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Abstract: Redox initiating systems (RISs) are highly worthwhile for polymerization in mild conditions
(at room temperature—RT) without external thermal or light activation. With high performance
redox initiating systems RIS, the free radical polymerization FRP can even be carried out under air
and without inhibitors/stabilizers removal from the monomers/resins. However, efficient RISs are
still based on peroxides or metal complexes. In this work, a pure organic and peroxide-free RIS is
presented based on the interaction of a well-selected triarylamine derivative (T4epa) with iodonium
salt used as reducing and oxidizing agents, respectively. The redox polymerization (Redox FRP) was
followed through pyrometry and thermal imaging experiments. Remarkably, a full control of the
work time as well as a high reactivity is observed for mild conditions.

Keywords: redox initiators, iodonium salt; gel time; polymerization in mild conditions

1. Introduction

For the production of polymers, free radical polymerization (FRP) is a widespread
used process [1]. In this context, thermal or photochemical initiations are mostly used but
two-component redox initiation for redox FRP is also a highly robust technique used since
the second half of the 20th century [2,3]. Compared to thermal and photo polymerization,
redox FRP can be carried out in mild conditions, i.e., without energy consumption as the
reaction can be performed out at room temperature without any activation (light or heat).
The basic principle of redox FRP is quite straightforward: a redox initiating system (RIS) is
dissolved separately in two components (often called cartridges). Then, the mixing of the
two components (one containing the oxidizing agent and the second one containing the
reducing agent) leads to initiating free radical formation through a redox reaction.

Currently, the benchmark RIS is based on the dibenzoyl peroxide (BPO)/tertiary
aromatic amine (e.g., trimethylaniline—TMA) couple. This well-established system is
already used in many applications for the preparation of biomedical materials, emulsion
polymerization, the curing of composites or adhesives, etc. [4–9].

Albeit this benchmark BPO/amine system was the cornerstone of the redox FRP,
it is now necessary to replace it due to severe handling/toxicity/hazard issues. Indeed,
BPO is not stable (explosive risk associated with peroxides handling, pressing regulations
on peroxides, etc.) [10,11] and classical peroxides cannot be stored in monomers leading
to highly disymmetrical cartridges (one with the reducing agent in the monomer and
a second one for BPO alone). However, under mild conditions (room temperature, under air,
no stabilizer removal), alternative systems are not highly efficient [12–19]. This is the reason
why we have proposed recently several RIS BPO-free for redox FRP [20–26].

However, many of the reported systems still involved the presence of metal complexes
(Mn, Cu, or V) [20–26] due to their favorable redox potentials. Therefore, in the present
paper, a pure organic and BPO-free approach preventing the use of both peroxides and
metal complexes is provided. Specifically, iodonium salts were used as oxidizing agents
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to generate aryl radicals through their reduction by a carefully selected reducing agent
(Tris [4-(diethylamino)phenyl]amine—T4epa) in r1 with ED the electron donor:

ED + Ar2I+ → ED•+ + Ar• + Ar-I (r1)

We have characterized the redox FRP of a benchmark methacrylate monomer blends
using different techniques (optical pyrometry and thermal imaging experiments). The work-
ability of the resin through its gel time (GT) is also a crucial parameter: (i) too short gel
times does not allow the control the shape of the polymer, i.e., a too fast polymerization
occurs; or (ii) long gel time are often associated with low polymerization rates, partial cur-
ing, and tacky surfaces. Obviously, the ideal gel time depends on the final application
(composites, dentistry, chemical anchors, etc.) but an excellent polymerization must be
always obtained in mild conditions (under air, or in presence of stabilizers). In this work,
a precise control of the gel time is provided with the new proposed RIS through the contents
of redox agents or the use of an additional salts.

2. Materials and Methods
2.1. Chemical Compounds

All chemicals were purchased with high purity and used as received (Scheme 1).
Tris [4-(diethylamino)phenyl]amine (T4epa) and Bis-(4-t-butylphenyl)-Iodonium hexaflu-
orophosphate (Iod) were purchased from Merck-Sigma Aldrich (St. Quentin Fallavier,
France) and Lambson Ltd. (Wetherby, UK), respectively. The different salts (NaTFSI,
LiTFSI, KTFSI, NaBF4, NaPF6 and NaSbF6; Scheme 1) were ordered from Merck-Sigma
Aldrich (St. Quentin Fallavier, France). The efficiency of the different RISs was checked
in a benchmark methacrylate monomer blend (noted BM) having an adapted viscosity
(0.053 Pa·s) and containing 33.3% UDMA (urethane dimethacrylate), 33.3% HPMA (hy-
droxypropyl methacrylate), and 33.3% BDDMA (butanediol dimethacrylate) (Scheme 2).
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Scheme 1. T4epa and iodonium salt (Iod) used in the proposed Redox Initiating System and the salts used as additive in
the Redox initiating systems (RISs).
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Scheme 2. Benchmark methacrylate monomer blend (noted BM for Benchmark Monomers).

