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Abstract

The mechanisms of glucagon secretion and its suppression by glucose are presently unknown. This study investigates the
relationship between intracellular calcium levels ([Ca2+]i) and hormone secretion under low and high glucose conditions. We
examined the effects of modulating ion channel activities on [Ca2+]i and hormone secretion from ex vivo mouse pancreatic
islets. Glucagon-secreting a-cells were unambiguously identified by cell specific expression of fluorescent proteins. We
found that activation of L-type voltage-gated calcium channels is critical for a-cell calcium oscillations and glucagon
secretion at low glucose levels. Calcium channel activation depends on KATP channel activity but not on tetrodotoxin-
sensitive Na+ channels. The use of glucagon secretagogues reveals a positive correlation between a-cell [Ca2+]i and
secretion at low glucose levels. Glucose elevation suppresses glucagon secretion even after treatment with secretagogues.
Importantly, this inhibition is not mediated by KATP channel activity or reduction in a-cell [Ca2+]i. Our results demonstrate
that glucose uncouples the positive relationship between [Ca2+]i and secretory activity. We conclude that glucose
suppression of glucagon secretion is not mediated by inactivation of calcium channels, but instead, it requires a calcium-
independent inhibitory pathway.
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Introduction

Pancreatic islets respond to changes in blood glucose levels so

that glucagon secretion from a-cells is maximal under hypogly-

cemic conditions (below 4 mM), whereas insulin is secreted from

b-cells maximally at glucose levels greater than 8 mM [1,2].

The primary function of glucagon is to prevent hypoglycemia

by stimulating glucose output from the liver [3]. Once

normoglycemia is reestablished, glucagon release is suppressed.

The molecular mechanisms leading to glucagon secretion and

to its suppression by glucose are largely unknown [4]. Despite

their opposite responses to glucose, a- and b-cells contain

comparable secretory pathways: glucose transporters, the glyco-

lytic enzyme glucokinase, ATP-sensitive K+ (KATP) channels,

high-voltage-gated calcium channels, and secretory granules [4].

In b-cells, breakdown of glucose generates disposable energy

(increase in ATP to ADP ratio) that mediates the exocytosis of

insulin granules via closure of KATP channels, plasma

membrane depolarization, and calcium channel activation,

respectively [5]. A similar KATP- dependent depolarizing

pathway appears to be present in a-cells, but its role in

glucagon secretion, if any, is poorly understood. Various models

have been proposed in which glucose overcomes this depolar-

izing pathway. In one model, low glucose concentrations set the

a-cell membrane potential to a level that allows activation of

voltage-gated sodium channels, which in turn leads to calcium

channel activation and glucagon secretion. In this model,

elevated glucose concentrations activate the KATP- dependent

depolarizing pathway, which then inactivates sodium channels,

and suppresses glucagon secretion [6–8]. An alternate model

speculates that paracrine inhibitors released from b-cells (e.g.

insulin and zinc ions) suppress glucagon secretion by activation

of a-cell KATP channels, membrane hyperpolarization, and

inactivation of calcium channels [9,10]. Although both models

of glucagon suppression by glucose describe opposite effects on

a-cell membrane polarization, they both rely on calcium

channel inhibition. In contrast, we previously reported that a-

cell calcium dynamics was not suppressed by glucose [1]. In the

present study, we further investigate the relationship between a-

cell [Ca2+]i and glucagon secretion at low glucose levels, and at

inhibitory glucose concentrations. We examined the effects of

modulating various ion channel activities that previous models

have proposed to be important for a-cell function. We present a

set of results acquired using islets from C57BL/6 mouse

background performed under consistent conditions that allow

comparison between different treatments. Using this approach,

we measured the effects of glucose on [Ca2+]i and glucagon

secretion from islets stimulated by glucagon secretagogues. Our

results confirm a positive correlation between a-cell [Ca2+]i and

glucagon secretion at low glucose levels, and indicate that

greater glucose concentrations inhibit glucagon secretion inde-

pendently from a-cell [Ca2+]i levels.
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Results

Glucose Effects on Hormone Secretion from Perifused
Islets

To establish the secretory dynamics of our system, we

measured the time course of hormonal responses from perifused

intact mouse islets exposed to a step-increase in D-glucose

concentration (Fig. 1). By comparing the baseline secretion at

1 mM glucose with measurements obtained 15 to 18 minutes

after glucose elevation to 12 mM, we found that glucose sharply

reduces the rate of glucagon release by 64.8 616.4% (p,0.01).

