 0¢31 (0¢26-0¢38) 8¢70 (6¢63-11¢41) 0¢816 (0¢017)
Region Europe and America 16 2713 0¢74 (0¢71-0¢76) 0¢76 (0¢73-0¢78) 3¢25 (2¢57-4¢11) 0¢34 (0¢29-0¢41) 10¢44 (7¢59-14¢37) 0¢832 (0¢017)

Asia 21 2254 0¢75 (0¢73-0¢78) 0¢79 (0¢76-0¢81) 3¢58 (2¢85-4¢50) 0¢32 (0¢26-0¢39) 13¢39 (9¢17-19¢55) 0¢854 (0¢017)
F≥F3 59 11976 0¢83 (0¢82-0¢84) 0¢79 (0¢78-0¢80) 4¢32 (3¢78-4¢93) 0¢21 (0¢18-0¢25) 22¢70 (17¢58-29¢31) 0¢897 (0¢010)
Probe type M 28 5436 0¢80 (0¢78-0¢82) 0¢80 (0¢79-0¢81) 4¢55 (3¢84-5¢39) 0¢23 (0¢19-0¢28) 19¢70 (15¢30-25¢35) 0¢886 (0¢010)

XL 5 566 0¢70 (0¢63-0¢77) 0¢81 (0¢76-0¢84) 3¢56 (2¢49-5¢10) 0¢31 (0¢17-0¢54) 13¢03 (5¢86-28¢95) 0¢837 (0¢025)
BMI < 30 27 4337 0¢81 (0¢78-0¢83) 0¢83 (0¢82-0¢85) 4¢83 (4¢27-5¢47) 0¢24 (0¢21-0¢28) 21¢70 (16¢97-27¢74) 0¢894 (0¢008)

≥30 29 7134 0¢84 (0¢83-0¢86) 0¢77 (0¢75-0¢78) 4¢00 (3¢28-4¢89) 0¢17 (0¢13-0¢23) 27¢04 (17¢34-42¢15) 0¢917 (0¢017)
Cut-off value ≥median 25 3417 0¢79 (0¢76-0¢81) 0¢84 (0¢83-0¢86) 5¢08 (4¢27-6¢05) 0¢20 (0¢15-0¢27) 26¢72 (18¢40-38¢81) 0¢905 (0¢011)

<median 32 8419 0¢84 (0¢83-0¢85) 0¢77 (0¢76-0¢78) 3¢73 (3¢16-4¢40) 0¢22 (0¢18-0¢26) 19¢08 (13¢57-26¢83) 0¢889 (0¢015)
Region Europe and America 27 7629 0¢82 (0¢81-0¢84) 0¢78 (0¢76-0¢79) 4¢09 (3¢40-4¢93) 0¢23 (0¢18-0¢29) 19¢27 (13¢39-27¢73) 0¢885 (0¢015)

Asia 22 2616 0¢86 (0¢83-0¢88) 0¢83 (0¢81-0¢84) 4¢82 (3¢93-5¢90) 0¢19 (0¢16-0¢24) 28¢08 (19¢11-41¢25) 0¢911 (0¢012)
F=F4 32 4594 0¢83 (0¢79-0¢86) 0¢85 (0¢84-0¢86) 6¢37 (5¢17-7¢85) 0¢17 (0¢12-0¢25) 36¢63 (25¢11-53¢45) 0¢925 (0¢010)
Probe type M 16 2286 0¢82 (0¢77-0¢86) 0¢86 (0¢84-0¢87) 7¢19 (5¢13-10¢06) 0¢17 (0¢10-0¢29) 31¢40 (20¢66-47¢72) 0¢921 (0¢012)

XL 5 566 0¢72 (0¢60-0¢81) 0¢87 (0¢83-0¢90) 6¢51 (3¢87-10¢95) 0¢20 (0¢06-0¢67) 20¢79 (10¢22-42¢27) 0¢910 (0¢026)
BMI < 30 17 2178 0¢85 (0¢80-0¢89) 0¢88 (0¢86-0¢89) 7¢39 (5¢76-9¢47) 0¢14 (0¢07-0¢26) 42¢55 (27¢67-65¢44) 0¢937 (0¢010)

