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Discoidin domain receptor tyrosine kinases (DDRs) are a class of receptor tyrosine
kinases (RTKs), and their dysregulation is associated with multiple diseases (including
cancer, chronic inflammatory conditions, and fibrosis). The DDR family members
(DDR1a-e and DDR2) are widely expressed, with predominant expression of DDR1
in epithelial cells and DDR2 in mesenchymal cells. Structurally, DDRs consist of
three regions (an extracellular ligand binding domain, a transmembrane domain,
and an intracellular region containing a kinase domain), with their kinase activity
induced by receptor-specific ligand binding. Collagen binding to DDRs stimulates DDR
phosphorylation activating kinase activity, signaling to MAPK, integrin, TGF-β, insulin
receptor, and Notch signaling pathways. Abnormal DDR expression is detected in
a range of solid tumors (including breast, ovarian, cervical liver, gastric, colorectal,
lung, and brain). During tumorigenesis, abnormal activation of DDRs leads to invasion
and metastasis, via dysregulation of cell adhesion, migration, proliferation, secretion
of cytokines, and extracellular matrix remodeling. Differential expression or mutation
of DDRs correlates with pathological classification, clinical characteristics, treatment
response, and prognosis. Here, we discuss the discovery, structural characteristics,
organizational distribution, and DDR-dependent signaling. Importantly, we highlight the
key role of DDRs in the development and progression of breast and ovarian cancer.

Keywords: discoidin domain receptor tyrosine kinases (DDR), receptor tyrosine kinase (RTK), protein tyrosine
kinases (PTK), breast, ovarian, cancer, treatment, ECM

INTRODUCTION

Breast and ovarian cancer are amongst the most common female malignancies, with a history of
breast cancer linked to a higher risk of ovarian cancer (Mahumud et al., 2019). Recent advances
in medical science, including earlier detection and targeted treatments, have significantly increased
survival in many cancers, including breast and ovarian (Matchett et al., 2017; Prakash et al., 2018;
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Siegel et al., 2020). The primary treatment of solid tumors is
surgical excision combined with other therapeutic approaches,
including systemic chemotherapy, radiation therapy and targeted
therapies (including immunotherapies and drugs targeting
disease specific mutations or proteins). However, further
improvements in treatment efficacy and specificity are needed (Li
et al., 2019; Momenimovahed et al., 2019). Targeted molecular
therapy is a promising strategy utilized to impede cancer
cell growth, invasion or metastasis by targeting the unique
genetic, proteomic or epigenetic profile of individual tumors.
The discovery, and understanding the mechanism of action,
of novel target molecules dysregulated in female malignancies
is central to the development of truly personalized cancer
treatments needed to improve patient survival (Bax et al., 2016;
Sapiezynski et al., 2016; Emens, 2018; Maennling et al., 2019).

Many novel therapeutics target extracellular molecules
dysregulated in tumors (e.g., the Her2 receptor in breast
cancer). This approach has the advantage of improved target
access for drugs, with the therapeutics not requiring cell
entry (Insua-Rodríguez and Oskarsson, 2016; Nakhjavani et al.,
2019). Importantly, cell to extracellular matrix (ECM) contact
(mediated by extracellular receptors) significantly regulates many
aspects of tumor cell behavior, including proliferation, apoptosis,
basement membrane invasion, and metastases (Marastoni et al.,
2008). As a major component of tissue ECM, collagen exhibits
disrupted architecture within the tumor microenvironment, and
binding of collagen to tumor cells triggers wide-ranging causal
effects on tumor development (Xu et al., 2019). Importantly,
the direct binding of collagen to tumor cells is mediated by
discoidin domain receptor tyrosine kinases (DDRs), a subfamily
of the receptor tyrosine kinases (RTKs), which are promising new
therapeutic molecular targets.

RECEPTOR TYROSINE KINASE FAMILY:
STRUCTURE AND CHARACTERISTICS

Protein tyrosine kinases (PTKs) are a class of protein kinases
which require tyrosine phosphorylation for activation (Ruckert
et al., 2019). Within the PTK superfamily, the RTK family are
single transmembrane proteins (with over 20 classes identified),
acting as both receptors and enzymes (Figure 1; Lemmon
and Schlessinger, 2010). PTKs function as signal transducers,
and as critical regulatory factors in many signaling pathways,
affecting cell cycle, cell migration, metabolism, survival, and
differentiation. RTKs include the DDR family, in addition to
insulin receptors, epidermal growth factor receptors (EGFRs),
platelet growth factor receptors (PGFRs), fibroblast growth
factor receptors (FGFRs), vascular endothelial growth factor
receptors, ephrin receptors, hepatocyte growth factor receptor,
nerve growth factor receptors, and colon carcinoma kinase
receptors (Lemmon and Schlessinger, 2010; Du and Lovly,
2018). RTKs have the same structural layout: the extracellular
domain (containing a ligand-binding site), the hydrophobic
alpha helix region (membrane spanning), and the intra-cellular
domain (containing the kinase domain) (Julien et al., 2013).
In cancer, many RTKs have been shown to play critical

roles in tumorigenesis, development, and metastasis (Figure 2;
Yamaoka et al., 2018; Ghosh et al., 2020).

