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Neural circuits and nicotinic acetylcholine receptors mediate
the cholinergic regulation of midbrain dopaminergic neurons
and nicotine dependence
Cheng Xiao1,2, Chun-yi Zhou1,2, Jin-hong Jiang1,2 and Cui Yin1,2

Midbrain dopaminergic (DA) neurons are governed by an endogenous cholinergic system, originated in the mesopontine nuclei.
Nicotine hijacks nicotinic acetylcholine receptors (nAChRs) and interferes with physiological function of the cholinergic system. In
this review, we describe the anatomical organization of the cholinergic system and the key nAChR subtypes mediating cholinergic
regulation of DA transmission and nicotine reward and dependence, in an effort to identify potential targets for smoking
intervention. Cholinergic modulation of midbrain DA systems relies on topographic organization of mesopontine cholinergic
projections, and activation of nAChRs in midbrain DA neurons. Previous studies have revealed that α4, α6, and β2 subunit-
containing nAChRs expressed in midbrain DA neurons and their terminals in the striatum regulate firings of midbrain DA neurons
and activity-dependent dopamine release in the striatum. These nAChRs undergo modification upon chronic nicotine exposure.
Clinical investigation has demonstrated that partial agonists of these receptors elevate the success rate of smoking cessation
relative to placebo. However, further investigations are required to refine the drug targets to mitigate unpleasant side-effects.
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INTRODUCTION
Cigarette smoking causes the most preventable diseases
worldwide [1]. Nicotine is a bioactive compound in cigarettes
that exerts rewarding effects by activating nicotinic acetylcho-
line receptors (nAChRs) in the central nervous system. Repetitive
nicotine intake modifies plasticity in the central nervous system,
leading to nicotine dependence [2]. Among the brain regions
responsive to nicotine, the midbrain contains dopaminergic
(DA) neurons, which have been implicated in a wide range of
physiological functions, including reward processing, reinforce-
ment learning, aversion avoidance, and motivation [3, 4].
Therefore, the midbrain is unique in that it is the target of
nicotine for the development and maintenance of nicotine
dependence.
Midbrain neurons are governed by the endogenous cholinergic

system, originating in the mesopontine nuclei [5–8]. Nicotine
hijacks nAChRs and interferes with the physiological function of
endogenous ACh, and thus identifying and characterizing the key
ACh receptors that mediate the cholinergic regulation of DA
transmission may advance our understanding of the circuit
mechanisms underlying nicotine dependence.
In this article, we review the topographic organization of the

cholinergic system that governs midbrain DA neurons, the
composition of ACh receptors that mediate the cholinergic
modulation of midbrain neurons, the subtypes of nAChRs

modified by chronic exposure to nicotine, and the subtypes of
nAChRs implicated in nicotine dependence.

TOPOGRAPHIC ORGANIZATION OF THE CHOLINERGIC SYSTEM
FOR THE REGULATION OF MIDBRAIN DA NEURONS
Midbrain DA neurons are distributed in the ventral tegmental area
(VTA) and the substantia nigra pars compacta (SNc), and they
receive dense cholinergic innervation from mesopontine choli-
nergic nuclei, including the pedunculopontine tegmental nucleus
(PPN) and the laterodorsal tegmental nucleus (LDT) [5–8]. Previous
studies have revealed that the mesopontine cholinergic innerva-
tion of midbrain DA neurons is topographically organized and
forms anatomical substrates for the independent regulation of
different behaviors by the mesopontine cholinergic system
[6, 8, 9].

Anatomy of the PPN and LDT
The PPN is located in the pons of the upper brainstem, and its
border can be demarcated by staining with an antibody against
choline acetyltransferase, a marker protein of cholinergic neurons
[6]. Its rostral-ventral end begins just below the red nucleus and
posterior to the SN, and its dorsal-posterior edge is in front of the
anterior parabrachial nucleus. The PPN is located medial to the
medial lemniscus and the superior cerebellar peduncle, lateral to
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the brachium conjunctivum, ventral to the retrorubral area of the
midbrain reticular nucleus and the cuneiform nucleus, and dorsal
to the pontine reticular nucleus and the parabrachial nucleus
(Fig. 1a, b, atlas.brain-map.org). Neurons in the PPN are hetero-
logous in density, size, and neurochemistry. The PPN is divided
into the rostral half, the pars dissipata (PPNd), and the caudal half,
the pars compacta (PPNc). The PPNd and PPNc mainly consist of
small GABAergic neurons and large cholinergic and glutamatergic
neurons, respectively [10]. It is noteworthy that the cholinergic
neurons also contain nitric oxide synthase, substance P and atrial
natriuretic peptide [10]. Similar to the cuneiform nucleus, the PPN
is a major component of the mesencephalic locomotor region
[11, 12]. The electrical stimulation of this region promotes
locomotion [11]. A recent elegant study utilizing a cell-specific
optogenetic technique revealed that PPN glutamatergic and
GABAergic neurons respecitvely facilitate and inhibit movement
in mice [12].
The LDT is medial-posterior to the PPN. It is embedded in the

pontine central gray and lies between the caudal part of the dorsal
raphe and the parabrachial nucleus and ventral to the caudal part
of the ventral periaqueductal gray (Fig. 1c, d, atlas.brain-map.org).
Similar to the PPN, the LDT contains cholinergic, glutamatergic
and GABAergic neurons [6, 7].