≥30 13 2235 0¢80 (0¢75-0¢85) 0¢82 (0¢81-0¢84) 5¢08 (3¢64-7¢10) 0¢21 (0¢12-0¢35) 27¢07 (14¢61-50¢18) 0¢911 (0¢022)
Cut-off value ≥median 17 2577 0¢77 (0¢72-0¢82) 0¢87 (0¢86-0¢89) 6¢83 (5¢38-8¢68) 0¢21 (0¢13-0¢33) 30¢66 (20¢34-46¢22) 0¢925 (0¢011)

<median 14 1929 0¢90 (0¢85-0¢93) 0¢83 (0¢81-0¢85) 5¢99 (4¢15-8¢64) 0¢17 (0¢11-0¢25) 43¢82 (21¢30-90¢12) 0¢939 (0¢017)
Region Europe and America 12 2016 0¢85 (0¢80-0¢89) 0¢82 (0¢80-0¢84) 5¢24 (3¢66-7¢52) 0¢18 (0¢11-0¢30) 33¢02 (16¢87-64¢60) 0¢925 (0¢020)

Asia 15 1521 0¢95 (0¢90-0¢98) 0¢88 (0¢86-0¢89) 7¢72 (5¢72-10¢43) 0¢11 (0¢06-0¢19) 83¢70 (43¢88-159¢63) 0¢959 (0¢010)

Table 1: Diagnostic accuracy of CAP and LSM in NAFLD/NASH.
Abbreviations: NAFLD: Non-alcoholic fatty liver disease; NASH: Non-alcoholic steatohepatitis; CAP: controlled attenuation parameter; LSM: liver stiffness measurement; BMI: body mass index; SE: sensitivity; SP: specificity; PLR:

positive likelihood ratio; NLR: negative likelihood ratio; DOR: diagnostic odds ratio; AUROC: area under the receiver operating characteristic curve; 95% CI: 95% confidence interval; SE*: standard errors; NA: not applicable.
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Category Subgroup Case (n) Sample (n) Mean Cut-off (range) (dB/m) D value (dB/m) P value

S≥S1 14 2138 268¢5 (233¢5-304)
Probe type M 6 621 254¢4 (233¢5-275) 23¢6 0¢091

XL 2 176 278¢0 (271-285)

BMI < 30 5 564 251¢2 (233¢5-275) 30¢7 0¢001
≥30 9 1574 281¢9 (261-304)

Cut-off value ≥median 8 1539 285¢6 (271-304) 34¢3 < 0¢001
<median 6 599 251¢3 (233¢5-266)

Region Europe and America 7 1242 274¢8 (233¢5-304) 11¢2 0¢313
Asia 7 896 263¢6 (236-285)

S≥S2 26 3414 288¢0 (245-331)

Probe type M 12 1449 282¢9 (263-313¢5) 1¢7 0¢861
XL 4 357 281¢3 (273-291)

BMI < 30 12 1260 272¢8 (245-313¢5) 28¢2 0¢001
≥30 14 1978 301¢0 (266-331)

Cut-off value ≥median 13 2079 307¢4 (289-331) 38¢8 < 0¢001
<median 13 1135 268¢6 (245-285)

Region Europe and America 9 1560 297¢6 (245-331) 16¢7 0¢109
Asia 14 1456 280¢9 (258-331)

S=S3 25 3549 313¢1 (245-366)

Probe type M 13 1773 311¢6 (267-366) 15¢7 0¢322
XL 4 357 327¢3 (302-355)

BMI < 30 12 1260 298¢9 (245-337) 27¢9 0¢018
≥30 12 1965 326¢8 (267-366)

Cut-off value ≥median 11 1782 339¢6 (320-366) 47¢3 < 0¢001
<median 14 1767 292¢3 (245-312)