DISCOIDIN DOMAIN RECEPTOR
TYROSINE KINASES

Within the RTKs the family of discoidin domain receptor
tyrosine kinases (DDRs) are non-integrated collagen receptors,
where the extracellular domain contains a discoidin-like domain
(or discoidin domain receptor). In mammals, there are two
subtypes of DDRs, DDR1 and DDR2, the only RTKs known
to interact with structural components of the ECM and in
which soluble growth factors do not activate them (Vogel et al.,
2006; Itoh, 2018). DDR1 and DDR2 function as ECM signal
transducers, binding to the ECM collagen, and initiating intra-
cellular signaling (Henriet et al., 2018). DDRs and their signaling
pathways are promising targets for the development of new
clinical treatments, particularly in cancers with altered DDR
expression or function (Gao et al., 2021).

Discoidin Domain Receptor Tyrosine
Kinase Subfamily Discovery
Discoidin domain receptor tyrosine kinase 1 and discoidin
domain receptor tyrosine kinase 2 contain a discoidin homology
(DS) domain in their extracellular regions. The DDR1 subfamily
is composed of five splice-variant isoforms (DDR1a-e) initially
discovered in a screen for tyrosine phosphorylation in breast
cancer cells (Johnson et al., 1993; Takai et al., 2018). The DDR2
subfamily (consisting of DDR2 alone) shares highly conserved
sequences with the DDR1 family. The DDRs were initially classed
as orphan receptors, until the discovery that many collagens
function as their ligands (Shrivastava et al., 1997; Vogel et al.,
1997). DDR1 is activated by binding of wide-ranging types of
collagen (including collagen I, IV, V, VI, and VIII), whereas DDR2
is exclusively activated by the fibrillar collagens (type I, III, and
type X) (Leitinger and Kwan, 2006).

Discoidin Domain Receptor Tyrosine
Kinase Protein Structure
The DDR1 gene (6p21.33) contains 17 exons, which generates
five DDR1 isoforms through alternative splicing. DDR1a-c are
full-length functional receptors, while DDR1d and DDR1e are
truncated receptors lacking kinase activity (Figure 3; Rammal
et al., 2016). The canonical DDR1 protein contains 8 extracellular
regions, 1 transmembrane region, 3 near membrane regions, and
5 tyrosine kinase catalytic regions (Moll et al., 2019). The best
studied DDR1 isoforms are DDR1a and DDR1b. Notably, DDR1a
is 876 amino acids (aa) long and has a 37 aa deletion in the
transmembrane (TM) region and a 6 aa deletion in the kinase
domain (KD) region (between exons 13 and 14) (compared to
DDR1c). In contrast, DDR1b has an additional 37 aa in the intra-
cellular juxtamembrane (IJXM) region. DDR1c is the longest
isoform (919 aa), containing both the additional 37 aa in the
IJXM, and an additional 6 aa in the kinase domain region. DDR1d
is 508 aa long and lacks exons 11 and 12 causing a frameshift
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FIGURE 1 | Receptor tyrosine kinase ligands (Human). A total of 19 distinct RTK families (including recent revision removing the now Ser/Thr receptor kinases
classified LMR1–3 family). Ligands for each RTK family are shown underneath in mature, secreted form. All membrane-tethered ligands are cleaved off the membrane
except for ephrins, which activate their cognate receptors in a juxtacrine fashion. The ligands are drawn with their N-terminus pointing away from the membrane.
Main structural domains are depicted in a cartoon form in their known oligomeric state except for Angiotensins, which may form higher-order oligomers in addition to
dimers. If applicable, domain labels are included as captions. Sizes of individual domains are not drawn to scale. Reprinted from Lemmon and Schlessinger (2010).

mutation that generates a stop codon and loss of the KD. DDR1e
is 767 aa long and lacks exons 11 and 12 and the first half of exon
10, generating an inactive KD. In addition, DDR1d and DDR1e
are inactive due to a lack of ATP binding sites, and currently have
not had a clear biological function assigned to them (Valiathan
et al., 2012). DDR1 can be cleaved (by an as yet undetermined
protease) into a 54 kb soluble alpha subunit located in the
extracellular region, and a 63 kb beta subunit anchored to the
membrane (Yeh et al., 2009). DDR1 is activated by recognizing
the GVMGVO peptide motif in fibrillar collagens (I, II, III,
and VIII), and non-fibrillar basement membrane collagen IV
(Xu et al., 2012). The DDR2 gene is located in human 1q23.3,
contains 19 exons and encodes a single transcript, and one 855
aa protein (Kim et al., 2017). The DDR2 juxtamembrane (JM)
domain is composed of extracellular JM region (approximately
30 aa) followed by large cytosolic JM regions of about 142 aa. The
KD is capped by a short C-terminal peptide of about 6 aa.

