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first-principles study of 
phase transition, elastic and 
thermodynamic properties  
of ZnSe at high pressure
tao Yang1, Xuejun Zhu1, Junyi Ji2 & Jun Wang1*

The structural and elastic properties of ZnSe with B3 and B1 phases under different pressure have been 
investigated by the first principle method based on density functional theory. The obtained structural 
parameters of ZnSe in both B3 and B1 structures are in good agreement with the available values. The 
transition pressure of ZnSe from B3 to B1 was predicted as 14.85 GPa by using the enthalpy–pressure 
data, which is well in line with experimental result. According to the obtained elastic constants, the 
elastic properties such as bulk modulus, shear modulus, Young’s modulus, ductile/brittle behavior and 
elastic anisotropy as a function of pressure for polycrystalline of ZnSe are discussed in details. In the 
frame work of quasi-harmonic Debye model, the temperature and pressure dependencies of the Debye 
temperature and heat capacity of ZnSe are obtained and discussed in the wide ranges.

The II–VI semiconductor compounds have attracted extensively attention due to their remarkable physical prop-
erties1–4 and their numerous potential applications5,6. Edwards et al.7 firstly studied the pressure-induced struc-
tural phase transformations of II–VI group compounds. Since then, theoretical and experimental studies on 
the structural and physical behavior of II–VI materials under high pressure are investigated by several research 
groups.

ZnSe, a significant member of the II–VI semiconductor compounds, which is a light yellow solid compound 
with a band gap of 2.70 eV8. It is an excellent candidate for fabrication of visual displays and photodetectors, 
etc9–12. It is an essential prerequisite for material’s synthesis and application to investigate the fundamental physi-
cal properties of ZnSe. Therefore, a great deal of researches have been done on the optical13,14, structural2,15, elec-
tronic16,17, and thermodynamic18–20 properties of ZnSe at ambient pressure. According to the result of Edwards 
et al.7, there may be a phase transition for ZnSe with applied pressure. So several research groups studied on 
the high-pressure behavior of ZnSe and confirmed that it has some polymorphic structures with the pressure 
increase. Karzel et al.21 reported the polycrystalline ZnSe from the B3 phase to the B1 phase happens at 13.0 GPa 
which encouraged great interest for theorists studying of structural stability under elevated pressure. Smelyansky 
et al.22 reported the phase transition pressure data as 15 GPa from full-potential linear augmented plane wave 
(FP-LAPW). While Biering et al.23 calculated it as 12.94 GPa using the projector augmented wave (PAW) method. 
When the phase transition happens with the increasing pressure, the nature of crystal structure would be dif-
ferent. However, it is difficult to obtain the exact value of these properties under high pressure in experimen-
tal studies. But the fundamental physical properties at elevated pressure, are extraordinary significances for the 
condensed matter physics, which will contribute to the understanding of the nature of materials. Therefore, the 
theoretical study could be a powerful tool to acquaint the ZnSe under elevated pressure, owing to the advance 
in theoretical methods. However, to the best of my knowledge, there are only a few references investigating the 
elastic and thermodynamic properties of the B3-type ZnSe. Especially, the behaviors of elastic and thermody-
namic properties of the B1-type ZnSe are rarely considered under high pressure. In this work, we have focused on 
the structural phase transition and the elastic properties as a function of pressure for both B3 and B1 phases by 
using plane-wave pseudopotential density functional theory (DFT). Meanwhile, some detailed thermodynamic 
property at elevated pressure and temperature have been calculated through the quasi-harmonic Debye model24.
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theoretical Methods
The calculations in present work are performed using the pseudopotentials plane-wave approach in the frame 
of density functional theory (DFT) as implemented in Cambridge Serial Total Energy Package (CASTEP) 
code25,26. For structural calculations, the Perdew-wang-1991(PW91)27 formulation of the generalized gradient 
approximation (GGA) was chosen as the optimum exchange correlation of electrons. The Broyden–Fletcher–
Goldfarb–Shannon (BFGS) algorithm28, which provides a very efficient method to achieve the geometry with 
a minimum energy, was applied to relax the crystal structure to reach the ground state. In order to obtain an 
optimum geometric, the kinetic energy cutoff is set as 500 eV and k point separation in the Brillouin zone of the 
reciprocal space is 8 × 8 × 8 for both B3 and B1 phases. Pseudo atomic calculations of ZnSe are performed for 
Zn 3d104s2 and Se 4s24p4. The space group of B3 structure is F43m, the positions of the atoms Zn and Se are (0, 0, 
0) and (0.25, 0.25, 0.25). The space group of B1 structure is Fm3m, the Zn and Se atoms are located at (0, 0, 0) and 
(0.5, 0.5, 0.5), respectively. To achieve some reliable results, the self-consistent convergence of the total energy is 
less than 5.0×10−7 eV/atom.