Region Europe and America 8 1531 312¢5 (245-345) 6¢3 0¢629
Asia 13 1535 306¢2 (267-355)

Table 2: Mean cut-off and range of CAP in NAFLD/NASH.
Abbreviations: NAFLD: Non-alcoholic fatty liver disease; NASH: Non-alcoholic steatohepatitis; CAP: controlled attenuation parameter; BMI: Body Mass Index.
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respectively, and the AUROC of LSM for detecting F ≥
F1, ≥ F2, ≥ F3, and = F4 were 0¢851, 0¢830, 0¢897 and
0¢925, respectively. From the above data, we could con-
clude that, overall, the diagnostic performance of CAP
decreased with the severity of steatosis, while the diag-
nostic performance of LSM increased with the aggrava-
tion of fibrosis. Fagan plot analysis also showed similar
results in clinical utility. This result was also consistent
with previous meta-analyses about the diagnostic perfor-
mance of CAP and LSM in NAFLD/NASH.14,15

Although ultrasound is the main method for examining
NAFLD, it is not sensitive enough to detect steatosis
with liver fat content less than 20%,82 for which CAP
has good accuracy. Current EASL and Asia-Pacific
guidelines recommend screening for NAFLD in high-
risk populations (e.g., obesity, diabetes),3,83 and CAP is
a good option for detecting mild steatosis in this popula-
tion. In addition, long-term fatty liver may also progress
to NASH, liver fibrosis and then advanced liver disease.
The good performance of LSM in the diagnosis of
advanced liver fibrosis and cirrhosis may be a viable
alternative to liver biopsy.

Nevertheless, some studies reported that multiple
confounding factors would affect the performance of
CAP and LSM, such as fasting conditions,84,85 probe
type,63 liver transaminases,42,86,87 extrahepatic cholesta-
sis,88 waist circumference,45 and obesity.42,89 Besides,
studies found that steatosis could influence LSM86,90

and fibrosis could also influence CAP,91 indicating that
LSM and CAP values might influence each other.79 Our
subgroup analyses showed that M probe, low BMI, low
cut-off values, and Asia had higher AUROC in detecting
S ≥ S1 and ≥ S2, suggesting better diagnostic accuracy.
Such results do not seem to be coincidental since Asians
have a lower BMI than Europeans and Americans, most
of which can be successfully measured with the M
probe, and these factors are interlinked and all seem to
indicate a higher diagnostic accuracy of CAP in BMI <
30 kg/m2 population (Figure 2). Similar conclusion was
reached in a previous study: CAP correlated extremely
well with actual liver fat percentage in NAFLD patients
with BMI < 28 kg/m2, especially < 25 kg/m2.91 The rea-
son for the decreased accuracy of CAP in patients with
obesity may come from the thicker subcutaneous adi-
pose tissue, so would increasing the probing depth
using the XL probe improve accuracy? The results of
the subgroup analysis seem to disprove this conjecture.
Therefore, it is reasonable to speculate that, in addition
www.thelancet.com Vol 51 Month , 2022



Category Subgroup Case (n) Sample (n) Mean Cut-off (range) (kPa) D value (kPa) P value

F≥F1 16 2264 6¢67 (5¢3-8¢6)
Probe type M 10 1369 6¢63 (5¢3-7¢5) / /

XL 1 57 /

BMI < 30 10 1384 6¢47 (5¢3-7¢5) 0¢54 0¢242
≥ 30 6 880 7¢01 (5¢9-8¢6)

Cut-off value ≥median 9 1661 7¢30 (6¢7-8¢6) 1¢43 < 0¢001
<median 7 603 5¢87 (5¢3-6¢3)

Region Europe and America 5 810 6¢44 (5¢3-8¢6) 0¢34 0¢491
Asia 11 1454 6¢78 (5¢9-7¢68)

F≥F2 44 6186 7¢61 (5-11)

Probe type M 22 3308 7¢82 (5-11) 0¢87 0¢197
XL 6 647 6¢95 (5-8¢9)