CELLULAR EXPRESSION AND
DISTRIBUTION

While the DDR1 protein is primarily expressed in epithelial cells,
expression is seen other cell types including the myelin sheath and

microglia, keratinocytes, large intestinal epithelia, lung epithelia,
breast epithelia, adrenal cortical cells, pancreatic ducts, and
thyroid follicles (Barker et al., 1995). Physiologically DDR1 plays
a key role in organogenesis, and in breast development (Moll
et al., 2019). DDR2 is predominantly expressed in connective
tissues of mesenchymal origin, with high expression also seen
in the skeletal and heart muscle, as well as kidney and lung
cells and immature dendritic cells (constitutive expression)
(Alves et al., 1995; Vogel, 1999; Lee et al., 2007). According
to the microenvironment, DDRs can form multiple subcellular
complexes, with diverse functions (Figure 4; Iwai et al., 2014;
Henriet et al., 2018; Agarwal et al., 2019).

DISCOIDIN DOMAIN RECEPTOR
TYROSINE KINASE 1 AND DISCOIDIN
DOMAIN RECEPTOR TYROSINE KINASE
2 MEDIATED SIGNALING CASCADES

Discoidin domain receptor tyrosine kinase 1 and discoidin
domain receptor tyrosine kinase 2 are non-integrin receptors
acting as sensors of the ECM (activated by fibrillar collagens),
mediating signaling which regulates many diverse cellular
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FIGURE 2 | Cell signaling pathways induced by receptor tyrosine kinases (RTK). Homo-/heterodimerization of RTKs are caused by their ligands in autocrine or
paracrine fashion. The dimerized receptors can initiate signal transduction cascades involved in cell survival, proliferation, motility, and angiogenesis e.g.,
phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR; RAS/RAF/mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK); Janus kinase
(JAK)/signal transducer and activator of transcription (STAT); and phospholipase Cγ (PLC)γ/protein kinase C (PKC). Examples of cross-talk between RTK signaling
and proteins associated with cell invasion [e.g., urokinase-type plasminogen activator (uPA), matrix metalloproteinase (MMP)s, focal adhesion kinase (FAK), and
phosphatase and tensin homolog deleted from chromosome 10 (PTEN)] are demonstrated. Red arrows and blue bars indicate activation and suppression,
respectively extracellular matrix (ECM). Reprinted from Ghosh et al. (2020).

processes (including proliferation, invasion, migration,
differentiation, cytokine secretion, ECM remodeling, and
embryonic development) (Figure 5; Orgel and Madhurapantula,
2019; Vanajothi et al., 2019; Bonfil et al., 2021). Dysregulated
DDR-mediated signaling is strongly associated with many
forms of cancer, and has been associated with other diseases
(including osteogenesis hypoplasia, and arthritis) (Carafoli and
Hohenester, 2013). Overviews of key DDR1 or DDR2-mediated
signaling cascades are shown in Figures 6, 7, respectively
(Payne and Huang, 2014; Jing et al., 2018).

Collagen-Mediated Discoidin Domain
Receptor Tyrosine Kinase 1 and
Discoidin Domain Receptor Tyrosine
Kinase 2 Signaling
Collagen stimulation of DDR1 leads to binding and activation
of Notch1 increasing cell survival, by promoting the activation
of transcription factors (Hcs1 and Hcy2) and the expression
of pro-survival genes (though γ-secretase cleavage of the
Notch1 intracellular domain, and nuclear localization)

(Chen L. Y. et al., 2019; Kim et al., 2019). Cell cycle regulated
signaling mediates Wnt-5a expression, which can act as an
upstream regulator of DDR1, promoting collagen-induced
DDR1 phosphorylation and activation, which alters cell adhesion
and migration (Dejmek et al., 2003, 2005). Collagen - has been
demonstrated to trigger DDR1-induced Pyk2 phosphorylation,
which induces apoptosis and inhibits epithelial to mesenchymal
transition (EMT) (Huang et al., 2016). Furthermore, DDRs have
been demonstrated to have a critical role in regulating keloid
collagen overproduction, regulating collagen-fibroblast signaling
(Jiang et al., 2009).