Meanwhile, insulin secretion from b-cells is strongly stimulated

and exhibits a typical biphasic response composed of an acute

first phase that lasts ,10 minutes followed by a second phase

plateau that starts at the nadir of the first phase [11]. A step-

decrease in glucose from 12 to 1 mM restores maximal

glucagon secretion and inhibits insulin secretion (Fig. 1). The

recovery of glucagon secretion is much slower than its inhibition

by glucose, consistent with previous reports [12–14].

a-cell Responses to Modulation of High-voltage-gated
Calcium Channel Activity
a-cells only constitute ,15% of mouse islet cells [15]. As a

result, it has been challenging to rigorously identify them in intact

living islets. The transgenic expression of tdRFP in a-cells

overcomes this limitation and is well-suited for Fluo-4 calcium

imaging studies [1]. Nifedipine and v-conotoxin were used to

selectively block L- and N-type calcium channels, respectively

[16]. In Figure 2A, a representative Fluo-4 experiment shows that

v-conotoxin at 1 mM does not affect either a- or b-cell [Ca2+]i at

low glucose levels. Greater concentrations were also tested (up to

10 mM) but no response was observed. In contrast, nifedipine

(20 mM) strongly inhibits a-cell calcium oscillations. On average,

20 mM nifedipine reduces a-cell Fluo-4 signal by 18.2 63.7%

(n = 15, p,0.01). Lower concentrations of nifedipine also reduce

the amplitude of calcium oscillations (Fig. 2B). Nifedipine

inhibition of L-type calcium channels suppresses glucagon

secretion by 55.0 63.7% (p,0.01) in islets perifused at low

glucose levels (Fig. 2C). In contrast, v-conotoxin did not affect

glucagon secretion from intact islets in static incubation experi-

ments at 1 mM glucose (0.69 60.29% of total cellular glucagon

content secreted during 1 hour at 1 mM glucose, n = 5, vs. 0.62

60.25% in the presence of 1 mM v-conotoxin, n = 5; p = 0.68).

We used a maximal level of 20 mM nifedipine in our

experiments. Equal or greater concentrations of the drug have

been utilized in islets [7,17]. However, 20 mM nifedipine induces

an increase in [Ca2+]i in some b-cells exposed to low glucose levels,

whereas lower concentrations have no effect (Fig. 2A and 2B). This

effect is possibly the result of non-specific inhibition of potassium

channels by the drug that depolarizes b-cell membrane [18]. This

depolarization would also explain the transient stimulation

observed in the insulin response (Fig. 2C). This effect is unlikely

to be responsible for the glucagon response because glucagon

suppression occurs before the small rise in insulin release and

persists after its termination.

a-cell Responses to Modulation of Tetrodotoxin (TTX)-
sensitive Na+ Channels

Activation of TTX-sensitive voltage-gated Na+ channels has

been proposed to be involved in the activation of calcium channels

at low glucose levels [6–8]. However, other electrophysiological

studies failed to measure any residual sodium currents at

physiological membrane potentials in a-cells [19,20] but detected

it in a subset of b-cells [19]. We therefore tested the effect of TTX

on islets containing RFP-labeled a-cells loaded with Fluo-4. We

applied TTX at low glucose levels to determine if inhibition of

TTX-sensitive Na+ channels would inhibit a-cell [Ca2+]i oscilla-

tions. We did not observe any significant decrease in a-cell [Ca2+]i

with TTX supplemented in the range of 0.1 to 1 mg/mL (i.e 0.3 to

3 mM) (Figure 3A). Although not statistically significant, TTX

appears to induce a slight stimulatory effect on a-cells, as indicated

by an acceleration in the frequency of [Ca2+]i oscillations

(1.2360.23 oscillation per minute vs. 1.4760.29 when 1 mg/mL

of TTX is applied, p = 0.18); while having no effect on b-cell

[Ca2+]i. Islets exposed to 1 mg/mL TTX exhibit a 25.2 612.2%

(p,0.05) increase in glucagon secretion (Fig. 3B), but TTX does

not affect insulin secretion.

a-cell Responses to Modulation of KATP Channel Activity
b-cell KATP channels couple cell metabolism to electrical

activity and are therefore pivotal in triggering glucose-stimulated

insulin secretion [5]. Expression of KATP channels has been

reported in a-cells at similar or greater density compared to that in

b-cells [20,21], but their function in glucagon secretion remains

poorly understood. [Ca2+]i was monitored by Fluo-4 fluorescence,

and 100 mM diazoxide, a KATP channel activator, was perifused

over the islets. Activation of KATP channels caused a strong

reduction in the frequency and/or amplitude of calcium oscilla-

tions in 55% of oscillating a-cells (n = 20). Representative calcium

responses are presented in Figure 4A. Diazoxide had no effect on

the 20% of a-cells that were not oscillating, possibly because these

cells were already too hyperpolarized to allow the activation of

high-voltage-gated calcium channels. Overall, we found that

diazoxide treatment at low glucose levels reduced the Fluo-4

signal by 22.6 65.2% (n = 25, p,0.01) in a-cells, whereas b-cell

intensity was not affected (+9.8 69.7% in b-cells, n = 7 islets).

