organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(2-Furoyl)-3-(1-naphthyl)thiourea

J. Duque,^a* Osvaldo Estevez-Hernandez,^a Edilso Reguera,^a Rodrigo S. Corrêa^b and P. Gutierrez Maria^c

^aDepartment of Structure Analysis, Institute of Materials, University of Havana, Cuba, ^bGrupo de Cristalografía, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil, and ^cInstitute of Materials, UNAM, Av. Universidad No 3000 Col. Copilco el Alto, DF, Mexico Correspondence e-mail: duque@imre.oc.uh.cu

Received 24 April 2008; accepted 27 April 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.005 Å; R factor = 0.058; wR factor = 0.131; data-to-parameter ratio = 11.6.

In the title compound, $C_{16}H_{12}N_2O_2S$, the carbonylthiourea group forms dihedral angles of 75.4 (1) and 13.1 (2)°, respectively, with the naphthalene ring system and furan ring. The molecule adopts a *trans-cis* configuration with respect to the positions of the furoyl and naphthyl groups relative to the S atom across the thiourea C–N bonds. This geometry is stabilized by an N–H····O intramolecular hydrogen bond. In the crystal structure, molecules are linked by N–H···S hydrogen bonds, forming centrosymmetric dimers which are interlinked through C–H··· π interactions.

Related literature

For general background, see: Ashraf *et al.* (2007); Koch (2001). For related structures, see: Dago *et al.* (1987); Cao *et al.* (1996); Yuan *et al.* (1997); Kaminsky *et al.* (2002); Weiqun *et al.* (2003); Yamin & Hassan (2004). For the synthesis, see: Otazo *et al.* (2001).

Experimental

Crystal data $C_{16}H_{12}N_2O_2S$ $M_r = 296.34$ Monoclinic, $P2_1/c$ a = 9.402 (2) Å b = 19.082 (4) Å c = 7.880 (2) Å $\beta = 94.94$ (1)°

 $V = 1408.5 \text{ (6) } \text{Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.23 \text{ mm}^{-1}$ T = 294 (2) K $0.50 \times 0.25 \times 0.05 \text{ mm}$

Data collection

Siemens P4 diffractometer Absorption correction: none 3603 measured reflections 2771 independent reflections 1521 reflections with $I > 2\sigma(I)$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.058$	239 parameters
$wR(F^2) = 0.131$	All H-atom parameters refined
S = 1.02	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
2771 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

 $R_{\rm int} = 0.043$

3 standard reflections

every 97 reflections intensity decay: 2.6%

Table 1

1

N

Hydrogen-bond geometry (Å, °).

О−Н…А	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$V2 - H2 \cdots O1$	0.86 (4)	2.00 (4)	2.698 (3)	138 (3)
$V1 - H1 \cdots S1^{i}$	0.91 (5)	2.57 (5)	3.455 (3)	164 (4)
$C5 - H5 \cdots Cg1^{ii}$	0.96 (4)	2.85 (4)	3.654 (4)	143 (3)

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$. Cg1 is the centroid of the C7–C11/C16 ring.

Data collection: *XSCANS* (Siemens, 1996); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors thank the Crystallography Group, São Carlos Physics Institute, USP, Brazil, for allowing the X-ray data collection. The authors acknowledge financial support from the Brazilian agency CNPq.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2591).

References

- Ashraf, A. A., Essam, K. A., Khaled, M. E.-M. & Mohamed El-Amir, F. H. (2007). J. Sulfur Chem. 28, 73–93.
- Cao, Y., Zhao, B., Zhang, Y.-Q. & Zhang, D.-C. (1996). Acta Cryst. C52, 1772– 1774.
- Dago, A., Simonov, M. A., Pobedimskaya, E. A., Macías, A. & Martin, A. (1987). Kristallografiya, 32, 1024–1026.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Kaminsky, W., Goldberg, K. I. & West, D. X. (2002). J. Mol. Struct. 605, 9-15.
- Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.
- Otazo, E., Pérez, L., Estévez, O., Rojas, S. & Alonso, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Weiqun, Z., Kuisheng, L., Yong, Z. & Lu, L. (2003). J. Mol. Struct. 657, 215– 223.
- Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513-o2514.
- Yuan, Y.-F., Ye, S.-M., Zhang, L.-Y., Wang, B., Xu, Y.-M., Wang, J.-T. & Wang, H.-G. (1997). *Inorg. Chim. Acta*, 256, 313–318.