Cholinergic modulation of the midbrain
PPN and LDT cholinergic neurons release acetylcholine (ACh) into
the midbrain and regulate neuronal activity via activating nicotinic
and muscarinic ACh receptors (nAChRs and mAChRs) in these
neurons. nAChRs are ligand-gated cation channels, and each
individual receptor is composed of five subunits. Each subunit has

four transmembrane domains, of which the second transmem-
brane domain faces the pore of the channel. nAChR subunits in
the central nervous system include α2-7 and β2-4 [13, 14]. These
subunits form either homomeric pentamers (i.e., α7) or hetero-
meric pentamers (which include two or three α-subunits and three
or two β-subunits). mAChRs belong to a family of seven-
transmembrane G-protein coupled receptors that include five
members (M1–M5) [15]. M1, M3, and M5 receptors are coupled
with Gq. M2 and M4 receptors are coupled with Gi and inhibit
adenosine monophosphate cyclase, potassium channels, and
calcium channels, etc.

PPN and LDT cholinergic neurons regulate SNc and VTA neurons
by different patterns
The cholinergic neurons in the PPN and LDT regulate both SNc
and VTA neurons through activating acetylcholine receptors in
these neurons [8]. Combining optogenetic and brain slice patch-
clamp techniques, Xiao et al. [8] demonstrated that 5–10 s of
optogenetic stimulation of cholinergic projections from the PPN
and LDT evokes inward currents and increases the firing rates in
both SNc and VTA neurons. The effects can be blocked by a
nAChR antagonist but not by antagonists of mAChRs and GABAA

receptors. Interestingly, in some midbrain neurons, blocking
AMPA and NMDA receptors significantly attenuates cholinergic
responses. These data suggest that the cholinergic responses are
mediated by nAChRs in the midbrain neurons and in the
glutamatergic terminals that synapse onto these midbrain
neurons. This finding is consistent with that of a previous
electrophysiological study in which the authors applied electrical
stimulation to the PPN and found that blocking nAChRs

Fig. 1 Anatomy of the pedunculopontine nucleus (PPN) and the lateral dorsal tegmental nucleus (LDT). a Coronal section containing the
pedunculopontine nucleus (PPN). b Parasagittal section containing the PPN. c Coronal section containing the LDT. d Parasagittal section
containing the LDT. CUN: cuneiform nucleus. DR: dorsal raphe. DTN: dorsal tegmental nucleus. mlf: medial longitudinal fascicle. MRN:
midbrain reticular nucleus. PAG: periaqueductal gray. PB: parabrachial nucleus (lc: lateral part, central lateral; ls: lateral part, superior lateral).
PCG: pontine central gray. PRNc: pontine reticular nucleus, caudal. PRNr: pontine reticular nucleus, rostral. RN: raphe nucleus. RR: retrorubral
area. Scp: superior cerebellar peduncle. SLD: sublaterodorsal nucleus. SNc: substantia nigra pars compacta. SNr: substantia nigra pars
reticulata. VTA: ventral tegmental area. Image credit: Allen Adult Mouse Brain Reference Atlas
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attenuated glutamatergic responses in the VTA [16] and the SNc
[17]. Using in vivo single-unit recordings from anesthetized rats,
Dautan et al. [5] applied optogenetic stimulation to cholinergic
neurons in the PPN and the LDT and observed the excitation of
VTA DA neurons, which are regulated by AChRs (the effect is
blocked by locally applied atropine and mecamylamine). Although
some PPN cholinergic neurons are glutamatergic or GABAergic
neurons [18] and corelease ACh with glutamate or GABA, using
optogenetic techniques to stimulate PPN cholinergic terminals in
the midbrain does not evoke the release of glutamate or GABA
from the terminals [5, 8], indicating that PPN cholinergic neurons
that contain ACh and glutamate or GABA do not project to the
midbrain. Viral vector-assisted retrograde neuronal tracing shows
that cholinergic neurons account for most PPN neurons that
project to the ventral SNc [8] but only a minority of LDT neurons
that project to the VTA [8]. Instead, most VTA-projecting LDT
neurons are glutamatergic [19]. Therefore, PPN and LDT choliner-
gic neurons may selectively innervate certain regions in the
midbrain.