Additionally, DDRs are well known to differentially modulate
distinctive mitogen-activated Protein Kinase (MAPK) signaling
pathways, transducing extracellular signals and mediating
cellular responses to these extracellular stimuli. In mammary
epithelial cells and smooth muscle cells, DDR1 activates
extracellular signal-regulated protein kinases (ERK)1/2 following
extracellular stimulation (Peng et al., 2017). Conversely, in
mesangial cells, DDR1 has been shown to inhibit ERK1/2
activation (Moll et al., 2018). DDR1 can mediate downstream
signals via c-Jun N-terminal Kinases (JNK), as seen in pancreatic
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FIGURE 3 | The structure of DDRs. DDR1a, DDR1b, DDR1c, and DDR2 are enzymatic active receptors, and DDR1d and DDR1e are inactive kinase-deficient
receptors. DS, discoidin domain; DS-like, discoidin-like domain; EJXM, extracellular juxtamembrane region; TM, transmembrane segment; IJXM, intracellular
juxtamembrane region; KD, kinase domain; AA, Amino Acid. Reprinted from Rammal et al. (2016).

cancer cells (Zhu et al., 2019). Following DNA damage, p53
mediated DDR1 phosphorylation is involved in cell survival or
apoptosis decisions, through Ras-Raf-MAPK and Protein kinase
B (AKT) signaling (Ongusaha et al., 2003).

Overexpression of DDR1 promotes tumor cell proliferation
(including regulating tumor-infiltrating CD4 + and CD8 + T
cells), while silencing or knocking out DDR1 can reduce tumor
cell growth (Peretti et al., 2019). Overexpression of DDR1/2 in
cells expressing integrin α1β1 and α2β1 can enhance the level of
integrin activation-mediated cell adhesion (Xu et al., 2012). While
integrin β1 promotes cell differentiation by down-regulating
E-cadherin expression, DDR1 promotes differentiation by
increasing the stability of E-cadherin membrane proteins (Wang
et al., 2005). Furthermore, loss of either E-cadherin or DDR1 is
sufficient to promote increased cortical contractility, resulting in
the loss of cell-cell adhesion (Rhys et al., 2018). It has been shown
that DDR1 and integrin α2β1 can up-regulate N-cadherin by
interacting with transforming growth factor β-inducing protein
I (TGFβI), to promote the growth, invasion and metastasis
(Krohn et al., 2016).

Interestingly, expression of DDR1 can be regulated by
secretory pathway Ca2 + -ATPase (SPCA2) through collagen I
and miR-199B-5p (Sun et al., 2018; Wu et al., 2018). Studies
have found that in DDR1 knockout mice, collagen deposition
is reduced, and the stromal-vascular fraction (SVF) of adipose

tissue is impaired. SVF secretes the cytokine Interleukin-6 (IL-6)
in a DDR1-dependent manner, and SVF produced IL-6 increases
tumor cell invasion in vitro (Hansen et al., 2006).

Tumor growth requires invading cancer cells to acquire
mechanisms to penetrate a highly reactive collagen-rich stroma
which possess anti-proliferative and pro-apoptotic properties.
DDR binding to collagen in the microenvironment can regulate
both apoptosis and tissue remodeling, through modulating
the expression and activity of matrix metalloproteinases
(MMPs). Binding of stromal type I collagen to DDR1 on
tumor cells, triggers a signaling pathway culminating in the
transcriptional up-regulation of pro-apoptotic Bcl-2-interacting
killer (BIK), promoting cell growth suppression and central
mediator of chondrocyte markers type I collagen (COL1)-
induced apoptosis (Maquoi et al., 2012; Saby et al., 2019).
In addition, membrane-bound matrix metalloproteinase
membrane-type-1 matrix metalloproteinase (MT1-MMP) is
highly expressed in invasive cells, including fibroblasts and
invasive cancer cells, and promotes breast cancer tumorigenesis
by inhibiting the apoptosis induced by the collagen/DDR1/BIK
signaling axis (Liu et al., 2014). MT1-MMP acts through the
degradation of collagen fibers and/or cleavage of the DDR1
receptor (Assent et al., 2015). In addition, fibrillar collagen
binding to DDR2 mediates MT1-MMP overexpression in
fibroblasts (Majkowska et al., 2017). Knockdown of DDR2
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FIGURE 4 | Differential subcellular localization of DDRs in cells. Schematic representation illustrating different subcellular localizations of DDRs in cells associated
with their functions. (1) In A431 cells, DDR1 interacts with E- cadherin and the polarity complex Par3/Par6 in order to maintain cell/cell junctions. (2) In A375 cells,
DDR1 and DDR2 colocalize together with fibrillar collagen type I. (3) In A375 melanoma cells, on a collagen I matrix, DDR1 co-localizes with Tks5 (a marker of
invadosomes). DDR1 activation induces Tuba/Cdc42 pathway leading to linear invadosome formation. (4) In A375 melanoma migrating cells, both DDR1 and DDR2
co-localize with lamellipodia. Some pathways induced by DDR1 activation are represented in this schematic. Scale bar = 5 mM. Reprinted from Henriet et al. (2018).

inhibits collagen-induced MT1-MMP-dependent activation
of pro-MMP-2, and the resultant upregulation of MT1-MMP
expression (at both gene and protein levels).