supplementary materials

Acta Cryst. (2008). E64, o1068 [doi:10.1107/S1600536808012208]

1-(2-Furoyl)-3-(1-naphthyl)thiourea

J. Duque, O. Estevez-Hernandez, E. Reguera, R. S. Corrêa and P. Gutierrez Maria

Comment

The subject of aroylsubstituted thioureas is considered as a very interesting topic due to their remarkable optical and electronic properties (Ashraf *et al.*,2007). Substitutions that reduce the symmetry of the thiourea molecule enhance the non-linear optical properties. A variety of crystals of this class has been reported (Dago *et al.*, 1987; Cao *et al.*, 1996; Yuan *et al.*, 1997; Kaminsky *et al.*, 2002; Weiqun *et al.*, 2003). The title compound (Fig.1) is another example of a newly synthesized furoylthiourea derivative.

The bond lengths and angles are comparable with those observed in other thiourea derivatives (Koch *et al.*, 2001). The α -naphtalene ring system attached to N2 is essentially planar and inclined at an angle of 75.4 (1)° with respect to the plane of carbonylthiourea group. The dihedral angle between the carbonylthiourea group and furan ring is 13.1 (2)°. The molecule adopts a trans-cis configuration with respect to the position of the furoyl and naphthyl groups relative to the S atom across the thiourea C—N bonds. This geometry is stabilized by the N2—H2…O1 intramolecular hydrogen bond (Fig.1).

In the crystal structure, molecules are linked by N1—H1….S1 hydrogen bonds (Table 1) forming a centrosymmetric dimer (Fig. 2). The dimers are arranged along the *c* axis. In addition, the crystal packing is stabilized by C—H… π interactions involving the C7-C11/C16 ring.

Experimental

The title compound was synthesized according to a previous report (Otazo *et al.*, 2001), by converting furoyl choride into furoyl isothiocyanate and then condensing with α -naphtylamine. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p 186–187°). Elemental analysis for C₁₆H₁₂N₂O₂S calculated: C 64.86, H 4.05, N 9.46, S 10.81%; found: C 64.70, H 4.10, N 9.54, S 10.41%.

Refinement

All H atoms were located by difference Fourier synthesis and refined freely.

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N—H…O hydrogen bond is shown as a dashed line.

Fig. 2. View of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

1-(2-Furoyl)-3-(1-naphthyl)thiourea

Crystal data
$C_{16}H_{12}N_2O_2S$
$M_r = 296.34$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
a = 9.402 (2) Å
b = 19.082 (4) Å
c = 7.880 (2) Å
$\beta = 94.94 \ (1)^{\circ}$
V = 1408.5 (6) Å ³
Z = 4

Data collection

Siemens P4 diffractometer	$\theta_{\text{max}} = 26.0^{\circ}$
Radiation source: fine-focus sealed tube	$\theta_{\min} = 2.1^{\circ}$
Monochromator: graphite	$h = -11 \rightarrow 11$
$2\theta/\omega$ scans	$k = -23 \rightarrow 1$
Absorption correction: none	$l = -1 \rightarrow 9$
3603 measured reflections	3 standard reflections
2771 independent reflections	every 97 reflections
1521 reflections with $I > 2\sigma(I)$	intensity decay: 2.6%
$R_{\rm int} = 0.043$	

Refinement

Refinement on F^2	All H-atom parameters refined
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.0395P)^2 + 0.2114P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.058$	$(\Delta/\sigma)_{\rm max} < 0.001$
$wR(F^2) = 0.131$	$\Delta \rho_{max} = 0.37 \text{ e } \text{\AA}^{-3}$
<i>S</i> = 1.02	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$
2771 reflections	Extinction correction: SHELXL97 (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
239 parameters	Extinction coefficient: none

 $F_{000} = 616$

 $\theta = 9.9-23.4^{\circ}$ $\mu = 0.24 \text{ mm}^{-1}$ T = 294 (2) KPlate, white