Topographic organization of PPN and LDT cholinergic projections
to the SNc and VTA
PPN and LDT cholinergic neuron projections to the SNc and VTA
display particular patterns of topographic organization [6]. In the
lateral-to-medial dimension, midbrain DA neurons are distributed
in the lateral SNc, medial SNc and VTA, which respectively receive
cholinergic afferents from the PPNd, PPNc, and LDT [6]. In general,
PPNd neurons mainly project to the lateral SNc; PPNc neurons
project to both the SNc and VTA, while LDT neurons mainly
project to the VTA (Fig. 2). The distribution of cholinergic neurons
that project to the substantia nigra (SN) shows a gradient along
the anterior-posterior axis of the PPN. SN-projecting cholinergic
neurons account for ~35%, 25%, and 15% of neurons in the
rostral, middle, and caudal thirds of the PPN [20], respectively, but
are rarely found in the LDT [21]. VTA-projecting neurons are
distributed throughout the PPN and LDT with higher densities in
the PPNc and LDT, in which cholinergic neurons are densely
distributed [21]. This topographic feature of mesopontine
cholinergic afferents to the midbrain is the anatomical basis for
the differential regulation of locomotion and reward behaviors.
PPNc cholinergic neurons that project to the SNc and VTA regulate
locomotion and reward [8], respectively. LDT cholinergic neurons
regulate both SNc and VTA neurons but regulate behaviors in a

pattern different from that by which PPN cholinergic neurons do
[8]: stimulating LDT cholinergic terminals in the VTA elicits reward-
related behaviors, while stimulating those in the SNc does not
promote locomotion.

PPN cholinergic projections differentially regulate the lateral and
medial SNc
The dorsal SNc is divided into medial and lateral portions by the
oculomotor nerve. DA neurons in these two portions are distinct
in electrophysiological characteristics, such as membrane poten-
tial, the size of hyperpolarization-activated cyclic nucleotide-gated
cation channels, and spontaneous firing rate [9]. This study
revealed that PPN cholinergic neurons form disparate types of
connections with medial and lateral SNc DA neurons. In the lateral
SNc, PPN cholinergic terminals release ACh and then activate
nAChRs on DA neurons and glutamatergic terminals, resulting in
excitation of DA neurons, similar to another study [8]. In the
medial SNc, PPN cholinergic terminals release ACh (activating
nAChRs on DA neurons and GABAergic terminals) or corelease
GABA (activating nAChRs and GABAA receptors on DA neurons),
leading to inhibition of DA neurons. At the behavioral level, the
stimulation of PPN cholinergic terminals in the lateral and medial
SNc enhances and inhibits locomotion, respectively. This is the
first study to unambiguously demonstrate that some mesopontine
cholinergic neurons corelease ACh and GABA and are critically
implicated in the regulation of downstream neurons and related
behaviors.
Estakhr et al. [9] demonstrated the corelease of ACh and GABA

from PPN cholinergic terminals in the SNc of ChAT-Cre mice,
which is different from what was shown by another study using
ChAT-Cre rats [8]. In that study, AAV5 was used to limit the
transfection area, and only 50%–60% of cholinergic neurons in the
PPNc were successfully transduced with channelrhodopsin [8]. It
has been shown that the PPNc contains fewer GABAergic neurons
than the PPNd [10]. Therefore, the different results between these
two similar optogenetic studies may have resulted from anatomi-
cal variation between species or differences in the transduction
efficiency of viral vectors or the locations of the optogenetically
labeled neurons.
Note that the properties of PPN-LDT cholinergic projections to

the midbrain differ from those of medial habenular (MHb)
cholinergic projections to the interpedunculopontine nucleus
(IPN). Habenular cholinergic neurons corelease ACh and glutamate
and stimulate IPN neurons by activating both glutamate receptors
and nAChRs [22]. This supports previous histological studies
showing that a large proportion of MHb neurons produce ACh
and glutamate [23].

ACETYLCHOLINE RECEPTOR SUBTYPES MEDIATE THE
CHOLINERGIC MODULATION OF THE MIDBRAIN
The stimulation of cholinergic afferents results in multiphasic
alterations in neuronal firing in vivo [24–27]. Stimulating PPN
neurons with kainate increases the firing rate of DA neurons in the
ipsilateral substantia nigra by activating nAChRs [27]. Foster and
Blaha applied 35 Hz electrical stimulation to the LDT and PPN every
other second for 1min and recorded triphasic alterations (the first
increase, second decrease, and third sustained elevation) in
dopamine levels in the nucleus accumbens (NAcc) and the caudate
putamen (CPu), indicating that stimulating these cholinergic nuclei
modulates midbrain DA neurons [25, 26]. Pharmacological
evidence has revealed that these responses are, respectively,
mediated by nAChRs in the VTA/SN, mAChRs in the LDT/PPN, and
mAChRs in the VTA/SN. Therefore, nAChRs and mAChRs in the
VTA/SN mediate the fast and slow excitation of VTA/SN neurons,
respectively, following stimulation of the PPN and LDT. It is
noteworthy that PPN and LDT cholinergic projections not only
regulate midbrain DA neurons but are also modulated by nicotine.