After treatment with collagen and insulin, cells overexpressing
DDR2 demonstrated both increased DDR2 p-Tyr740 and total
tyrosine phosphorylation (Malcor et al., 2018). In osteoblasts
DDR2 can activate the transcription factor Runx2, via the p38
MAPK signaling pathway, regulating differentiation (Zhang et al.,
2015). Type I collagen activated DDR2 increases the stability
of the EMT driving factor SNAIL1, promoting invasion and
migration of breast cancer cells in vitro and metastasis in vivo
(Zhang et al., 2013). Furthermore, in triple negative breast cancer,
H-Ras promotes EMT by downregulation of DDR1 expression
via its transcriptional repressor of ZEB1 (Koh et al., 2015). In
thyroid papillary cancer cells DDR2 activates ERK, increasing the
stability of the EMT driving factor SNAIL1, reducing invasion
and distant metastasis (Liang et al., 2017).

Collagen-Independent Discoidin Domain
Receptor Tyrosine Kinase 1 and
Discoidin Domain Receptor Tyrosine
Kinase 2 Signaling
The DDRs do in fact have activity independent of collagen-
binding and receptor kinase activity, which can be stimulated
by integrin, TGF-β, and insulin receptors. This independent
activation can alter both cell adhesion, and differentiation

(Miller et al., 2017; Vella et al., 2019). Insulin receptor (IR-A) and
insulin-like growth factor (IGF-I) can bind directly with DDRs,
with IGF-I-DDR heterodimer activity independent of collagen
binding. Activation of insulin-like growth factor/insulin-like
growth factor receptor (IGF-I/IGF-IR) leads to up-regulation
of G-protein estrogen receptor (GPER) and DDR1 expression
(Avino et al., 2016). IGF-1R, IGF-1, and insulin-like growth
factor-2 (IGF-2) signaling through the PI3K/AKT/miR-199a-
5p pathway up-regulates DDR1 (Belfiore et al., 2018). DDR1
interacts with the Par3/Par6 cell polarity complex through the
carboxyl terminal PDZ binding motif, and thus controls actin
activity between cells (Hidalgo-Carcedo et al., 2011). While it
has been shown that DDR1 knockout reduces insulin receptor
expression (inhibiting proliferation and migration) (Vella et al.,
2017), the inverse is also true in that an increase in DDR1
protein expression can be induced through IGF-I overexpression
(Matà et al., 2016).

Discoidin Domain Receptor Tyrosine
Kinase Dysregulation in Cancer
Dysregulation of DDR1 and DDR2 has been observed in many
solid tumor types (including breast, ovarian, liver, gastric,
colorectal, lung, brain, cervical, hematological, head and neck,
melanoma, bladder, kidney, and prostate), and can be associated
with aggressive metastatic tumors (including breast and
ovarian) and a poor prognosis (Gadiya and Chakraborty, 2018;
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FIGURE 5 | Illustration of DDR activation by fibrillar collagens. Activated dimers are depicted with a yellow polygon on the intracellular kinase part of the dimer.
(A) The various possible conformations of the DDR1 dimer in active and inactive states. DDRs are activated upon binding with fibrillar collagens in the DS domain.
(I) An inactive DDR dimer. (II) Activated DDR dimer by composite binding. Here the collagen binding sites from each monomer create a “composite” binding site to
bind to collagen to activate the intracellular kinase. (III) Individual binding sites on each monomer may interact with different collagen monomers leading to activation.
The crosshatched collagen monomer illustrates that binding to both domains at the same time may or may not be necessary for activation (i.e., it is possible that
binding of a single collagen molecule to a single DS domain activates the entire complex). (IV) As alluded to in III, a single collagen molecule binds just one DS
domain. Illustrates the collagen molecular and DDR interaction. We present previous evidence of a collagen engagement on the binding site of a monomer leads to
DDR activation. II–IV represent possible means of activation. (B) A list of common intracellular targets and cellular cascades that result from DDR activation.
Phosphates are shown to demonstrate the kinase activity of the DDRs. The red text shows processes that are suppressed by DDR signaling, green text represents
processes that are promoted and the orange text represents processes that are either suppressed or promoted. Dashed lines indicate indirect activity and solid lines
show direct interaction and effects. DARPP-32, dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa; FAK, focal adhesion kinase; JAK-2, janus kinase 2;
NF-κB, nuclear factor kappa B; NICD, notch 1 intracellular domain; NMHC-II, non-muscle myosin IIA heavy chain; P13K phosphatidylinositol 3-kinase; Par3/Par6,
cell polarity regulators; PYK, protein tyrosine kinsase; ShcA, SH2 containing transforming protein A. Reprinted from Orgel and Madhurapantula (2019).