Results and Discussion
Pressure-induced structural phase transition. For both B3 and B1 structures of ZnSe, a series of differ-
ent values of primitive cell volume are set to calculate the total energy. The calculated total energies as a function 
of volume for both structures of ZnSe are displayed in Fig. 1. According to the result shown in Fig. 1, it is clear to 
see that the ZnSe with B3 structure is a more stable phase. In order to obtain the equilibrium lattice constants a, 
the bulk modulus B0 and its pressure derivative B’

0, the total energy E vs. volume is fitted to the Birch-Murnaghan 
equation of states (EOS)29. The results are listed in Table 1, which are also compared with some other theoret-
ical and experimental results. The calculated values of lattice parameters are slight overestimated and the bulk 
modulus are little underestimated corresponding to the experimental data21. The overestimation in the lattice 
parameters and underestimation in the bulk modulus is a common feature with GGA30,31. However, the calculated 
values using GGA for both B3 and B1 phases agree well with the corresponding experimental value21 and some 
available theoretical data2,22,23,32,33. In order to find out the most stable phase at finite pressure, the free energy of 
two structures under different pressures should be calculated. According to thermodynamic stability theory, the 
lower phase free energy corresponds to the more stable phase. It is well known that the free energy defined as 
G = E + PV-TS. The last term (TS) can be neglected because our density functional calculations are essentially 
performed at 0 K. So the free energy G reduces to enthalpy relation H (H = E + PV). When the phase transition 
happens, the enthalpies of two different structures would be the same. The pressure dependence of the two phases 
ZnSe are illustrated in the inset of Fig. 1. It is obvious from the inset of Fig. 1 that the enthalpy curve of the B3 
structure crosses that of the B1 structure around 14.85 GPa, implying that a solid phase transition from B3 to B1 
induced by pressure occurs at 14.85 GPa. The obtained phase transition pressure is quite agree with the previous 
experimental result21 and some other theoretical calculations22,23.

Figure 1. Total energy versus unit cell volume for the B3 and B1 phases of ZnSe. Inset: enthalpy difference as a 
function of pressure for ZnSe at T = 0 K.

Structure Parameter Present Exp. Theor.

B3 a 5.679 5.6621 5.662, 5.7532, 5.6333, 5.6622, 5.8222

B0 66.75 69.321 63.02, 57.332, 72.433, 62.422, 52.922

B’
0 3.94 421 3.872, 4.5632, 4.7633, 4.0522, 3.8122

B1 a 5.329 5.2921 5.312, 5.3832, 5.2822, 5.4222, 5.3723

B0 86.84 10421 77.82, 75.532, 92.122, 74.122, 71.723

B’
0 3.92 421 3.752, 3.632, 3.4722, 3.5522, 4.723

Table 1. The obtained lattice constant (a), bulk modulus B0, and the pressure derivative of bulk modulus (B’
0) of 

ZnSe in both phases at T = 0 K, compared with the experimental result and some theoretical values.
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Single-crystal elastic constants and related properties. As is known to all, the elastic constant is 
very important parameter for the elastic material and can represent the amount of the elasticity of a material. To 
investigate the elastic constants of ZnSe, the non-volume conserving method is applied. The elastic constants Cijkl 
can be described as follows34,35