Lower diazoxide concentrations (20 mM) were also found to

inhibit calcium activity in 12 out of 15 oscillating a-cells (data not

shown). Furthermore, diazoxide suppresses glucagon secretion by

47.8 613.0% (p,0.01) at 1 mM glucose, but does not affect

insulin secretion (Fig. 4B). Because b-cell secretory activity is

Figure 1. Glucose effects on hormone secretion from perifused
islets. Isolated islets were exposed to 1 mM glucose for 30 minutes
(from 230 to 0 min). Then, both glucagon and insulin responses (gray
and black traces, respectively) were measured for 15 minutes at 1 mM
glucose (G1). The perifusion was changed to 12 mM (G12) for 15
minutes, and then switched back to 1 mM. Experiment was repeated 3
times, 450 islets from 6 mice were used. Error bars represent the
standard error of the mean. To compare the volume of islets with
different diameters and volumes, individual islets were mathematically
converted to standard islet equivalents (IEQs) with a diameter of
150 mm [44].
doi:10.1371/journal.pone.0047084.g001
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Figure 2. Effects of high-voltage-gated calcium channel inactivation on islet [Ca2+]i and hormone secretion. A, representative
intracellular calcium responses to blockade of N- and L-type calcium channels. Gray traces represent a-cell [Ca2+]i, and black traces indicate b-cell
[Ca2+]i. Fluo-4 intensity is expressed in arbitrary units. Calcium responses from two a-cells in the same islet are shown. N- and L-type channel
inhibitors (1 mM v-conotoxin and 20 mM nifedipine, respectively) were perifused. The figure is representative of 15 a-cells from 5 islets isolated from 3
mice. B, increasing concentrations of nifedipine were perifused at times indicated by the arrows. Nifedipine (# 10 mM) reduces calcium activity in a-
cells without affecting b-cell [Ca2+]i. The figure is representative of 10 a-cells from 3 islets harvested from 3 mice. C, effects of nifedipine on hormone
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minimal under these conditions, a-cell inhibition by diazoxide is

likely due to direct activation of a-cell KATP channels, and not to

indirect paracrine effects.

A KATP channel blocker, tolbutamide (100 mM), was then

applied to islets perifused at 1 mM glucose. We observed an

increase in calcium activity in ,45% (n = 34) of a-cells (Fig. 4C

and 4D), but the effect of tolbutamide was heterogeneous from cell

to cell. Some a-cells behave like b-cells and quickly respond by a

strong rise in [Ca2+]i, whereas others responded more slowly. We

noticed that ,25% of a-cells exhibited transient inhibition in the

frequency/amplitude of calcium oscillations for 5–10 minutes

before recovering (Fig. 4E). In addition, tolbutamide had no

significant effect on ,25% of active a-cells, possibly because KATP

channels were already closed in these cells. Finally, we observed an

inhibition of calcium activity in ,5% of the a-cells. On average,

tolbutamide increased a-cell Fluo-4 signal by 36.9 611.5%

(Fig. 4F) and glucagon secretion from islets by 62.8 626.7%

(p,0.01). Under the same conditions, the Fluo-4 signal in b-cells

increased by 140.8 625.0% (p,0.01), and insulin secretion was

also elevated. The time-response to tolbutamide indicates that

insulin release is quickly stimulated, whereas glucagon secretion is

only enhanced after ,15 minutes. This time-lag between insulin

and glucagon responses corroborates our calcium measurements

describing transient suppression of calcium activity in some a-cells

(Fig. 4E).

We next sought to determine whether glucose could retain its

inhibitory effect on a-cells that were stimulated by tolbutamide.

We measured a 44.05 611.02% (p,0.01) decrease in the rate of

glucagon secretion when 12 mM glucose was applied (Fig. 4H),

while insulin secretion was increased from 4.13 61.30 to 10.36

60.44 ng/100IEQs/min. To test whether this glucagon suppres-

sion was mediated by a reduction in a-cell [Ca2+]i, we measured

the effect of glucose on islets perifused with tolbutamide and found

no significant change in Fluo-4 signal either in a- or in b-cells (4.61

610.97%, n = 12, and 0.11 617.51%, n = 5, respectively). A

representative figure is presented in Fig. 4G.