BMI < 30 21 2787 7¢62 (5-11) 0¢72 0¢126
≥30 20 2894 8¢33 (5-11)

Cut-off value ≥median 23 3502 8¢94 (7¢7-11) 2¢25 < 0¢001
<median 19 2544 6¢70 (5-7¢6)

Region Europe and America 16 2713 7¢66 (6¢2-9¢8) 0¢96 0¢027
Asia 21 2254 8¢62 (6¢7-11)

F≥F3 59 11976 9¢75 (7¢1-13¢6)
Probe type M 28 5436 9¢91 (7¢1-13¢6) 0¢67 0¢355

XL 5 566 9¢24 (7¢2-11¢5)
BMI < 30 27 4337 9¢54 (7¢2-12) 0¢09 0¢814

≥30 29 7134 9¢63 (6¢7-13¢6)
Cut-off value ≥median 25 3417 10¢7 (9¢8-13¢6) 2¢09 < 0¢001

<median 32 8419 8¢65 (6¢7-9¢75)
Region Europe and America 27 7629 9¢46 (6¢7-12¢5) 0¢49 0¢257

Asia 22 2616 9¢95 (7¢1-13¢6)
F=F4 32 4594 12¢91 (7¢9-17¢5)
Probe type M 16 2286 13¢26 (9¢5-17¢5) 1¢00 0¢454

XL 5 566 12¢26 (7¢9-15)
BMI < 30 17 2178 13¢12 (7¢9-17¢5) 0¢47 0¢645

≥30 13 2235 12¢65 (6¢9-16¢1)
Cut-off value ≥median 17 2577 14¢78 (13¢1-17¢5) 4¢34 < 0¢001

<median 14 1929 10¢44 (6¢9-12¢4)
Region Europe and America 12 2016 11¢94 (6¢9-16¢1) 2¢03 0¢034

Asia 15 1521 13¢97 (11-17¢5)

Table 3: Mean cut-off and range of LSM in NAFLD/NASH.
Abbreviations: NAFLD: Non-alcoholic fatty liver disease; NASH: Non-alcoholic steatohepatitis; LSM: liver stiffness measurement; BMI: Body Mass Index; NA:

not applicable.

Articles
to affecting the measurement by increasing the SCD,
excessive subcutaneous fat itself interferes with ultra-
sound attenuation. In addition, patients with obesity are
more likely to have severe steatosis, just as the overall
analysis showed that CAP accuracy decreases with
increasing steatosis, which increases its diagnostic
uncertainty and requires further exploration and
improvement in the use of CAP in populations with
obesity and severe steatosis. In this case, magnetic reso-
nance imaging-based proton density fat fraction (MRI-
PDFF) may be a better option than CAP, which quanti-
fies steatosis more accurately.92,93 In a meta-analysis,
the AUROC for MRI-PDFF diagnosis of S ≥ S1, ≥ S2
and = S3 was 0¢97, 0¢91 and 0¢90, respectively.92
www.thelancet.com Vol 51 Month , 2022
Notably, biomarkers are also commonly used non-
invasive tests that have shown diagnostic value for fibro-
sis. A meta-analysis summarized four biomarkers: fibro-
sis-4 index (FIB-4), NAFLD fibrosis score (NFS),
aspartate aminotransferase to platelets ratio index
(APRI) and BARD score in the diagnosis of F ≥ F3 with
AUROC of 0¢84, 0¢84, 0¢77, and 0¢76, respectively.94
Our analysis showed that the AUROC of LSM for diag-
nosing F ≥ F3 was 0¢897, higher than these biomarkers.
However, these biomarkers are cheaper, simpler, and
more accessible than LSM due to the limitations of
equipment cost and place of use. In primary health
care, their use is more advantageous. This is also what
the current NAFLD guidelines recommend.3 However,
9