σ
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=
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Where σij stands for the applied stress, ekl corresponds to the Eulerian strain tensors, X denotes the coordinate. 
The fourth-rank tensor C has generally 21 independent components. If the symmetry of the system is account 
into consideration, the number of independent components reduces. For a cubic structure, there are only three 
independent elastic constants, namely C11, C12, and C44. The obtained elastic constants for both phases have been 
given in Table 2 which also contains some experimental and theoretical values for comparison. The discrepancy 
between our computed results and the experimental values36 for the elastic constants of B3 structure is acceptable. 
Meanwhile there is well in line between our obtained results and some previous theoretical results32,33,37,38 for B3 
phase. To the best of my knowledge, there are no experimental values of the elastic constants for B1 structure at 
elevated pressure. The calculated values in this work are not comparable with the work of Ji et al.39 by calculation. 
The variations of elastic constants as a function of pressure for both structures are shown in Fig. 2. It is observed 
that all the elastic constants for both structures in the considered range of pressure increase with increasing pres-
sure showing a monotonic behavior. For both B3 and B1 phases, it is obvious that C11 vary more under the impact 
of pressure than others. The elastic constant C11 is related to the elasticity in length, which is changed with the 
longitudinal strain, and the C12 and C44 are represented the elasticity in shape. Therefore, the pressure has a much 
more significant influence on elasticity in length. Moreover, the behavior of elastic constants for B3 phase is still 
in line with the work of Wang et al.37 by calculation.

Polycrystalline elastic moduli and related properties. For the sake of ensuring the mechanical sta-
bility of ZnSe, the elastic constants of ZnSe in the considered range of pressure should satisfy the mechanical 
stability criteria. The bulk modulus B and shear modulus G are parameter that must be investigated. The reason 
is that the bulk modulus B is the macroscopic property of a material which reflects the material’s resistance to 
homogeneous compression and the shear modulus G represents the resistance of the material to shear strain. In 
order to obtain the bulk modulus B and shear modulus G, the Hill model is applied, which takes the arithmetic 
average of the Voigt40 and Reuss models41. For cubic system, Hill shear modulus G and bulk modulus B are taken 
in the form of42:

Structure Reference C11 C12 C44

B3

Present work 73.43 45.79 34.83

Theor.

9133 6333 5933

84.032 49.032 55.832

91.237 58.237 4237

82.4538 42.7138 35.538

Exp. 8136 48.836 44.136

B1
Present work 244.37 79.90 57.52

Theor. 154.85239 112.739 41.57139

Table 2. The obtained elastic constants of ZnSe compared with other results.

Figure 2. Elastic constants as a function of pressure for both B3 and B1 phases of ZnSe.
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where BR denotes Reuss bulk modulus, BV represents Voigt bulk modulus, GR is Reuss shear modulus, GV is the 
Voigt shear modulus, given as:
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The Young’s modulus E can be regarded as an index to measure the difficulty of producing elastic deformation. 
It can be given by

=
+

E BG
G B

9
3 (6)

Figure 3 depicts the pressure dependence of the bulk modulus B, shear modulus G, and Young modulus E 
of ZnSe in both structures. It is obvious from Fig. 3 that all these elastic moduli (B, G and E) for both B3 and 
B1 phases increased monotonically with the increasing pressure in the considered range of pressure. The effects 
of the pressure on B and E are larger than that on G, indicating that the pressure can significantly improve the 
anti-compression ability and stiffness of ZnSe. The above results show that the increasing pressure can enhance 
the elastic properties of ZnSe.

In order to distinguish the brittle (ductile) behavior of materials, an important empirical relationship, which 
is the value of B/G, has been proposed by Pugh43. The critical threshold value for analyzing the brittle–ductile 
behavior of materials is approximately 1.75. As the ratio is up to 1.75, the material shows as a ductile manner. 
Otherwise, it would possess a brittle character. Figure 4 describes the behavior of B/G ratio for both B3 and 
B1 structures in the investigated pressure range. The obtained B/G ratio for polycrystalline ZnSe are all larger 
than 1.75, implying that the polycrystal tend to perform in a ductile manner. Figure 4 further illustrates that the 
increase of hydrostatic pressure tends to enhance the ductile behavior of ZnSe. The effect of pressure on the duc-
tile of B3 ZnSe is larger than that on the ductile of B1 ZnSe.