Fig. 2 Topographic organization of the midbrain cholinergic system.
The rostral and caudal parts of the PPN project to the lateral SNc
and medial SNc and lateral VTA, respectively. The LDT projects
preferentially to the VTA rather than the medial SNc. Blue represents
DA neurons, while cyan and green represent cholinergic neurons in
the LDT and PPN, respectively. In each individual nucleus, the color
gradually becomes lighter from the medial to the lateral portion
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In the PPN and LDT, nicotine activates nAChRs in non-cholinergic
neurons and indirectly modulates cholinergic neurons [28]. This
circuitry contributes to nicotine reinforcement learning because
lesions of PPN cholinergic neurons or the inhibition of nAChRs in
the PPN reduces nicotine self-administration in rats [29].

Subtypes of nAChRs in midbrain neurons
Accumulating evidence has demonstrated that M5-type mAChRs
in midbrain DA neurons mediate the sustained increase of
dopamine release in the striatum following the electrical
stimulation of the PPN [30–32]. In midbrain DA neurons, the
subtypes of nAChRs are more complicated than those of mAChRs.
Smoking-relevant concentrations of nicotine activate nAChRs,
increase the firing rate of DA neurons in the VTA [33–35] and SNc
[36–38], and evoke prolonged irregular firing in these neurons
[38]. The excitation of VTA DA neurons is much stronger than that
of SNc DA neurons [36, 38], suggesting that nAChR subtypes in
VTA and SNc DA neurons and the neural circuitry in the VTA and
SNc may be different.

Expression of nAChR subtypes in midbrain neurons. Using double-
labeling in situ hybridization, Azam et al. [39] identified nAChR
subunit messenger RNAs (mRNAs) expressed in SN and VTA DA
neurons. They found that these DA neurons contain α2-7 and β2-4
subunits. Specifically, almost all SNc and VTA DA neurons contain
α2, α4, α5, α6, β2, and β3 nAChR mRNAs; some also contain α3 and
α7 mRNAs and few neurons contain β4 mRNA. In the SN, α4, β2,
α7, and β4 mRNAs are also detected in non-DA neurons. The
results are consistent with those of another study showing that 6-
OHDA-induced lesions in SNc DA neurons eliminate α3, α5, α6,
and β4 subunit mRNAs but only reduce the levels of α4, α7, β2,
and β3 subunit mRNAs in the SN. Thus, α3, α5, α6, and β4 subunits
are selectively expressed in SNc DA neurons, while α4, α7, β2, and
β3 subunits consist of major nAChR subtypes in both DA and non-
DA neurons [40]. The selective expression of α3, α5, α6, and
β3 subunits in midbrain DA neurons has also been supported by
many other studies [41–45].

Functional nAChRs in midbrain DA neurons. To understand how
nAChR subunits integrate and form functional receptors to
regulate midbrain DA neurons, many studies have utilized
ex vivo patch-clamp recordings to define ACh responses in
midbrain DA neurons with drugs selective for nAChR subtypes and
with mouse lines having genetically modified nAChR subunits.
These studies have delineated four types of ACh responses in

midbrain DA neurons [46–49]. The first type is sensitive to dihydro-
β-erythroidine, an antagonist of nAChRs containing α4β2 subunits.
The second type is mediated by α7-containing nAChRs and
blocked by methyllycaconitine or α-bungarotoxin. The third type
is the combination of the first and second types. The fourth type is
sensitive to low concentrations of mecamylamine, which prefer-
entially blocks α3β4-containing nAChRs.
α4β2- and α7-containing nAChRs may differ between VTA and

SNc DA neurons. Electrophysiological analysis of nAChR currents,
autoradiography of [125I]-α-bungarotoxin binding (specific for α7
nAChRs), and in situ hybridization have revealed that the major
components for ACh-evoked responses in midbrain DA neurons
are mediated by α4β2 nAChRs, and VTA DA neurons contain
higher levels of α7 nAChRs than SNc DA neurons [48, 50]. The
activation of α4β2 nAChRs with partial and full agonists promotes
the firing rate [51, 52] and facilitates burst firing [52] in VTA DA
neurons.
Klink et al. [47] coupled single-cell PCR with electrophysiological

recordings and further divided α4β2-containing nAChRs into two
subtypes: α4α5α6β2-containing nAChRs (sensitive to both
dihydro-β-erythroidine and α-conotoxin MII) and α4α5β2-
containing nAChRs (sensitive to dihydro-β-erythroidine, but not
to α-conotoxin MII). The presence of the α5 subunit facilitates the
assembly of α4 nAChRs, increases the levels of α4 subunit-
containing nAChRs by 60%, and slows down the desensitization of
these nAChRs in the VTA [53]. Conversely, a loss-of-function
mutation in the α5 subunit or the knock-out of the α5 subunit
dramatically reduces the nicotine sensitivity of nAChRs, and in
these situations, higher levels of nicotine intake are required to
induce rewarding effects [54–59].
A bacterial artificial chromosome (BAC)-based genetic mod-