Figure 2. Diagnostic performance of CAP and LSM, mean cut-off values, and influencing factors.
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for people at high risk of cirrhosis, such as NAFLD, we
recommend choosing LSM with higher accuracy. More
importantly, our subgroup analysis showed that the
accuracy was similar between different BMI, different
probes, and different regions. In addition, some studies
have shown that combining LSM with FIB-4 or NFS
can improve diagnostic accuracy.52,56,95 Another Fibr-
oMeter vibration-controlled transient elastography (FM-
VCTE) model, which combines LSM with biochemical
results (platelet count, a2-macroglobulin, urea, pro-
thrombin index, transaminases), also improves the diag-
nostic accuracy of fibrosis in NAFLD.36,47 In one study,
for the diagnosis of F ≥ F3, the AUROC of LSM was 0¢
922, while the AUROC of FM-VCTE improved to 0¢
968.36 For the diagnosis of F ≥ F1, the combination of
LSM with FIB-4 or NFS increased the AUROC of using
LSM alone from 0¢855 to 0¢886 and 0¢871, respec-
tively,56 whereas FM-VCTE increased the positive pre-
dictive value for the diagnosis of F ≥ F2,47 which seems
to compensate for the lack of accuracy of LSM in the
diagnosis of low-grade fibrosis (F1-2) to a certain extent.
However, there are relatively few clinical studies and no
relevant meta-analyses, and more studies are needed to
verify this. The evidence for the superiority of magnetic
resonance elastography (MRE) in the diagnosis of low-
grade fibrosis appears to be stronger. For the diagnosis
of F ≥ F2, a single study showed an AUROC of 0¢91 for
MRE, higher than 0¢82 for LSM,93 while a meta-analy-
sis showed an AUROC of 0¢91 for MRE, also higher
than 0¢83 for LSM (Figure 2).96

In addition, many studies have also reported that
CAP and LSM values might be affected by confounding
factors. Hence, we compared the mean cut-off values
between different subgroups. We found that there were
significant differences in CAP values among different
BMI populations. For diagnosing S ≥ S1, ≥ S2 and = S3,
the mean CAP cut-off values for BMI ≥ 30 kg/m2 were
30¢7, 28¢2, and 27¢9 dB/m higher than for BMI < 30
kg/m2, respectively. Interestingly, this had also been
confirmed in previous studies. One study found that
high BMI was significantly related to an increase in
CAP.97 Another study recalculated the CAP values
according to variable BMI, suggesting that when BMI is
within 20-25kg/m2, for every unit below 25 kg/m2,
www.thelancet.com Vol 51 Month , 2022
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4¢4 dB/m is added; and when BMI is within 25-30 kg/
m2, 4¢4 dB/m is subtracted for every unit above 25 kg/
m2.98 Besides, among different probes and different
regions, the CAP values of XL probes and EUR-USA
were slightly higher than those of M probes and Asian.
Although these differences were not statistically signifi-
cant, considering the higher prevalence of obesity in the
EUR-USA populations and the higher use of the XL
probe in the population with obesity, it may exacerbate
the overestimation of steatosis in patients with obesity
in clinical diagnosis. Therefore, setting higher diagnos-
tic cut-offs for patients with obesity than the routine is
needed, but unfortunately, there are no specific diagnos-
tic criteria for this population, or, as mentioned earlier,
modifying CAP value for patients with obesity before
referring to the regular diagnostic cut-offs (Figure 2).

Moreover, significant differences were found in LSM
values among different regions. For diagnosing F ≥ F2
and = F4, the mean cut-off values of EUR-USA were 0¢
96 and 2¢03 kPa higher than Asia, respectively. The
mean cut-off values were also slightly higher in Europe-
USA than in Asia for diagnoses F ≥ F1 and ≥ F3. This is
an interesting finding, and the smaller skeleton and
narrower rib space in Asians may be responsible for the
higher liver stiffness measurements. There have been a
number of studies on the differences in LSM values
between different probes, and most agreed that the
LSM values obtained using XL probes are lower than
those obtained using M probes,10,62,63,71,77,99 and the
guideline summarized that the mean LSM values
obtained by XL probes were 1¢5 kPa lower than those
obtained by M probes (range: 0¢8−2¢3 kPa).100 Our
analysis results also remained consistent with these
studies. As to whether BMI will affect LSM values, the
results are not yet uniform. Some believe that it does
not,31,49 and some believe that it does.41,42,50,51,62,63,77 In
our study, the mean cut-off values for BMI ≥ 30 kg/m2