Yeh et al., 2019; Lafitte et al., 2020; Majo and Auguste, 2021). As
discussed above, DDR dysregulation leads to many alterations
which influence tumor development, pathology, and key clinical
characteristics (key altered clinicopathological features being
treatment response and prognosis) (Borza and Pozzi, 2014;

Mehta et al., 2021). DDR1 and DDR2 expression and
dysregulation, in both physiological (e.g., development)
and pathological conditions (including cancer, inflammation,
and fibrosis), is summarized and highlighted in Figure 8
(Borza and Pozzi, 2014). In the following sections we summarize
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FIGURE 6 | Discoidin domain receptor tyrosine kinase 1-associated signaling pathways. The mechanisms for the effect of ZEB1, COX-2, DARPP-32 and Wnt-5a on
the migration, survival, EMT, and invasion regulatory networks are illustrated. Solid lines indicate direct interactions or effects, whereas, dashed lines indicate indirect
interactions or effects through one or more intermediate steps. Pointed and flat arrows indicate activating and inhibiting effects, respectively. DDR1, discoidin domain
receptor 1; ZEB1, zinc finger E-box-binding homeobox 1; COX-2, cyclooxygenase-2; DARPP-32, dopamine- and cAMP-regulated neuronal phosphoprotein; EMT,
epithelial-to-mesenchymal transition; CD9, cluster of differentiation 9; NMHC-IIA, non-muscle myosin heavy chain-IIA; BIK, Bcl-interacting killer; NF-κB, nuclear
factor-κB; MEK, ERK activator kinase; ERK, extracellular signal-regulated kinase. Figure adapted and modified from Payne and Huang (2014) and Jing et al. (2018).

some of the key breast and ovarian cancer focused research
characterizing DDR1 and DDR2 dysregulation.

Discoidin Domain Receptor Tyrosine
Kinase 1 and Discoidin Domain Receptor
Tyrosine Kinase 2 in Breast Cancer
It has been shown that higher DDR1 protein expression
is associated with breast cancer, promoting proliferation by
suppressing antitumor immunity (Zhong et al., 2019). In the
triple-negative breast cancer subtype (TNBC, or basal breast
cancer) dysregulation of both DDR1 and DDR2 has been
associated with increased invasion, and a poorer prognosis
(Toy et al., 2015). In TNBC, collagen IV activated DDR1
induces increased cell surface expression of CD9, and secretion
of metalloproteinases MMP-2 and MMP-9 which promote
migration through the ECM (Castro-Sanchez et al., 2010,
2011). Also in TNBC, co-expression of DDR1 and Protein
phosphatase 1 regulatory subunit 1B (PPP1R1B, also known as
DARPP-32) inhibits tumor cell migration (Hansen et al., 2006).
Inhibition of DDR1 expression can significantly enhance the
chemosensitivity of breast cancer cells to genotoxic treatments
(Saby et al., 2019). Interestingly, DDR1 signaling has also been
shown to enhance chemoresistance of breast cancer cells via
NFκB-mediated expression of cyclooxygenase-2 (COX-2), and

downregulation of DDR1 significantly enhanced drug sensitivity
(Das et al., 2006).

Looking at associations with clinical breast cancer parameters,
DDR1 protein expression was not significantly associated with
either disease-free survival (DFS), or overall survival (OS)
(Ren et al., 2013). However, in postmenopausal breast cancer
patients, the specific DDR1 kinase domain mutation R776W does
correlate closely with a poor prognosis (Griffith et al., 2018).
The H-Ras pathway can cause mesenchymal-like phenotype
changes in breast epithelial cells, and H-Ras inhibits DDR1
expression through ZEB1, a transcriptional inhibitor of DDR1.
This H-Ras/ZEB1/DDR1 network interacts to promote tumor
progression (Koh et al., 2015).