ification strategy was employed to introduce gain-of-function
α6 subunits (L9′S) into mice [43]. In this transgenic mouse line,
neurons expressing α6-containing nAChRs are selectively
stimulated by low concentrations of nicotine that are unable
to excite midbrain DA neurons in wild-type mice. Using this
mouse line, Drenan et al. [43] provided functional evidence
showing that midbrain DA neurons, but not GABAergic neurons,
possess α6-containing nAChRs. Another study demonstrated
that either blocking α6-containing nAChRs with α-conotoxin MII
[H9A;L15A] or knocking out the α4 subunit reduces the
prolonged excitation of VTA DA neurons induced by smoking-
relevant concentrations of nicotine (100–500 nM) [60]. Thus, the
α4 and α6 subunits are necessary for the nicotine-induced
excitation of VTA DA neurons.

Fig. 3 nAChR subtypes in midbrain neurons and their striatal terminals regulate rodent behaviors. nAChRs in midbrain DA (cyan) and
GABAergic (yellow) neurons integrate to modulate the activity of DA neurons. nAChRs in striatal DA terminals determine the activity-
dependent gating of dopamine release onto medium spiny neurons (yellow). Nicotine activates nAChRs in midbrain neurons and striatal DA
terminals to cause nicotine reward and reinforcement
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Therefore, the major nAChR subtypes that mediate the
nicotinic excitation of midbrain DA neurons contain α4α5α6β2
and α4α5β2 subunits (Fig. 3).

Stoichiometry of nAChRs in midbrain DA neurons. In addition to
subunit composition, the stoichiometry of nAChRs (i.e., the
number of α- and β-subunits, specifically, α(3)β(2) or α(2)β(3))
also affects receptor function. In in vitro heterologous expression
systems, the ratio of α4 to β2 nAChR subunits being transfected
was adjusted from 1:10 to 10:1 by researchers to shift the
stoichiometry from almost pure α4(2)β2(3) to almost pure α4(3)β2
(2) [61–63]. These studies revealed that, compared with α4(3)β2(2)
nAChRs, α4(2)β2(3) nAChRs have higher sensitivity to nicotinic
agonists (nicotine, ACh and TC-2559), lower sensitivity to
epibatidine and cytisine, smaller nicotinic and ACh currents, and
more evident desensitization upon nicotine exposure. Thus, high-
sensitivity nAChRs are those responsive to submicromolar
concentrations of nicotine obtained from cigarette smoking.

Subtypes of nAChRs in mesostriatal DA terminals
Like nAChRs in midbrain DA neuron somata, those in striatal DA
terminals contain α6 subunits [43, 64]. In the striatum (including
the NAcc and the CPu), both α4α6β2β3 and α4α6β2 nAChRs are
detected [50, 64]. In β3 subunit knock-out mice, there are 76%
fewer α6 subunits in the striatum, and respectively 34% and 42%
fewer α3 and α6 subunits in the midbrain, than in wild-type mice,
indicating that β3 subunits increase the incorporation of
α6 subunits into α4β2-containing nAChRs [64]. The α-conotoxin
analog E11A (α-CtxMII-E11A) binds primarily to α6α4β2β3 and
α6β2β3 nAChRs in striatal DA terminals with a femtomolar and a
picomolar affinity, respectively [65]. Compared with VTA DA
neurons, SNc DA neurons are more susceptible to lesions by
neurotoxins such as MPTP and 6-OHDA [66]. The fact that
α6α4β2β3 nAChRs are more vulnerable to MPTP-induced lesions
than α6β2β3 nAChRs [65] supports the notion that α6α4β2β3
nAChRs, but not α6β2β3 nAChRs, are among the major nAChRs in
DA terminals originating from the SNc.
The magnitude of electrical stimulation-induced dopamine

release exhibits regional differences: it is larger in the ventral
striatum (the NAcc) than in the dorsal striatum (the CPu) [67–69].
Nicotine modulates dopamine release through two opposite
mechanisms. After a short period of exposure, nicotine activates
presynaptic nAChRs on DA terminals and enhances dopamine
release evoked by low-frequency stimulation (mimicking tonic
activity of DA neurons) in the striatum, whereas after longer
exposure, nicotine desensitizes nAChRs and reduces dopamine
release evoked by single stimulation, but amplifies dopamine
release evoked by high-frequency (mimicking burst/phasic firing)
electrical stimulation [69, 70]. This contrast suggests that the
desensitization of nAChRs in DA terminals may play important
roles in nicotine reinforcement.
It has been demonstrated that α4α6β2 nAChRs and α4(non-α6)

β2 nAChRs are major receptors that, respectively, mediate the
nicotinic regulation of dopamine release into the NAcc and the
CPu [67, 71]. However, an assay of α-conotoxin analog E11A (α-
CtxMII-E11A) binding [65] showed that there are α6α4β2β3
nAChRs in DA terminals in the CPu. Further investigations are
warranted to address why α6α4β2β3 nAChRs significantly regulate
dopamine release in the NAcc, but not in the CPu.