were higher than those for BMI < 30 kg/m2. However,
it is noteworthy that none of the differences between
the different probes and BMI populations were statisti-
cally significant, indicating that LSM values appear to
be independent of probe type and BMI. The XL probe is
mostly used in patients with obesity, and its lower LSM
values are partially offset by higher LSM values in
patients with obesity, which may be the reason for the
insignificant difference in LSM values.62 Therefore,
when selecting the appropriate probe according to BMI
and the automatic probe selection tool in clinical use,
the same LSM diagnostic values can be used without
further adjustment (Figure 2).13,62

Not long ago, a meta�analysis had investigated the
performance of CAP and LSM, but its population
involved alcoholic liver disease patients, pediatric
patients, and patients with morbid obesity.101 Studies
found that cirrhosis caused by NASH had higher LSM
values than cirrhosis caused by chronic hepatitis C,102

and LSM values should be selected based on different
www.thelancet.com Vol 51 Month , 2022
diseases.35,41 Besides, children and adult NAFLD
patients had different histopathological features,103 and
Fibroscan did not accurately predict steatosis or fibrosis
in comparison to histology in morbidly patients with
obesity.104 There were also meta-analyses that discussed
the accuracy of CAP or LSM alone in NAFLD
patients,14,15 but they included only nine articles, which
also led to relatively limited conclusions. Therefore, we
included only adult NAFLD/NASH patients, collecting
all relevant literature as much as possible. Furthermore,
to explore heterogeneity and influence factors, we did
meta-regression analysis and subgroup analysis to fur-
ther analyze the effects of the population with obesity
and different probes on CAP and LSM. As we know,
this was the first meta-analysis to evaluate the perfor-
mance of both CAP and LSM for assessing steatosis and
fibrosis in adult NAFLD/NASH patients.

Even so, there were some limitations to our work.
First, the interval between liver biopsy and index test
was unclear or more than 3 months in some included
studies, which might increase the risk of bias. Second,
partial summary results had great heterogeneity.
Although meta-regression analysis and subgroup analy-
sis explained some of the sources of heterogeneity, there
were still some that they couldn’t explain. Third, due to
insufficient data, we could only calculate the mean cut-
off values, but could not get the optimal cut-off values.
Finally, although we considered the effect of BMI,
probe, and region on diagnosis, we were unable to
extract sufficient data for other confounding factors
such as gender, transaminases, diabetes, and the effect
of liver fibrosis on CAP, for further analysis.

In conclusion, the diagnostic performance of CAP
decreased with the severity of steatosis while the diag-
nostic performance of LSM increased with the aggrava-
tion of fibrosis. In terms of CAP, its good performance
for the diagnosis of mild steatosis can be used to
screen for NAFLD in high-risk groups. Note, its low
accuracy in patients with obesity and the significant
differences in mean cut-off values across different BMI
populations suggest the need for special diagnostic val-
ues in the population with obesity. All these make its
wide application in NAFLD, where the proportion of
people with obesity is much higher, a practical prob-
lem. In NAFLD, it has high accuracy in diagnosing
advanced fibrosis and cirrhosis. Combination with
other noninvasive biomarkers seems to improve the
diagnosis of F2, and the same diagnostic criteria can
be used in the population with obesity when selecting
appropriate probes. However, so far, the evidence for
noninvasive tests related to NAFLD is still limited, and
the future role of CAP and LSM as potential noninva-
sive alternatives to liver biopsy in the assessment of
steatosis and fibrosis should be further validated and
improved, especially for the assessment of steatosis in
patients with obesity, moderate to severe steatosis, and
low-grade fibrosis.
11
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