Effects of KCl- induced Depolarization of a-cells
Fluo-4 measurements indicate that KCl application increases a-

cell [Ca2+]i in both oscillating and non-oscillating cells, as shown in

Fig. 5A. On average, Fluo-4 signal was enhanced by 76.8 623.0%

in a-cells, whereas b-cell intensity was augmented by 132.9

628.9% (p,0.01, n = 14 a-cells from 5 islets isolated from 3 mice).

Islet perifusion assays reveal that KCl stimulates glucagon

secretion by 83.9 617.1% (p,0.01). KCl also increases the

release of insulin (Fig. 5B). Application of 12 mM glucose reduces

the rate of glucagon secretion by 29.57 69.13% (p,0.01), while

stimulating insulin secretion from 2.73 60.17 to 9.23 60.43 ng/

100IEQs/min. However, glucose addition did not change Fluo-4

signal in both a- and b-cells (8.22 612.31%, n = 7, and 6.72

613.09%, n = 4, respectively).

Effects of Arginine on a-cells
The amino acid L-arginine is a potent glucagon secretagogue

[22], but its mode of action has not been fully defined. Cell

metabolism can be measured by changes in the autofluorescence

of reduced pyridine nucleotides (NADH and NADPH), collectively

referred to as NAD(P)H [23]. To determine the arginine-

dependent NAD(P)H responses, we acquired the NAD(P)H

intensities of islets at 1 mM glucose and compared them with

those collected 15 to 30 minutes after arginine stimulation, when

NAD(P)H signal has reached a plateau (data not shown). The islet

NAD(P)H response to step-increases in arginine concentration was

normalized to the minimal NADH redox state obtained with

FCCP, and to the maximal signal with sodium cyanide (Fig. 6A),

[1]. a-cells dose-dependently increase their NADH redox state

with millimolar concentrations of arginine, to an extent similar to

glucose [1]. This elevation in metabolic redox state indicates that

secretion from intact perifused islets. Islets were exposed to 1 mM glucose for 30 minutes (from 230 to 0 min). Glucagon and insulin responses (gray
and black traces, respectively) were measured for 15 minutes at 1 mM glucose (G1), and 20 mM nifedipine was added to the perifusion medium for 30
minutes. Experiment was repeated 4 times, 600 islets from 8 mice were used. Error bars represent the standard error of the mean.
doi:10.1371/journal.pone.0047084.g002

Figure 3. Effects of voltage-gated sodium channel inhibition on islet [Ca2+]i and hormone secretion. Gray and black traces represent a-
and b-cells, respectively. A, representative intracellular calcium responses to tetrodotoxin (TTX) in an intact mouse islet perifused at 1 mM glucose.
Increasing concentrations of TTX were perifused at times indicated by the arrows. TTX stimulates calcium activity in a-cells while having no noticeable
effects on b-cells. Fluo-4 intensity is expressed in arbitrary units. The figure is representative of 18 a-cells analyzed from 6 islets harvested from 3 mice.
B, effects of TTX on glucagon and insulin secretion from intact perifused islets. Isolated islets were exposed to 1 mM glucose for 30 minutes (from
230 to 0 min). Glucagon and insulin responses were measured for 9 minutes at 1 mM glucose (G1), and then TTX was perifused. Experiment was
repeated 6 times, 900 islets from 12 mice were used. Error bars represent the standard error of the mean.
doi:10.1371/journal.pone.0047084.g003
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arginine could activate a KATP-dependent depolarizing pathway in

this cell-type. In contrast, arginine was weakly metabolized in b-

cells, as previously reported [24].

Arginine also dose-dependently elevates a-cell [Ca2+]i (Fig. 6B).

We measure a 52.3 615.7% increase in Fluo-4 signal in a-cells in

the presence of 10 mM arginine, compared to 22.1 65.4% in b-

cells (16 a-cells from 5 islets, p,0.01 for both cell-types). Arginine

quickly augments a-cell calcium activity (Fig. 6C), and this

elevation in a-cell [Ca2+]i translates into increased rates of

glucagon release (Fig.6D). 10 mM arginine stimulates glucagon

output by 92.0 617.1% (p,0.01), whereas it has no effect on

insulin secretion. The lack of insulin response at low glucose levels

has been reported elsewhere [25].