CHRONIC NICOTINE UPREGULATES NACHR SUBUNITS IN BOTH
NUMBER AND FUNCTION
Acute exposure to nicotine activates nAChRs, while chronic
nicotine exposure modifies nAChRs, conferring various physiolo-
gical outcomes. Chronic nicotine exposure regimens include
continuous nicotine administration [72–74], repeated intermittent
exposure [75], self-administration [76], and yoked-nicotine

administration [74]. To evaluate the effects of chronic nicotine
on nAChRs, the levels of nAChRs were quantified with an
epibatidine/nicotine binding assay [74, 75, 77] and by studying
the levels of fluorescent protein-tagged nAChR subunits [72, 76].
Under different exposure paradigms, chronic nicotine similarly
upregulates nAChRs, but with selectivity for nAChR subtypes, the
stoichiometry of nAChRs, cell types, and cell compartments
[72, 73, 78, 79].

Chronic nicotine increases the levels of nAChR subunits
To enable the visualization and quantification of nAChRs contain-
ing α4 subunits in mice and to examine the dynamic alteration of
these receptors during nicotine addiction and in different
developmental stages, Nashmi et al. [72, 78] developed knock-in
mice in which the α4 nAChR subunit is replaced with normally
functioning and fluorescently tagged subunits (α4-eYFP). They
found that chronic nicotine did not change α4-containing nAChRs
in midbrain DA neurons but upregulated α4-containing nAChRs in
midbrain GABAergic neurons and in the dorsal striatum [72]. Using
the same mouse line, Renda et al. [76] exposed mice of different
ages to a two-bottle choice oral nicotine self-administration
paradigm for 5 days. They found that the amount of nicotine self-
administered was significantly higher in 44-day-old and 54–60-
day-old mice than in 66–86-day-old mice and that it showed a
strong-positive correlation with the levels of α4-eYFP [76].
In comparison with α4β2 nAChRs, α6β2, α3β2, and α7 nAChRs

are less sensitive in terms of being upregulated by chronic
nicotine [77, 80, 81]. Although α5 subunits facilitate the assembly
of α4β2 nAChRs, they attenuate the chronic nicotine-induced
upregulation of α4β2 nAChRs [82]. In striatal DA terminals, α6β2-
containing nAChRs are downregulated by chronic exposure to
nicotine at a concentration threefold lower than that required to
upregulate α4β2-containing nAChRs [83].

Chronic nicotine also alters the stoichiometry of nAChRs
Several studies have revealed that chronic nicotine treatment
enhances cationic currents evoked by 1 μM nicotine or 3–30 μM
ACh in SNr GABAergic neurons but not in SNc DA neurons [72, 73].
This finding suggests that chronic nicotine can bias the
stoichiometry of nAChRs to high-sensitivity (α(2)β(3)) ones. This
notion is also consistent with previous in vitro studies showing
that nicotine more efficiently upregulates α4(2)β2(3) nAChRs than
α4(3)β2(2) nAChRs [61–63]. The effects of chronic nicotine
treatment on the biophysical properties of nAChRs are contro-
versial. Buisson and Bertrand [61] showed that α4(2)β2(3) nAChRs
exhibit larger single-channel conductance and slower desensitiza-
tion kinetics, but Lopez-Hernandez et al. [62] showed that α4(2)β2
(3) nAChRs mediate smaller currents and display more evident
desensitization upon acute nicotine exposure.
Gain-of-function α4 (L9′S) subunits were transduced into mouse

VTA GABAergic neurons to directly enhance α4-containing nAChR
function in these neurons, mimicking the chronic nicotine effect
(upregulating nAChRs in number and sensitivity) [84]. This strategy
increased the sensitivity of nAChRs to nicotine in GABAergic
neurons, and conditioned place preference was induced by low
concentrations of nicotine in these mice [84]. The results suggest
that the cell-type selective upregulation of α4-containing nAChRs
by chronic nicotine can promote nicotine-seeking behaviors.

NACHR SUBTYPES ARE INVOLVED IN NICOTINE DEPENDENCE
Nicotine dependence is a chronically relapsing behavioral disorder
with typical manifestations of drug addiction, such as compulsive
cravings for nicotine, a loss of control to limit nicotine intake, and
withdrawal-like symptoms after access to nicotine is prevented
[2, 85]. The rewarding and reinforcing effects of nicotine involve
midbrain neurons and can be measured with nicotine-conditioned
place preference and nicotine self-administration [2, 85].
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Withdrawal symptoms after nicotine abstinence are regulated by
the extended amygdala and MHb-IPN pathway [85, 86]. Accumu-
lating evidence has shown that different subtypes of nAChRs play
distinct roles in the effects of nicotine.