Discoidin domain receptor Tyrosine Kinase 2 expression
in breast cancer was found to be six times higher than
in normal breast tissue, and importantly was a significant
independent predictor of both recurrence and prognosis
(Ren et al., 2013). Investigating DDR2 signaling pathways,
the collagen-dependent protease pappalysin-1 (PAPP-1)
plays a critical role in postpartum breast cancer, with
increased IGF signaling resulting from PAPP-1-mediated
degradation of IGFBP-4 and IGFBP-5, promoting DDR2
signaling (Slocum and Germain, 2019). Pregnancy-associated
plasma protein-A (PAPP-A), overexpressed in more than
70% of breast cancers, activates DDR2 converting postpartum
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FIGURE 7 | Depiction of signaling pathways activated downstream of DDR2. Binding of collagen to the extracellular domain of DDR2 triggers the
auto-phosphorylation of its cytoplasmic domain. This results in the recruitment of downstream adaptor proteins, kinases and phosphatases including SHC, NCK1,
SRC and SHP-2. As a consequence, a series of canonical signaling pathways are initiated including the Erk1/2 and PI3K cascades. Figure adapted and modified
from Payne and Huang (2014) and Jing et al. (2018).

anti-proliferative collagen into tumor-promoting collagen
(Slocum et al., 2019). DDR2 gene deletion in a breast cancer
mouse models has been shown to increase anti-PD-1 therapy
sensitivity, and the combination of anti-PD-1 and DDR2
tyrosinase inhibitor Dasatinib reduces tumor burden (Tu et al.,
2019). Another inhibitor WRG-28 regulates DDR2, targeting
the RTK extracellular domain, inhibiting the invasion of breast
cancer cell migration (Grither and Longmore, 2018). Heat
shock protein 47 (HSP47) can promote collagen maturation
and deposition, and HSP47 expression in breast cancer cells
enhances their invasive ability. Furthermore, HSP47 silencing
can reduce the stability of DDR2, and inhibit the migration
and invasion of (breast) cancer cells (Chen J. et al., 2019).
Breast Cancer-Associated Mesenchymal stem/multipotent
stromal Cells (BC-MSC) can promote metastasis by increasing
collagen deposition, with DDR2 up-regulation reported in
MSC’s and in metastatic cancers (Gonzalez et al., 2017). In
metastatic bone marrow mesenchymal hepatocytes DDR2
maintains the fibroblast phenotype, promotes collagen
deposition, which enhances cell migration and metastatic
capacity (Gonzalez et al., 2017). In stromal Cancer-Associated
Fibroblasts (CAFs), DDR2 promotes ECM and collagen fibrous
tissue deposition, and enhances tumor cell invasion and
metastasis (Corsa et al., 2016). Beclin-1 (a critical regulator of
autophagosome formation) regulates DDR2 expression, reducing

both DDR2 expression and pro-inflammatory mediator IL-1β in
breast cancer (Morikawa et al., 2015). It has been shown in breast
cancer that DDR2 expression is associated with hypoxia marker
HIF-1α expression, with DDR2 expression and phosphorylation
increased under intra-tumoral hypoxic conditions (Ren et al.,
2014). These findings implicate DDR2 in the development of
hypoxia-induced breast cancer, and metastatic development.

Discoidin Domain Receptor Tyrosine
Kinase 1 and Discoidin Domain Receptor
Tyrosine Kinase 2 in Ovarian Cancer
It has been shown that DDR1 (protein) is highly expressed in
serous ovarian cancers compared to normal ovarian epidermal
tissues, with DDR1 mainly expressed in epithelial ovarian
cancer (EOC) cells (Chung et al., 2017). In EOC, the protein
expression of DDR1, Claudin-3 (CLDN3) and epithelial cell
adhesion molecule (Ep-CAM) are all significantly up-regulated,
suggesting that this upregulation is an early driver event of EOC
(Heinzelmann-Schwarz et al., 2004). Furthermore, it has been
shown that DDR1 over-expression is closely related to patients’
disease-free survival (DFS), with significantly higher DDR1
protein expression observed in high-grade and advanced tumors
(Quan et al., 2011). In ovarian cancer tissues, expression of DDR1
is negatively correlated with the expression of miR-199a-3p,
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FIGURE 8 | Discoidin domain receptor tyrosine kinase expression and/or activation plays a role in both physiological (e.g., development) and pathological (e.g.,
cancer, inflammation, and fibrosis) conditions by controlling key cellular processes, including protease production, cytokine secretion, cell migration, immune cell
recruitment, and matrix production. Figure adapted and modified from Borza and Pozzi (2014).

where miR-199a-3p inhibits DDR1 overexpression, drastically
reducing the migration, invasiveness, and tumorigenicity of
ovarian cancer cells (Deng et al., 2017).