 $D_{\rm x} = 1.397 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$

 $0.50\times0.25\times0.05~mm$

Cell parameters from 37 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.57874 (10)	-0.05278 (4)	0.80311 (14)	0.0521 (3)
01	0.7296 (2)	0.17234 (11)	0.7355 (3)	0.0472 (7)
O2	0.4090 (2)	0.17986 (11)	0.9419 (3)	0.0505 (7)
N1	0.5895 (3)	0.08508 (13)	0.8319 (4)	0.0404 (8)
N2	0.7522 (3)	0.03510 (14)	0.6602 (4)	0.0382 (7)
C7	0.8101 (3)	-0.02051 (16)	0.5647 (4)	0.0334 (8)
C11	0.9652 (3)	-0.12250 (17)	0.5475 (5)	0.0378 (9)
C2	0.6455 (3)	0.02544 (15)	0.7612 (4)	0.0355 (8)
C8	0.7742 (4)	-0.0249 (2)	0.3936 (5)	0.0439 (9)
C16	0.9075 (3)	-0.06863 (15)	0.6463 (4)	0.0334 (8)
C1	0.6256 (3)	0.15409 (16)	0.8096 (4)	0.0345 (8)
C3	0.5298 (3)	0.20467 (16)	0.8776 (4)	0.0343 (8)
C10	0.9242 (4)	-0.1259 (2)	0.3713 (5)	0.0468 (10)
C15	0.9520 (4)	-0.06626 (19)	0.8244 (5)	0.0399 (9)
C6	0.3331 (4)	0.2368 (2)	0.9858 (5)	0.0538 (11)
C5	0.4016 (4)	0.2956 (2)	0.9518 (5)	0.0492 (10)
C4	0.5283 (4)	0.27538 (18)	0.8823 (5)	0.0453 (9)
C12	1.0639 (4)	-0.1706 (2)	0.6295 (6)	0.0521 (11)
C9	0.8308 (4)	-0.0782 (2)	0.2963 (6)	0.0530 (11)
C14	1.0479 (4)	-0.1136 (2)	0.8953 (6)	0.0526 (11)
C13	1.1034 (4)	-0.1664 (2)	0.7981 (6)	0.0564 (11)
H15	0.918 (3)	-0.0323 (14)	0.890 (4)	0.024 (8)*
H4	0.602 (3)	0.3026 (16)	0.844 (4)	0.040 (9)*
H10	0.963 (3)	-0.1650 (19)	0.306 (5)	0.055 (10)*
H12	1.106 (3)	-0.2074 (18)	0.560 (4)	0.055 (10)*
H6	0.242 (4)	0.228 (2)	1.031 (5)	0.072 (13)*
H8	0.709 (3)	0.0104 (16)	0.340 (4)	0.039 (9)*
H9	0.810 (3)	-0.0785 (16)	0.182 (5)	0.039 (10)*
H2	0.775 (4)	0.078 (2)	0.645 (5)	0.063 (12)*
H13	1.175 (4)	-0.197 (2)	0.860 (5)	0.081 (14)*
H14	1.073 (4)	-0.1106 (19)	1.015 (5)	0.062 (12)*
H1	0.531 (5)	0.072 (2)	0.913 (6)	0.092 (16)*
Н5	0.374 (4)	0.342 (2)	0.977 (6)	0.090 (14)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0644 (6)	0.0296 (4)	0.0675 (8)	-0.0031 (4)	0.0355 (5)	-0.0018 (5)
01	0.0483 (14)	0.0326 (12)	0.0632 (18)	-0.0007 (10)	0.0198 (13)	0.0038 (12)
O2	0.0541 (14)	0.0330 (12)	0.067 (2)	0.0051 (11)	0.0224 (14)	0.0050 (13)
N1	0.0461 (17)	0.0264 (14)	0.051 (2)	0.0024 (13)	0.0188 (16)	0.0012 (14)
N2	0.0428 (16)	0.0303 (16)	0.0431 (19)	0.0004 (13)	0.0125 (14)	0.0014 (14)