α4 nAChRs
A nicotine-conditioned place preference (CPP) paradigm was used
in two genetic mouse lines, one lacking the α4 subunit (α4 knock-
out) and one carrying a gain-of-function mutation in the
α4 subunit (α4 L9′A) [87]. The knock-out of α4 nAChRs eliminated
responses to smoking-relevant concentrations of nicotine in VTA
neurons, while α4 L9′A-containing nAChRs enabled the excitation
of VTA neurons by nicotine at concentrations much lower than
those achieved by cigarette smoking [87]. Consistently, the
administration of nicotine at the concentration that establishes
CPP in wild-type mice did not establish CPP in α4 knock-out mice,
but nicotine induced CPP in α4 (L9′A) mice at a much lower
concentration [87]. As the nAChRs of these mice are modified
throughout the entire brain, the results may be inadequate to
conclude that the contributing α4 nAChRs are in midbrain DA
neurons. Conditionally deleting α4 nAChRs in the ventral midbrain
using a viral vector-assisted Cre/loxP approach, Peng et al. [88]
revealed that mice lacking α4 nAChRs in the ventral midbrain
consumed more nicotine but did not exhibit nicotine CPP. These
results seem contradictory, but the authors argue that the lack of
α4 nAChRs may attenuate nicotine-induced aversive effects but
increase the amount of nicotine required to stimulate the reward
system. McGranahan et al. [89] restricted the genetic deletion of
α4 subunits to DA neurons in mice without perturbing α4 nAChRs
in GABAergic neurons. This manipulation eliminated nicotine CPP.
The results further demonstrated that α4 nAChRs in DA neurons
are necessary for the development of nicotine-seeking behavior.

β2 nAChRs
α4 and β2 subunits form the major nAChR subtype in the
midbrain and mediate the reinforcing effects of nicotine [46–49].
The genetic modification of the β2 subunit has similar effects as
that of the α4 subunit. It has been demonstrated that β2 nAChRs
are necessary to mediate nicotine responses in midbrain neurons,
and knocking out these nAChRs dramatically reduces nicotine self-
administration [90]. The re-expression of the β2 subunit in VTA
neurons of β2 subunit knock-out mice restores nicotine-induced
responses, including the excitation of VTA DA neurons, an increase
in dopamine release in the NAcc, and nicotine self-administration
[91, 92].
Several mechanisms may underlie the nicotine-induced stimu-

lation of VTA DA neurons [35, 87, 90, 92–94]. First, nicotine directly
activates nAChRs on DA neurons. Second, nicotine desensitizes
nAChRs on local GABAergic neurons, leading to the disinhibition
of DA neurons. Third, nicotine activates nAChRs in glutamatergic
terminals that synapse onto DA neurons to cause the sustained
excitation of DA neurons. An elegant study employed a cell-
specific viral-vector strategy to re-express the β2 subunit in either
VTA DA neurons, GABAergic neurons or both in β2 subunit knock-
out mice and revealed that, in this mouse line, nicotine
respectively excites, inhibits and enhances burst firing in VTA DA
neurons in vivo and correspondingly causes transient rewarding,
aversive, and reinforcing effects [95]. Their data suggest that the
induction of burst firing in VTA DA neurons might be a
prerequisite for the establishment of nicotine self-administration
and requires the activation of β2 nAChRs on both DA and
GABAergic neurons.

α4 and α6 nAChRs
In the VTA, the α6 subunit is selectively expressed in DA neurons
[41–45]. Exley et al. [96] demonstrated that the α4 and α6 subunits
play different roles in the reinforcing effect of nicotine. Their data
showed that nAChR α4 subunits are required to establish

intracranial nicotine self-administration and to induce burst firing
in VTA DA neurons, whereas both the α4 and α6 subunits are
involved in the regulation of activity-dependent dopamine release
in the NAcc. Therefore, α4 subunit-containing nAChRs in VTA DA
neuron somata and α4 and α6 subunit-containing nAChRs in DA
terminals in the NAcc control the activity of DA neurons and the
release of dopamine, respectively. These two processes may,
respectively, underlie nicotine self-administration and its long-
term maintenance [96].