Discoidin domain receptor Tyrosine Kinase 2 is highly
expressed in ovarian cancer tissues and has been shown to
enhance the invasive ability of tumor cells (Zhao et al.,
2011). DDR2 upregulation was detected in 103 ovarian cancer
tissues, correlates with tumor stage and peritoneal metastasis,
and is an independent prognostic factor (Fan et al., 2016).
Immunohistochemical detection of DDR2 in high-grade serous
ovarian cancer (HGSOC) found DDR2 up-regulation in 14.10%
(11 of 78) of cases (Ramalho et al., 2019). Investigating DDR2
signaling, collagen XIα1 is an ECM small fibrillar collagen
regularly overexpressed in ovarian cancer (including cisplatin
resistance or recurrent ovarian cancer) (Quan et al., 2011).
Collagen XIα1 binding to both integrin α1β1 and DDR2 mediates
chemoresistance by activating signaling that inhibits cisplatin-
induced apoptosis in ovarian cancer cells (Rada et al., 2018).
DDR2 expression can be induced by EMT factor Twist 1,

promoting metastasis (Grither et al., 2018). Further supporting
a role for DDR2 in tumor development, knockdown of the
tumor invasion regulator N-Myc Downstream Regulated 1
(NDRG1) enhanced tumor cell adhesion, migration and invasion
activities (without affecting cell proliferation) and significantly
increasing DDR2 expression (in ovarian and cervical cell lines)
(Zhao et al., 2011).

CLINICAL DEVELOPMENTS OF
DISCOIDIN DOMAIN RECEPTOR
TYROSINE KINASE 1 and DISCOIDIN
DOMAIN RECEPTOR TYROSINE KINASE
2 TARGETED THERAPY IN CANCER

Interestingly, many DDR signaling pathways (including IGF-
DDR) can be used to treat chronic inflammatory diseases,
including cancer (Vella et al., 2019). While we have focused
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TABLE 1 | Clinical trials of Merestinib targeting breast cancer.

No Treatment
ways

Target NCT
number

Title Status Conditions Interventions Phase Study
design

Enrollment Study
Start

1 Monotherapy MET kinase
inhibitor,
anti-DDR1/2

NCT032
92536

Merestinib on
bone
metastases in
subjects with
breast cancer

Terminated Bone
metastases;
breast cancer

Drug:
Merestinib

Phase 1 (1) Allocation:
N/A; (2)
Intervention
model: Single
group
assignment;
(3) Masking:
None (open
label); (4)
Primary
purpose:
Treatment

2 January
11, 2018

2 Combination
therapy

MET kinase
inhibitor,
anti-DDR1/2

NCT027
91334

A study of
anti-PD-L1
checkpoint
antibody
(LY3300054)
alone and in
combination in
participants
with advanced
refractory solid
tumors

Active, not
recruiting

Solid tumor;
microsatellite
instability-high
(MSI-H) solid
tumor; cutaneous
melanoma;
pancreatic
cancer; breast
cancer (HR
+HER2-)

Drug:
LY3300054;
drug:
Ramucirumab;
drug:
Abemaciclib;
drug:
Merestinib;
drug:
LY3321367

Phase 1 (1) Allocation:
Non-
Randomized;
(2)
Intervention
model:
Parallel
assignment;
(3) Masking:
None (open
label); (4)
Primary
purpose:
Treatment

(1) Allocation:
Non-
Randomized;
(2)
Intervention
model:
Parallel
assignment;
(3) Masking:
None (open
label); (4)
Primary
purpose:
Treatment

June 29,
2016

here on DDR1 and DDR2 in breast and ovarian cancer, they
are increasingly important and relevant anti-cancer targets for
multiple tumor types (Lafitte et al., 2020; Bhanumathy et al.,
2021; Gao et al., 2021). Previously Merestinib (LY2801653;
inhibiting DDR1/2 and MET, MST1R, FLT3, AXL, MERTK,
TEK, ROS1, and MKNK1/2) has shown potent anti-tumor
activity in clinical trials against multiple advanced cancers
(Yan et al., 2013). However, there is only a single trial
(NCT03292536) directly evaluating the anti-tumor activity of
Merestinib against metastatic breast cancer (and none against
ovarian cancer) (Table 1). Additionally, currently only one other
trial has included HR + HER2- Breast Cancers in its study
design (NCT02791334).

CONCLUSION AND PERSPECTIVES

The current body of fundamental research demonstrating the
high expression of DDR1 and DDR2 in multiple female tumors
suggests that DDRs play a significant role in tumorigenesis and
regulate the occurrence and development of breast and ovarian
cancers, influencing chemotherapeutic resistance and survival
of tumor cells, and mediate cell invasion and metastases. As
highlighted by work in other tumour types, the use of DDR1
and DDR2 targeting compounds holds significant promise for
targeted anti-cancer treatment, as either mono or combinational
therapeutics. Further fundamental research exploring DDR1 and
DDR2 in breast and ovarian cancer is needed, to expand our
knowledge of mechanisms driving progression in these cancers. It
is anticipated that additional DDR1/2 targeted clinical trials will

further strengthen the clinical case for the use of targeted DDR
anti-cancer therapeutics, to improve outcomes for patients with
either breast cancer or ovarian cancer.
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