supplementary materials

C7	0.0360 (17)	0.0391 (18)	0.027 (2)	-0.0058 (15)	0.0110 (15)	-0.0021 (16)
C11	0.0380 (17)	0.0396 (19)	0.038 (2)	-0.0075 (15)	0.0171 (17)	-0.0070 (17)
C2	0.0413 (18)	0.0301 (17)	0.036 (2)	0.0038 (14)	0.0104 (16)	0.0026 (16)
C8	0.041 (2)	0.055 (2)	0.037 (2)	-0.0042 (18)	0.0065 (18)	0.010 (2)
C16	0.0343 (17)	0.0330 (18)	0.035 (2)	-0.0036 (14)	0.0121 (16)	-0.0021 (15)
C1	0.0386 (18)	0.0311 (17)	0.033 (2)	0.0011 (14)	0.0004 (17)	0.0025 (16)
C3	0.0398 (18)	0.0315 (17)	0.032 (2)	0.0021 (14)	0.0036 (16)	0.0020 (16)
C10	0.050 (2)	0.048 (2)	0.045 (3)	-0.0065 (19)	0.022 (2)	-0.012 (2)
C15	0.045 (2)	0.043 (2)	0.033 (2)	0.0055 (17)	0.0101 (17)	-0.0038 (18)
C6	0.057 (2)	0.052 (2)	0.055 (3)	0.017 (2)	0.021 (2)	0.003 (2)
C5	0.070 (3)	0.037 (2)	0.042 (3)	0.015 (2)	0.009 (2)	-0.0001 (19)
C4	0.054 (2)	0.036 (2)	0.047 (3)	0.0026 (17)	0.009 (2)	0.0019 (19)
C12	0.053 (2)	0.042 (2)	0.064 (3)	0.0095 (18)	0.021 (2)	-0.009 (2)
C9	0.060 (3)	0.076 (3)	0.025 (2)	-0.021 (2)	0.014 (2)	-0.012 (2)
C14	0.057 (2)	0.066 (3)	0.035 (3)	0.009 (2)	0.004 (2)	0.004 (2)
C13	0.060 (3)	0.057 (2)	0.053 (3)	0.016 (2)	0.007 (2)	0.007 (2)

Geometric parameters (Å, °)

S1—C2	1.663 (3)	C1—C3	1.453 (4)
01—C1	1.232 (4)	C3—C4	1.350 (4)
O2—C6	1.362 (4)	C10—C9	1.364 (6)
O2—C3	1.368 (4)	C10—H10	0.99 (4)
N1-C1	1.375 (4)	C15—C14	1.362 (5)
N1—C2	1.391 (4)	C15—H15	0.90 (3)
N1—H1	0.91 (4)	C6—C5	1.331 (5)
N2—C2	1.346 (4)	С6—Н6	0.97 (4)
N2—C7	1.435 (4)	C5—C4	1.408 (5)
N2—H2	0.86 (4)	С5—Н5	0.96 (4)
С7—С8	1.364 (5)	C4—H4	0.93 (3)
C7—C16	1.412 (4)	C12—C13	1.351 (6)
C11—C10	1.410 (5)	C12—H12	1.00 (3)
C11—C12	1.420 (5)	С9—Н9	0.90 (3)
C11—C16	1.424 (4)	C14—C13	1.393 (6)
С8—С9	1.406 (5)	C14—H14	0.95 (4)
С8—Н8	0.98 (3)	C13—H13	0.99 (4)
C16—C15	1.430 (5)		
С6—О2—С3	106.8 (3)	C9—C10—C11	120.5 (4)
C1—N1—C2	128.8 (3)	C9—C10—H10	122 (2)
C1—N1—H1	122 (3)	C11—C10—H10	118 (2)
C2—N1—H1	109 (3)	C14—C15—C16	120.6 (4)
C2—N2—C7	123.0 (3)	C14—C15—H15	119.9 (18)
C2—N2—H2	115 (2)	C16—C15—H15	119.5 (18)
C7—N2—H2	121 (3)	C5—C6—O2	110.3 (3)
C8—C7—C16	120.4 (3)	С5—С6—Н6	133 (2)
C8—C7—N2	119.4 (3)	O2—C6—H6	117 (2)
C16—C7—N2	120.1 (3)	C6—C5—C4	106.7 (3)
C10-C11-C12	122.0 (3)	C6—C5—H5	127 (3)
C10-C11-C16	119.2 (3)	C4—C5—H5	126 (3)