Elastic anisotropy. The elasticity anisotropy of the material can reflect the difference properties between 
in two directions perpendicular. So it is necessary for crystal physics and engineering science to investigate the 
elasticity anisotropy of the material. The elastic anisotropy can be described the universal elastic anisotropy index 
AU which is developed by Ostoja–Starzewski44 for crystal with any symmetry. The AU can be written as follows:

= + −A G
G

B
B

5 6
(7)

U V

R

V

R

where BR denotes Reuss bulk modulus, BV represents Voigt bulk modulus, GR corresponds to Reuss shear modu-
lus, GV is the Voigt shear modulus, respectively. For the case of isotropic crystals, the universal elastic anisotropy 
index is equal to zero. Contrarily, any value deviate from zero implies the degree of single crystal anisotropy. 
Figure 5 shows the variation of the AU obtained from our studies under surveyed pressure range. It is obvious 

Figure 3. Bulk modulus B, shear modulus G, Young’s modulus E as a function of pressure for both B3 and B1 
phases of ZnSe.
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that the universal elastic anisotropy index AU for both phases are larger than zero and significantly increases with 
increase of pressure, indicating that the elastic anisotropy in both structures would rise rapidly in the investigated 
pressure range. The universal elastic anisotropy index of ZnSe in B1 phase increases in smaller slope, indicating 
the impact of pressure on B1 phase is smaller than that on B3 phase. The minimum value of AU in B3 structure is 
still bigger than the maximum value of AU in B1 structure in the pressure range of 0–30 GPa, revealing that ZnSe 
in B3 phase is more anisotropy.

To investigate the anisotropic characteristics of ZnSe, a curved surface of a three-dimensional (3D) rep-
resentation of the elastic anisotropy of the two cubic ZnSe single crystal was further attempted, which can be 
expressed by the directional dependences of reciprocals of Young’s modulus. For a cubic crystal system, the direc-
tional dependence of the Young’s modulus can be expressed as45.
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where Sij corresponds to the elastic compliance constants and l1, l2 and l3 denote the direction cosines. Figure 6 
displays the directional Young’s modulus of both phases under different hydrostatic pressures. The surface con-
tours of the Young’s modulus of both structures become more anisotropic geometry with an increasing pressure, 
revealing that ZnSe in both B3 and B1 structures tend to become more anisotropic as the hydrostatic pressure 
increases. The obtained result is in good agreement with the response of the universal elastic anisotropy index AU 
illustrated in Fig. 5. Figure 6 further depicts that the higher the pressure is, the larger the 3D figures of Young’s 
modulus is. This result agrees well with the trend of E depicted in Fig. 3. As for both structures at 14.85 GPa, the 
difference in their the 3D directional dependence of Young’s modulus is highly apparent. The 3D directional 
dependence of the Young’s modulus of B3 phase show remarkable anisotropic geometry, indicating that B3 ZnSe 
is more elastically anisotropic than B1 ZnSe. This result is also in agreement with the above results from the 
pressure-dependent the universal elastic anisotropy index AU shown in Fig. 5.

Thermodynamic properties. The Debye temperature not only reflects the degree of dynamic distortion of 
the crystal lattice, but also represents the interatomic binding force of the substance. Many physical quantities of 
the material are related to it, such as elasticity, hardness, melting point and specific heat. In order to investigate the 
thermodynamic properties of both phases of ZnSe, the Debye temperature versus temperature and hydrostatic 

Figure 4. The B/G ratio as a function of pressure for both B3 and B1 phases of ZnSe.

Figure 5. Universal anisotropy index as a function of pressure for both B3 and B1 phases of ZnSe.
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pressure of both phases of ZnSe with a periodic boundary condition have been calculated. Meanwhile, the heat 
capacity as one of the most important thermodynamic properties was also given in this article. To explore the 
thermodynamic properties of both phases of ZnSe, the quasi-harmonic Debye model24,46 is carried out. In which 
the non-equilibrium Gibbs function G* (V; P, T) is defined the following form:

= + + θ⁎G V P T E V PV A V T( ; , ) ( ) [ ( ); ] (9)vib

Where E(V) denotes the total energy per unit cell, V corresponds to the volume of the molecular system, T stands 
for the temperature of system, P represents the constant pressure condition, Avib is the vibrational term, which 
can be written as47,48
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Where n is the number of atoms in the molecule, D(θ/T) indicates the Debye integral, and for an isotropic solid, 
θ is expressed as49