Arginine-stimulated glucagon secretion is inhibited by glucose

[25]. The rate of glucagon secretion was reduced by 26.4 69.8

(p,0.01) (Fig. 6D), while insulin secretion was strongly stimulated

by glucose. Besides its suppressive effect on glucagon secretion,

glucose slightly increased the arginine-stimulated a-cell Fluo-4

signal by 13.6 66.55% (p,0.05, n = 35 a-cells from 6 islets

isolated from 3 mice). At the same time, 12 mM glucose increased

b-cell Fluo-4 signal by 85.3 626.2% over than seen with arginine

and 1 mM glucose.

Discussion

The study of isolated islets with an a-cell label demonstrates

that a-cell [Ca2+]i and glucagon secretion are closely related at

low glucose levels. Inhibition of L-type voltage-gated calcium

channels underlies calcium oscillations and secretory activity at

low glucose levels (Fig. 2), supporting previous evidence

[19,26,27]. However, blocking N-type channels was ineffective

in inhibiting a-cells, contrary to some previous reports [7,17,28].

At least some of this difference may be due to species

differences. Depolarizing agents such as tolbutamide and KCl

augment both a-cell [Ca2+]i and glucagon secretion. Similarly,

arginine stimulates glucagon secretion and increases a-cell

[Ca2+]i. Since arginine is metabolized in a-cells, it likely

activates a KATP-dependent depolarizing pathway, although it

can also increase the firing of action potentials by an

electrogenic effect [8]. The rapid responses in [Ca2+]i and

glucagon secretion after arginine treatment suggest that it

predominantly stimulates secretion by a direct depolarizing

effect mediated by its positive charge. In contrast, the metabolic

responses obtained with glucose necessitate 5 to 10 minutes to

be translated into an increase in [Ca2+]i [1].

We investigated the effect of TTX-sensitive voltage-gated

sodium channels that have been proposed to set the a-cell

membrane polarity to a level allowing activation of high-voltage

gated calcium channels [6–8,28]. In our hands, neither a-cell

calcium oscillations nor glucagon secretion was inhibited by TTX

(Fig. 3). In contrast, we observed a small increase in both a-cell

calcium oscillatory activity and glucagon secretion. This may

suggest that voltage-gated Na+ channels activate voltage-gated K+

channels involved in the inactivation of calcium channels [27,29],

but these data argue against a prominent role for voltage-gated

Na+ channels in calcium channel activation and normal glucagon

secretion.

Figure 4. Effects of pharmacological modulation of KATP channels on islet [Ca2+]i and hormone secretion. Gray and black traces
represent a- and b-cells, respectively. A, representative intracellular calcium responses to KATP channel activation by 100 mM diazoxide from an islet
perifused at 1 mM (G1). Fluo-4 intensity is expressed in arbitrary units. The figure is representative of 25 a-cells analyzed from 7 islets harvested from
3 mice. B, Effect of diazoxide on hormone secretion from intact perifused islets. Isolated islets were exposed to 1 mM glucose for 30 minutes (from -
30 to 0 min). Glucagon and insulin responses were measured for 12 minutes at 1 mM glucose, and diazoxide was perifused for 30 minutes at 100 mM.
Experiment was repeated 3 times, 450 islets from 6 mice were used. Error bars represent the standard error of the mean. C, D, and E, representative
Fluo-4 responses to KATP channel inhibition from an islet perifused at 1 mM glucose. The figure shows 3 different a-cells from the same islet exposed
to 100 mM tolbutamide, and is representative of 34 a-cells analyzed from 10 islets harvested from 3 mice. F, glucagon and insulin responses were
measured for 9 minutes at 1 mM glucose, and then tolbutamide was perifused at 100 mM. Experiment was repeated 6 times, 900 islets from 12 mice
were used. G, representative Fluo-4 responses to 100 mM tolbutamide (TTX) in an intact islet perifused at 12 mM. H, glucagon and insulin secretion
from islets perifused at 1 mM glucose and 100 mM tolbutamide for 15 minutes, then glucose concentration was increased to 12 mM. Experiment was
repeated 3 times, 450 islets from 6 mice were used.
doi:10.1371/journal.pone.0047084.g004