2.2. Two Cartridges System Used for Redox FRP Experiments

All redox formulations were prepared in bulk in two separate cartridges: a first car-
tridge containing T4epa and the other one containing the iodonium salt (Iod). A 1:1 Sulzer
mixpac mixer was used to mix the two cartridges at the beginning of each polymerization
experiment. As all polymerization experiments were performed at room temperature
(~20 to 25 ◦C) (excepted specifically indicated) and under air, an oxygen inhibition can be
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expected, particularly for the surface in direct contact with air [20–26]. For all experiments,
the monomers were used without stabilizer (4-methoxyphenol) removal.

2.3. Redox FRP in Bulk Followed by Optical Pyrometry

Optical pyrometry was used to follow polymerization reactions: temperature vs.
time profiles were followed using an Omega OS552-V1−6 infrared thermometer (Omega
Engineering, Inc., Stamford, Paris, France, CT) having a sensitivity of±1 ◦C for 2 g samples
(thickness ∼ 4 mm) [20–26]. The redox initiator contents will be given in weight with
respect to the monomer in the final blend (wt%). The optical pyrometry is used to check
the gel time, i.e., the time required from a two-component mixing to go from fluid/viscous
state to gel/solid one.

2.4. Redox Polymerization in Bulk Followed by Thermal Imaging Experiments

The temperature reached by the samples has been recorded during the reaction time
thanks to an infrared thermal imaging camera (Fluke TiX500, Berlin, Germany) [27].

3. Results
3.1. The T4epa/Iod RIS Charactaerized by Optical Pyrometry and Thermal Imaging Experiments

In this section, the T4epa/Iod RIS is used for the polymerization of the BM resin
(Scheme 2) using the 1/1 mixing of the two cartridges, i.e., one containing T4epa in BM and
the other one Iod also in BM. The Redox FRP is followed by optical pyrometry that recorded
the temperature vs. time after mixing. The FRP process being exothermic, an increase of
temperature directly reveals the occurrence of the polymerization reaction. The Gel Time
(GT) is defined here as the time where the maximal slope of the temperature is observed
(corresponding to the time for the maximal polymerization rate). Remarkably, in Figure 1,
T4epa/Iod RIS is found highly efficient to initiate the polymerization of BM in mild
conditions (under air, at RT and without stabilizers removal) with GTs ranging from 50 s to
450 s depending on the concentrations of the redox active compounds, i.e., it is worth noting
that the GT can be finely controlled by their respective contents. Interestingly, the maximal
temperature reached is similar to those obtained for dibenzoylperoxide/trimethylaniline
(1%/1%) benchmark system (100 ◦C and GT = 110 s) suggesting that the new proposed RIS
system is competitive in term of redox initiation ability to well-established BPO/amine
references. In all case, tack-free polymers were obtained with the proposed systems vs.
tacky surfaces for BPO/trimethylaniline highlighting a better ability of the T4epa/Iod RIS
to overcome oxygen inhibition vs. BPO/amine reference.

A multiple regression analysis was carried out to find the relationship between GT and
the respective contents of T4epa and Iod (Figure 2). Interestingly, the following equation
(Equation (1)) is found for weight contents of Iod andT4epa in the range 0.5–2% (w/w):

GT = 8.7 − 2.5 [T4epa] − 2 [Iod] (r2 = 0.9) (1)

Equation (1) clearly suggests that an increase of Iod or T4epa content decreases GT.
Markedly, rather similar coefficients (2.5 vs. 2) suggest that the content of both compounds
have a rather similar effect on GT suggesting a stoichiometric reaction. Such a relation-
ship (Equation (1)) can also be highly worthwhile to control the work time in different
applications.