α5-α3-β4 nAChRs
The genes that encode the α5, α3, and β4 nAChR subunits form a
cluster in chromosome region 15q25, and some allelic variations
in this gene cluster are risk factors for nicotine dependence
[97, 98]. A single-nucleotide polymorphism (SNP) in the α5 subunit
gene (CHRNA5) (rs16969968) increases the incidence of tobacco
dependence, heavy smoking, and the early onset of smoking
behaviors [97–100]. SNPs that have similar effects on nicotine
dependence include rs6495308, rs578776, and rs1051730 in the
α3 subunit gene (CHRNA3) [97, 101, 102] and rs1948 in the
β4 subunit gene (CHRNB4) [103]. Consistent with these epide-
miological studies, the knock-out of the α5 subunit increases
nicotine self-administration in mice [86]. Although α5, α3, and β4
nAChR subunits are expressed in some midbrain DA neurons, the
levels are much lower than those in the MHb and IPN [104].
Furthermore, the re-expression of the α5 subunit in the MHb-IPN
pathway in α5 knock-out mice reverses the enhancement of
nicotine self-administration [86]. Therefore, α5 nAChRs in the
MHb-IPN pathway play critical roles in nicotine intake.
Both systemic and intra-IPN administration of mecamylamine,

an antagonist of nAChRs, precipitates withdrawal symptoms in
nicotine-dependent animals, but not in α5 and α2 knock-out mice
[105], supporting the notion that α5 nAChRs in the MHb-IPN
pathway regulate the expression of withdrawal symptoms in
nicotine-dependent animals.

Table 1. Subtypes of nAChRs in midbrain dopaminergic system

Region Neurochemistry nAChR
subunits

nAChR
subtypes

Chronic nicotine

VTA DA neurons All have α2,
α4, α5,
α6, β2, β3

α4β2:
α4α5α6β2

No change

Some
have α3, α7

α7 No change

Few have β4 α3β4 No change

GABA neurons α4,
β2, β3, α7

α4β2 Upregulation

α7 No change

SNc DA neurons All have α2,
α4, α5,
α6, β2, β3

α4β2 No change

Some
have α3, α7

α4α5α6β2 No change

Few have β4 α7 No change

GABA neurons α4, β2,
β3, and α7

α4β2 Upregulation

α7 No change

NAcc DA terminals α4,
α6, β2, β3

α4α6β2 Downregulation

α6β2β3 Downregulation

CPu DA terminals α4, α5,
α6, β2, β3

α4α6β2β3 Downregulation

α4α6β2 Downregulation

α4α5(non-
α6)β2

Upregulation
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In conclusion, the cholinergic modulation of midbrain DA neurons
relies on the topographic organization of PPN and LDT cholinergic
projections (Fig. 2) and the activation of cholinergic receptors in
midbrain DA neurons and their terminals in the NAcc and CPu
(Fig. 3 and Table 1). nAChRs in midbrain DA neurons and
GABAergic neurons are involved in the regulation of firing rates
and patterns of DA neurons. In this process, the contributing
nAChRs in DA neurons may contain α4, β2, α6, and α7 subunits,
while those in GABAergic neurons express α4, β2, and α7 subunits.
It is noteworthy that α4β2 nAChRs in midbrain GABAergic neurons
have been revealed to play critical roles in the nicotine-induced
sustained enhancement of firing rates and bursting firing patterns.
The latter is essential for the development of nicotine self-
administration. On the other hand, nAChRs containing α4, β2,
α6 subunits on striatal DA terminals provide a gating mechanism
for the adjustment of activity-dependent dopamine release, which
is important for maintaining long-term nicotine intake. Therefore,
the α4, β2, α6 subunits mediate the effect of nicotine on reward
processing and reinforcement learning and are involved in
nicotine dependence.
Currently available drugs for smoking cessation include

nicotine, partial agonists of nAChRs (cytisine and varenicline),
and bupropion [106]. Partial agonists are used because they can
moderately activate nAChRs to obtain normal levels of dopamine
to reduce nicotine withdrawal symptoms, but the increase in
dopamine levels is insufficient to cause satisfaction as strong as
that induced by nicotine [107]. Among these drugs, varenicline, a
partial agonist of β2-containing nAChRs and a full agonist of α7-
and α3β4-containing nAChRs, has the highest success rate for
smoking cessation [106]. On the one hand, acute varenicline can
mildly activate α4β2- and α6β2-containing nAChRs, and α7
nAChRs, attenuating nicotine withdrawal symptoms and reducing
motivation for nicotine intake [108]. On the other hand, chronic
varenicline upregulates α4β2 nAChRs in a manner similar to that
of chronic nicotine, but it also upregulates α3β4 and α7 nAChRs
[109]. This pattern may mitigate dysfunction of the midbrain
circuit following the selective upregulation of α4β2 nAChRs in
GABAergic neurons by chronic nicotine.
Therefore, α4β2- and α6β2-containing nAChRs in the midbrain

DA system are effective targets for smoking cessation. However,
other subunits with relatively lower expression levels, such as the
α7, α3, α5, β3, and β4 subunits, should be considered in future
investigations because these subunits have been reported to
regulate the α4, α6, and β2 subunits. Novel drugs that are more
specific for nAChR subtypes should be designed to minimize the
unpleasant side-effects of currently available drugs for smoking
cessation, including nausea and depressed mood [1].
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