Figure 5. Effects of KCl on islet [Ca2+]i and hormone secretion. Gray and black traces represent a- and b-cells, respectively. A, intracellular
calcium responses from an islet perifused at 1 mM followed by addition of 20 mM KCl. 2 a-cells from the same islet are presented. Fluo-4 intensity is
expressed in arbitrary units. The figure is representative of 12 a-cells from 4 islets harvested from 3 mice. B, glucagon and insulin were measured for 9
minutes at 1 mM glucose (G1), and KCl was then perifused at 20 mM for 20 minutes, and glucose was added for 15 minutes at 12 mM (G12).
Experiment was repeated 4 times, 600 islets from 8 mice were used. Error bars represent the standard error of the mean.
doi:10.1371/journal.pone.0047084.g005
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In b-cells, glucose metabolism closes KATP channels and

therefore depolarizes membrane potential from ,260 mV to

,235 mV [30]. L-type calcium channels start to open at

membrane potential higher than 250 mV and are maximally

activated between 220 mV and +10 mV [31]. Our results

indicate that a-cell L-type calcium channels do not require the

depolarizing effect of Na+ channels to be activated. This suggests

that the a-cell membrane should be fairly depolarized at low

glucose concentrations (.250 mV), which is consistent with

previous reports [27,32]. This depolarized state likely originates

from a higher metabolic state at low glucose concentrations,

compared to b-cells (Fig. 6A, [1]), that would lead to greater ATP

concentrations in a-cells, as reported in [33]. Thus, more a-cell

KATP channels should be closed at low glucose levels, compared to

b-cells, which is consistent with the reduced effect of tolbutamide

on a-cell [Ca2+]i (Fig. 4). This hypothesis is further supported by

the fact that a-cell KATP channels are more sensitive to ATP

compared to b-cell KATP [20]. The observation that arginine and

KCl elicit greater a-cell [Ca2+]i and secretion responses than does

tolbutamide, suggests that they depolarize the a-cell membrane to

a greater extent and thus activate more calcium channels.

Interestingly, the glucagon response following arginine and KCl

application is biphasic (Fig. 5B and 6D). The acute first phase may

be the result of exocytosis of a readily releasable pool of glucagon-

containing granules, whereas the acceleration in the rate of

glucagon secretion during the second phase suggests that elevated

[Ca2+]i promotes an amplifying pathway at low glucose levels, as

seen in b-cells at greater glucose concentrations [5]. Activation of a

non- KATP-dependent amplifying pathway by glucose is observed

in b-cells when islets are exposed to KCl and tolbutamide at high

glucose levels (Fig. 4H and 5B). As a result, the rate of insulin

secretion is increased whereas b-cell [Ca2+]i is not.

The role of a-cell KATP channels in glucagon secretion is

controversial. Some studies have reported that blocking KATP

channels would lead to calcium channel inactivation [6–8]. Our

Fluo-4 imaging that assays all of the labeled a-cells reveals a subset

in which tolbutamide suppresses calcium oscillations, but this

inhibition was only transient (Fig. 4E). The different responses to

tolbutamide (and diazoxide) application illustrate the importance

of heterogeneities in the a-cell population, as some cells are in an

excited state at low glucose levels while others are quiescent [1].

Electrophysiological experiments identify active cells, and those

Figure 6. Effects of L-arginine on islet NAD(P)H, [Ca2+]i, and hormone secretion. Gray and black columns and traces represent a- and b-
cells, respectively. A, arginine-dependent NAD(P)H responses from intact islets. Islets were perifused at 1 mM glucose (G1) and exposed to step-
increases in arginine concentration. Data are normalized to minimal and maximal b-cell NAD(P)H obtained with FCCP and cyanide, respectively. The
a-cell NAD(P)H changes to arginine (Arg) were statistically significant (p,0.01, 32 a-cells measured from 10 islets, 3 mice) and a-cell NAD(P)H intensity
was different from b-cell intensity for each condition tested (p,0.01). Error bars indicate the standard error of the mean. B, averaged intracellular
calcium responses to arginine. Data are expressed in percent change in Fluo-4 intensity compared to baseline at 1 mM glucose. a-cell responses to
arginine were significant at all concentrations (p,0.01, n = 42) and b-cell responses were significant at 10 and 20 mM arginine (p,0.01, n = 11). C,
intracellular calcium responses to 10 mM arginine from an islet perifused at 1 mM glucose (G1). 2 a-cells from the same islet are presented. Fluo-4
intensity is expressed in arbitrary units. The figure is representative of 11 a-cells from 4 islets. D, glucagon and insulin responses were measured for 9
minutes at 1 mM glucose, and then arginine was perifused at 10 mM for 18 minutes. Finally, glucose was added to the perifusion medium at 12 mM
for 18 minutes. Experiment was repeated 4 times, 600 islets from 8 mice were used. Error bars represent the standard error of the mean.
doi:10.1371/journal.pone.0047084.g006
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experiments find that only 7% of the cells examined are a-cells