C12—C11—C16	118.8 (3)	C3—C4—C5	107.2 (3)
N2—C2—N1	116.9 (3)	C3—C4—H4	122.5 (19)
N2—C2—S1	123.6 (2)	C5—C4—H4	130.3 (19)
N1—C2—S1	119.5 (2)	C13—C12—C11	121.5 (4)
С7—С8—С9	120.7 (4)	C13—C12—H12	119.6 (19)
С7—С8—Н8	118.4 (19)	C11—C12—H12	119 (2)
С9—С8—Н8	120.9 (19)	C10—C9—C8	120.4 (4)
C7—C16—C11	118.9 (3)	С10—С9—Н9	120 (2)
C7—C16—C15	123.4 (3)	С8—С9—Н9	119 (2)
C11—C16—C15	117.8 (3)	C15—C14—C13	121.3 (4)
O1—C1—N1	123.1 (3)	C15-C14-H14	118 (2)
O1—C1—C3	122.0 (3)	C13—C14—H14	121 (2)
N1—C1—C3	114.9 (3)	C12-C13-C14	120.0 (4)
C4—C3—O2	108.9 (3)	С12—С13—Н13	125 (2)
C4—C3—C1	133.0 (3)	C14—C13—H13	115 (2)
O2—C3—C1	117.9 (3)		
C2—N2—C7—C8	103.8 (4)	O1—C1—C3—C4	-1.5 (6)
C2—N2—C7—C16	-78.5 (4)	N1—C1—C3—C4	179.6 (4)
C7—N2—C2—N1	-173.3 (3)	O1—C1—C3—O2	173.3 (3)
C7—N2—C2—S1	6.3 (5)	N1—C1—C3—O2	-5.6 (5)
C1—N1—C2—N2	1.9 (5)	C12—C11—C10—C9	-179.0 (3)
C1—N1—C2—S1	-177.8 (3)	C16-C11-C10-C9	0.1 (5)
C16—C7—C8—C9	1.5 (5)	C7-C16-C15-C14	-179.1 (3)
N2—C7—C8—C9	179.1 (3)	C11-C16-C15-C14	0.8 (5)
C8—C7—C16—C11	-1.2 (4)	C3—O2—C6—C5	-0.1 (4)
N2-C7-C16-C11	-178.9 (3)	O2—C6—C5—C4	0.0 (5)
C8—C7—C16—C15	178.7 (3)	O2—C3—C4—C5	-0.2 (4)
N2-C7-C16-C15	1.1 (4)	C1—C3—C4—C5	174.9 (4)
C10-C11-C16-C7	0.4 (4)	C6—C5—C4—C3	0.1 (5)
C12—C11—C16—C7	179.6 (3)	C10-C11-C12-C13	179.4 (3)
C10-C11-C16-C15	-179.5 (3)	C16—C11—C12—C13	0.3 (5)
C12-C11-C16-C15	-0.4 (4)	C11—C10—C9—C8	0.1 (5)
C2—N1—C1—O1	-9.3 (6)	C7—C8—C9—C10	-0.9 (5)
C2—N1—C1—C3	169.6 (3)	C16—C15—C14—C13	-1.2 (6)
C6—O2—C3—C4	0.2 (4)	C11—C12—C13—C14	-0.5 (6)
C6—O2—C3—C1	-175.8 (3)	C15—C14—C13—C12	1.0 (6)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
N2—H2…O1	0.86 (4)	2.00 (4)	2.698 (3)	138 (3)	
N1—H1…S1 ⁱ	0.91 (5)	2.57 (5)	3.455 (3)	164 (4)	
C5—H5···Cg1 ⁱⁱ	0.96 (4)	2.85 (4)	3.654 (4)	143 (3)	
Symmetry codes: (i) $-x+1$, $-y$, $-z+2$; (ii) $-x+1$, $y+1/2$, $-z+3/2$.					

Fig. 1

Fig. 2