θ = π σh
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Where M is the molecular mass per formula unit, the f(σ) is described in detail48,50. Bs denotes the adiabatic bulk 
modulus, which is approximated written in the form of46
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Therefore, the non-equilibrium Gibbs function G*(V; P, T) can be minimized with respect to volume V as 
follows:
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The thermal EOS V(P, T) can be obtained by solving Eq. (13). Furthermore, the heat capacity Cv is given by 
the following equation51.
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The Debye temperature θ and heat capacity Cv for both phases of ZnSe at different temperatures and pres-
sures are displayed in Figs. 7 and 8, respectively. The pressure dependence of Debye temperature θ of ZnSe at 
different temperature is shown in Fig. 7(a). The obtained Debye temperature for B3 ZnSe at zero pressure and 
300 K, is 244.42 K, which agrees well with the experimental result19. The value of Debye temperature for B1 ZnSe 
at 14.85 GPa and 300 K locates at 376.64 K. To the best of my knowledge, there is no comparable result of the 
Debye temperature for B1 ZnSe. So the calculated values will provide a basis for future research work. It is obvi-
ous from Fig. 7(a) that as the temperature is fixed, the Debye temperature of ZnSe increases almost linearly 

Figure 6. The surface construction of the Young’s modulus for both B3 and B1 phases of ZnSe (unit: GPa).
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with an increasing pressure. It is also found the Debye temperature of B3 is smaller than that of B1 at 14.85 GPa. 
Figure 7(b,c) indicate that the trend of Debye temperature at a given pressure would decreases slightly with tem-
perature. It is clear that the Debye temperature is sensitive to the pressure than the temperature.

As displayed in Fig. 8(a), the heat capacity Cv at a given temperature would decrease slightly with the increase 
of pressure. Under high temperature, the heat capacity is almost constant in the pressure range of 0–30 GPa. The 
decreasing rate of Cv is more obvious under low temperature (e.g. 50 K). The heat capacity for B3 phase at zero 
pressure and 300 K is 48.27 J·mol−1 K−1, which is reasonable compared with the available values20. The Cv for B1 
phase at 14.85 GPa and 300 K is 46.17 J·mol−1 K−1, which is reported for the first time, and provides a meaning 
reference for future research work. As displayed in Fig. 8(b,c), the heat capacity increase rapidly at temperature 
below the Debye temperatures and slowly approaches a linear increase and then the increasing rate of Cv is near 
zero. The acoustic vibrations play a dominant role in the vibrational excitations at temperatures below the Debye 
temperatures, so Cv strictly follows the T3-law24. The variation of the heat capacity Cv with temperature at inter-
mediate temperatures is dominated by the details of vibration of the atoms. Because of the anharmonic approxi-
mation of the Debye model, Cv of ZnSe for a given pressure increases rapidly from 0 to 300 K. On account of the 
impact of anharmonic on the heat capacity Cv is suppressed at higher temperature, the heat capacity gradually 
approaches the Dulong–Pettit limit, which is common to all solids at temperatures far above the Debye temper-
ature. It is remarkable that the temperature effect on Cv is much greater than the pressure effect on Cv of ZnSe.

Summary and conclusion
The structural and elastic properties of ZnSe for both B3 and B1 structures under different pressures are inves-
tigated via the first-principles plane-wave pseudopotential method based on density functional theory (DFT). 
From the usual condition of equal enthalpies, the phase transition of ZnSe from B3 to B1 occurs at the pressure of 
14.85 GPa. According to the obtained elastic constants, the pressure dependence of the bulk modulus, shear mod-
ulus and Young’s modulus of ZnSe are calculated and discussed in detail. The increasing rate of B/G vs. pressure 
is remarkably, indicating that ZnSe in two phases is a ductile material and the ductility increases with pressure. 
The obtained anisotropic indexes and the direction dependence of the Young’s modulus demonstrate that ZnSe 
in B3 phase is more anisotropic than B1 phase and the elastic anisotropy of both phases become stronger with an 
increasing pressure. The thermodynamic properties of ZnSe, such as Debye temperature and heat capacity as a 
function of the pressure and temperature are successfully investigated by quasi-harmonic Debye modeling.

Received: 8 October 2019; Accepted: 31 January 2020;
Published: xx xx xxxx

Figure 7. The Debye temperature of ZnSe as a function of temperature and pressure.

Figure 8. Heat capacity of ZnSe vs. temperature and pressure.
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