[17], even though .25% of the peripheral mouse islet cells should

be a-cells. Contrary to findings based on the subset of a-cells that

are active at any moment under low glucose conditions, we find

that tolbutamide elevates a-cell [Ca2+]i in a majority of a-cells and

stimulates glucagon secretion (Fig. 4). This positive effect is

consistent with other reports [10,21,26,28,34] and suggests that

KATP channels are active at low glucose levels, in contrast to some

reports in which tolbutamide had no effect [35,36]. Increased

glucagon secretion in response to tolbutamide also challenges the

paracrine model of glucagon suppression by glucose. Because b-

cells are activated by tolbutamide, insulin and zinc are released

and would be expected to inhibit glucagon secretion. Similarly,

KCl depolarizes a-cell membranes and raises a-cell [Ca2+]i, while

stimulating both glucagon and insulin secretion (Fig. 5, [37,38]). In

these cases, paracrine inhibitory products are apparently unable to

overcome the stimulatory effect of tolbutamide and KCl on

glucagon secretion, likely because they both force the a-cells into a

depolarized state. Overall, the results obtained with tolbutamide,

KCl, and arginine, indicate that membrane depolarization and

calcium channel activation account for a-cell secretory activity at

low glucose levels.

Activation of KATP channels by diazoxide increases the outward

current of K+ and hyperpolarizes the a-cell membrane. The

inhibitory effect of diazoxide on a-cell calcium activity (Fig. 4)

suggests that membrane hyperpolarization inactivates L-type

calcium channels, and thus suppresses glucagon secretion. a-cell

KATP channel activity is therefore important for setting the

membrane potential to a level that allows activation of calcium

channels under low glucose conditions. Interestingly, both

diazoxide and L-type channel blocker inhibit the secretion of

glucagon to an extent similar to glucose (Fig. 1, 2C, and 4B). It is

tempting to hypothesize that glucose mediates its inhibition by

opening KATP channels and inactivating calcium channels, as

proposed in [9,10]. However, we have previously reported that a-

cell calcium activity was not reduced by glucose [1]. We further

illustrate this uncoupling between a-cell [Ca2+]i and secretion by

showing that glucose suppresses arginine-stimulated glucagon

secretion without a decrease in a-cell [Ca2+]i (Fig. 6). Similarly,

glucose reduces the rate of glucagon secretion from islets

stimulated by KCl and tolbutamide without affecting a-cell

[Ca2+]i. In each of these cases, glucagon suppression by glucose

is concomitant with an increase in b-cell secretory activity, so it is

difficult to determine if suppression of glucagon results from direct

effect of the sugar on a-cells or by an indirect paracrine inhibition

from b-cells.

In summary, we propose that a-cell KATP channels are

important at low glucose levels to create a fairly depolarized

membrane potential that allows spontaneous activation of L-type

calcium channels and exocytosis of glucagon-containing granules.

Our results further show that KATP channels are not involved in

glucose suppression of glucagon secretion. Instead, glucose inhibits

secretion by a non-calcium-dependent pathway, which likely

inhibits either granule mobilization to the membrane or glucagon

exocytosis.

Materials and Methods

Materials
Fluo4-AM, fetal bovine serum, penicillin, streptomycin, Hanks

balanced salt solution, phosphate buffer saline (PBS) and Roswell

Park Memorial Institute (RPMI) 1640 medium were purchased

from Invitrogen (Carlsbad, CA). Collagenase P was obtained from

Roche (Basel, Switzerland) and tetrodotoxin from Tocris Biosci-

ence (Ellisville, MO). Unless specified, all other products were

purchased from Sigma-Aldrich (St. Louis, MO).

Transgenic Mice and Islet Culture
All work with animals was conducted in compliance with the

Vanderbilt University Institutional Animal Care and Use Com-

mittee (IACUC). Transgenic mice (C57BL/6 genetic background)

that specifically express tandem-dimer Red Fluorescent Proteins

(tdRFP) in a-cells have been described elsewhere [1]. Transgenic

mice were identified by polymerase chain reaction (PCR) on

mouse-tail DNA (Puregene Mouse Tail Kit, Gentra Systems,

Minneapolis, MN). Oligonucleotide primers for Glucagon-Cre

mice are: 59-CCT CTA GGC TCA TTT GAC G-39 (forward)

and 59-TCC ATG GTG ATA CAA GGG AC-39 (reverse).

ROSA26-tdRFP mice are identified with ROSA26 primers, as

described in [39]. Islets were isolated and cultured as previously

described [1]. Islets were cultured overnight for the secretion

assays, and up to 3 days for imaging studies.