To better understand the localization of the Redox FRP process in time and in space,
thermal imaging experiments in a narrow chemical pill box were realized under air
(Figure 3). Remarkably, it is found that the polymerization starts at the top air inter-
face (t = 170 s) before a frontal polymerization occurs from the top to the bottom (see for
t = 180s and t = 190 s). This suggests that the oxygen positively participates to the redox
initiation in agreement with the ability of the proposed T4epa/Iod RIS to overcome the
oxygen inhibition vs. the classical BPO/amine systems that are usually highly inhibited.
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Figure 1. Optical pyrometric measurements (temperature vs. time after mixing; 4 mm thick sample) under air for the BM
resin for Redox free radical polymerization (FRP) using different RISs: (A) T4epa/Iod (0.5%/1% w/w); (B) T4epa/Iod (1%/2%
w/w); (C) T4epa/Iod (2%/0.5% w/w); (D) T4epa/Iod (0.5%/1.5% w/w); (E) T4epa/Iod (1.5%/0.5% w/w); (F) T4epa/Iod
(2%/1% w/w); (G) T4epa/Iod (1%/0.5% w/w); (H) T4epa/Iod (1.5%/1% w/w); (I) T4epa/Iod (2%/1.5% w/w); (J) T4epa/Iod
(1%/1% w/w); (K) T4epa/Iod (1.5%/1.5% w/w); (L) T4epa/Iod (2%/2% w/w); (M) T4epa/Iod (1%/1.5% w/w); (N) T4epa/Iod
(1.5%/2% w/w).
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Figure 2. Correlation between the experimental gel time (GT) and the calculated GT using the
equation: GT = 8.7 − 2.5 [T4epa] − 2 [Iod].
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Figure 3. Optical pyrometric measurements (temperature vs. time after mixing; 4 mm thick sample) under air for the BM
resin for Redox FRP using the T4epa/Iod (2%/0.6% w/w) RIS and the associated thermal imaging pictures at different times.

3.2. Salt Additive Effects in T4epa/Iod RISs

In this part, an iodonium salt bearing a Chloride anion (noted Iod-Cl) is used instead
the iodonium salt of the previous section (noted Iod) based on hexafluorophosphate
anion to probe the counter anion effect on the RIS reactivity. Interestingly, for the Iod-
Cl, no polymerization occurs in presence of T4epa (Figure 4, curve A) showing that the
iodonium bearing PF6

- is much more reactive. This is related to the much better solubility
of Iod vs. Iod-Cl that exhibits a poor solubility in (meth)acrylates. To overcome this latter
issue, an in-situ counter anion exchange is investigated by addition of different salts (with
different counter anions) in the Iod-Cl cartridge. Markedly, this approach leads to excellent
Redox FRP (Figure 4, curves B–G) and the GT can be controlled by the selection of the salt
used i.e., GT ~ 370 s with NaBF4 and GT ~ 70 s for NaPF6. The GT decreases in the series:
NaBF4 > NaSbF6 > LiTFSI > NaTFSI > NaPF6 > KTFSI.
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Figure 4. Optical pyrometric measurements (temperature vs. time after mixing; 4 mm thick sample) under air for the BM
resin for Redox FRP using different RISs based on T4epa/Iod-Cl (1%/2% w/w) in presence of different salts: (A) without
additional salt; (B) NaBF4 (1% w/w); (C) NaSbF6 (1% w/w); (D) LiTFSI (1% w/w); (E) NaTFSI (1% w/w); (F) NaPF6 (1% w/w);
(G) KTFSI (1% w/w).
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The effect of the additional salt concentration was investigated in Figure 5. An increase
of the salt concentration leads to a decrease of GT, i.e., GT ~ 150 s for NaPF6 (0.5% w/w)
(Figure 5, curve A) vs. GT ~ 70 s for NaPF6 (2% w/w) (Figure 5, curve B). The same effect
is observed for LiTFSI (Figure 5, curves E–H) and NaBF4 (Figure 5, curves I–J). Therefore,
the additional salt content is another elegant way to control the work time.
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Figure 5. Optical pyrometric measurements (temperature vs. time after mixing; 4 mm thick sample) under air for the BM
resin for Redox FRP using different RISs based on T4epa/Iod-Cl (1%/2% w/w) in presence of different salts: (A) NaPF6

(0.5% w/w); (B) NaPF6 (2% w/w); (C) NaPF6 (1% w/w); (D) NaPF6 (1.5% w/w); (E) LiTFSI (0.63% w/w); (F) LiTFSI (2% w/w);
(G) LiTFSI (1% w/w); (H) LiTFSI (1.5% w/w); (I) NaBF4 (1% w/w); (J) NaBF4 (3% w/w); (K) without additional salt.