Live-cell Imaging
Islets were imaged in a microfluidic device placed on the

microscope stage, in a temperature controlled chamber at 37uC
and 5% CO2. The microfluidic chip holds the living islet stable for

imaging and allows rapid reagent changes. The fabrication of the

device has been described elsewhere [40,41]. Islets were studied in

imaging solution (i.e. filtered aqueous solution containing:

125 mM NaCl, 5.7 mM KCl, 2.5 mM CaCl2 – 2H2O, 1.2 mM

MgCl2, 10 mM HEPES and 0.1% bovine serum albumin, at

pH7.4). For calcium imaging, islets were incubated with 5 mM of

Fluo4-AM for one hour at 1 mM glucose. An increase in Fluo-4

intensity relates to greater [Ca2+]i and the response is a function of

physiological free calcium concentrations [42]. After washing,

islets were allowed to equilibrate on the microscope stage for 15

minutes. Fluo-4 was excited at 488 nm and its emission was

recorded between 490 and 560 nm. Time-series images were

acquired every 3 seconds. a-cells were localized thanks to the

expression of tdRFP. TdRFP was excited at 561 nm and its

fluorescence collected between 565 and 730 nm. We used a laser

scanning microscope (LSM710, Carl Zeiss Inc., Thorwood, NY)

with a Fluar 40x/1.3NA oil immersion lens (Zeiss). Confocal

sections were obtained with a pinhole diameter set to 2 Airy units.

Because b-cells constitute ,80% of the cells in the islet [15], the

Fluo-4 signal from non-tdRFP cells was considered to represent

the average b-cell response. NAD(P)H measurements by two-

photon excitation were performed as previously described [1].

Measurements of Insulin and Glucagon Secretion from
Perifused Islets

One day after isolation, islets were split into groups of 150 islets.

Each group was placed into one of the individual glass chambers of

a cell perfusion system for simultaneous study [43]. Islets were

settled in each column on top of mesh filters with 25 mm pores to

prevent islets from escaping into the effluent. Each experiment was

preceded by a 30-minute stabilization period using a perifusion of

0.1% Dulbecco’s Modified Eagle Medium (DMEM) containing

0.1% BSA, 4.66 mM HEPES, 38.1 mM NaHCO3, 1 mM sodium

pyruvate, 4 mM L-glutamine, and 0.015 % phenol red, at pH7.4.

Additional glucose and/or drugs were added to the perifusion

medium as indicated in the text. A flow rate of 1 ml/min was used

and samples were collected every 3 minutes by the Vanderbilt Islet

Procurement and Analysis Core. Hormone secretion measurement

was performed in duplicate by radio-immunoassays in the

Vanderbilt Hormone Assay Core. Individual islets were mathe-
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matically converted to standard islet equivalents (IEQs) with a

diameter of 150 mm [44]. 1h-static perifusion assays with v-

conotoxin were performed as described in [1].

Data Analysis and Statistics
Image data were analyzed with Metamorph 7.6.1 (MDS

Analytical Technologies, Downingtown, PA) and Excel 2007

(Microsoft, Redmond, WA) as previously described [1]. P values

(two-tailed paired t-test) for glucagon measurements were obtained

by comparing the baseline with measurements obtained 15 to 18

minutes after reagent change. Statistical analyses were performed

by Prism 4 (GraphPad Software, La Jolla, CA).

Acknowledgments

Equipment and technical assistance were provided by the Vanderbilt Islet

Procurement and Analysis, and Hormone Assay cores (supported by the

Vanderbilt Diabetes Center (DK20593), the Vanderbilt Ingram Cancer

Center (CA68485), and the Vanderbilt Digestive Disease Research Center

(DK58404)).

Author Contributions

Conceived and designed the experiments: SJLM DWP. Performed the

experiments: SJLM. Analyzed the data: SJLM DWP. Contributed

reagents/materials/analysis tools: DWP. Wrote the paper: SJLM DWP.

References

1. Le Marchand SJ, Piston DW (2010) Glucose suppression of glucagon secretion:

metabolic and calcium responses from alpha-cells in intact mouse pancreatic

islets. J Biol Chem 285: 14389–14398.

2. Shiota C, Rocheleau JV, Shiota M, Piston DW, Magnuson MA (2005) Impaired

glucagon secretory responses in mice lacking the type 1 sulfonylurea receptor.

Am J Physiol Endocrinol Metab 289: E570–577.

3. Jiang G, Zhang BB (2003) Glucagon and regulation of glucose metabolism.

Am J Physiol Endocrinol Metab 284: E671–78.

4. Gromada J, Franklin I, Wollheim CB (2007) Alpha-cells of the endocrine

pancreas: 35 years of research but the enigma remains. Endocr Rev 28: 84–116.

5. Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin

secretion by glucose. Diabetes 49: 1751–1760.
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