3.3. Inhibitor Effects in T4epa/Iod RISs

Additional inhibitors are often used in practical applications to improve the stability
of the cartridge and/or to control the gel time. Therefore, the effect of additional inhibitor
(4-Hydroxy-TEMPO and 4-methoxyphenol) is investigated in Figure 6. In presence of 4-
Hydroxy-TEMPO (0.05% w/w), GT increases (Figure 6, curve A vs. curve B) but interestingly,
4-methoxyphenol does not lead to higher GT. Therefore, we can conclude that Hydroxy-
TEMPO can be recommended to adjust the GT if necessary while 4-methoxyphenol can be
used to improve the stability of the system upon storage without important modification
of GT.
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Figure 6. Optical pyrometric measurements (temperature vs. time after mixing; 4 mm thick sample) under air for the BM
resin for Redox FRP using a T4epa/Iod (1.5%/1% w/w) RIS in presence of different inhibitors: (A) without inhibitor; (B)
4-Hydroxy-TEMPO (0.05% w/w); (C) 4-methoxyphenol (0.05% w/w).
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3.4. Stability in Accelerated Aging Experiments

For a deeper characterization of the new proposed T4epa/Iod RIS, the stability of
both cartridges in aging experiments has been investigated (Figure 7). A good stability is
found both for aging @50 ◦C (Figure 7, curves B and C) or at RT (Figure 7, curve D) with
a low effect on the GT (change < 30 s compared to the fresh cartridges—Figure 7 curve
A). keeping in mind the very poor stability of peroxides (particularly BPO) that cannot be
stored in monomers, the good stability of Iod and T4epa in BM is a real breakthrough for
the Redox FRP field.
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Figure 7. Optical pyrometric measurements (temperature vs. time after mixing; 4 mm thick sample) under air for the BM
resin for Redox FRP using a T4epa/Iod (1.5%/1.5% w/w) RIS for different storage time: (A) fresh cartridges; (B) aging of the
two cartridges for 7 days @50 ◦C; (C) aging of the two cartridges for 14 days @50 ◦C; (D) aging of the two cartridges for
28 days @RT.

3.5. Reactivity at Low Temperatures

Finally, Redox FRP can also suffer from lower reactivity at low temperatures. To check
the high reactivity of the T4epa/Iod RIS, the polymerizations @25 ◦C and 10 ◦C are
compared in Figure 8 (curve A vs. curve B). Obviously, a higher GT is obtained @10 ◦C
(~500 s vs. ~120 s) but markedly, without decreasing the exothermicity. Therefore, this result
also highlights the robustness of the proposed RIS with polymerization processes that
remain possible even at 10 ◦C.
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Figure 8. Optical pyrometric measurements (temperature vs. time after mixing; 4 mm thick sample) under air for the BM
resin for Redox FRP using a T4epa/Iod (1.5%/1% w/w) RIS at different temperatures: (A) @RT (23 ◦C); (B) @10 ◦C.
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4. Discussion

From all the results obtained above, it clearly appears that the T4epa/Iod RIS is
very efficient in mild conditions (under air, without inhibitor removal, and even at low
temperature). Taking into account the electron donor properties of aromatic amines and the
electron acceptor properties of the iodonium salts, the expected redox reaction is depicted
in Scheme 3. The reduction of iodonium salt leads to the formation of highly reactive aryl
radials that correspond to highly efficient structures for the addition onto (meth)acrylates
with very high addition rate constants (k ~ 108 M−1 s−1) [28].
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Scheme 3. Expected chemical mechanisms.

It was shown above (see the thermal imaging experiments) that O2 can also participate
to the chemical mechanisms probably through the consumption of the stabilizer (Ar-OH)
in r2–r3 allowing the polymerization to start in contact with air [28].

R• + O2 → ROO• (r2)

ROO• + Ar-OH→ ROOH + ArO• (r3)

Using Iod-Cl in presence of additional salts (e.g., NaX), an in-situ counter anion
exchange is expected according to Scheme 4 leading to a more soluble and/or more
electron acceptor iodonium salt than the starting Iod-Cl. This latter approach is useful to
control the gel time.
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5. Conclusions

In this work, a pure organic and peroxide-free RIS is presented for polymerization in
mild conditions. This latter system is characterized by a bulk polymerization efficiency
comparable to the benchmark BPO/TMA system but with the advantage of better sur-
face curing under air. Markedly, a precise control of the gel time is possible through an
appropriate content of redox agents or the use of an additional salt. The proposed RIS is
highly robust and can be used for polymerization at low temperatures. Other pure and safe
organic RIS will be presented in forthcoming works for polymerization. More particularly,
peroxide-free systems will be highly welcome.
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