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Abstract
Physiological fluctuations are expected to be a dominant source of noise in 
blood oxygenation level-dependent (BOLD) magnetic resonance imaging 
(MRI) experiments to assess tumour oxygenation and angiogenesis. This 
work investigates the impact of various physiological noise regressors: 
retrospective image correction (RETROICOR), heart rate (HR) and respiratory 
volume per unit time (RVT), on signal variance and the detection of BOLD 
contrast in the breast in response to a modulated respiratory stimulus. BOLD 
MRI was performed at 3 T in ten volunteers at rest and during cycles of 
oxygen and carbogen gas breathing. RETROICOR was optimized using 
F-tests to determine which cardiac and respiratory phase terms accounted 
for a significant amount of signal variance. A nested regression analysis was 
performed to assess the effect of RETROICOR, HR and RVT on the model 
fit residuals, temporal signal-to-noise ratio, and BOLD activation parameters. 
The optimized RETROICOR model accounted for the largest amount of 

signal variance ( Radj
2∆   =  3.3  ±  2.1%) and improved the detection of BOLD 
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activation (P  =  0.002). Inclusion of HR and RVT regressors explained 
additional signal variance, but had a negative impact on activation parameter 
estimation (P  <  0.001). Fluctuations in HR and RVT appeared to be correlated 
with the stimulus and may contribute to apparent BOLD signal reactivity.

Keywords: functional magnetic resonance imaging, physiological noise, 
retrospective image correction, BOLD contrast, haemodynamic response

(Some figures may appear in colour only in the online journal)

1. Introduction

Blood oxygenation level-dependent (BOLD) contrast exploits the differential magnetic prop-
erties of oxygenated and deoxygenated haemoglobin to enable detection of changes in blood 
oxygenation and flow. BOLD contrast is extensively used in functional magnetic resonance 
imaging (fMRI) experiments to map brain activation in response to a stimulus or to depict 
resting-state functional connectivity. As BOLD signal changes are small, they require a high 
temporal signal-to-noise ratio (TSNR) for reliable detection (Murphy et al 2007). Imaging at 
higher static magnetic field strengths (B0) increases SNR and hence TSNR; however, the rela-
tive contribution of physiological noise also increases with field strength, thereby decreasing 
signal detection power (Kruger and Glover 2001). Several sources of physiological noise have 
been identified in the fMRI literature, including those associated with cardiac (Dagli et al 
1999, Shmueli et al 2007) and respiratory (Wise et al 2004, Birn et al 2006) processes, and 
residual movement artefacts after registration (Lund et al 2005).

There is growing interest in applying BOLD contrast outside of the brain to assess tumour 
oxygenation and angiogenesis via vasomotor response to modulated hyperoxic and hyper-
capnic gas stimuli. These experiments are analogous to fMRI of the brain, with the exception 
that a respiratory stimulus is needed to directly modulate blood oxygenation and flow. BOLD 
MRI has been used to demonstrate improved oxygenation in response to inhalation of 100% 
oxygen or carbogen (2–5% CO2; 95–98% O2) in a variety of solid tumour types, including 
breast cancer, to derive potential markers of tumour hypoxia (Griffiths et al 1997, Taylor et al 
2001, Rijpkema et al 2002, Alonzi et al 2009, Jiang et al 2013). A pilot study in breast cancer 
patients undergoing neoadjuvant chemotherapy (n  =  7) demonstrated that oxygen-induced 
BOLD contrast changes were significantly greater (P  <  0.001) in patients exhibiting a com-
plete pathological response versus those exhibiting partial response or stable disease (Jiang 
et al 2013). These studies suggest that BOLD MRI may aid patient stratification for hypoxia-
targeted therapies and has potential to provide early predictive response monitoring. Other 
studies in the breast have shown that 100% oxygen interleaved with carbogen (5% CO2, 95% 
O2) in a block design is the optimal stimulus for inducing BOLD contrast (Rakow-Penner et al 
2010, Wallace et al 2016a). Carbon dioxide is a potent vasodilator and the opposing effects 
of these two gases on vascular tone provide a mechanism for BOLD contrast, which is also 
sensitive to changes in blood volume and flow. In theory, healthy vasculature will constrict 
and dilate in response to vasoactive stimuli, but immature tumour vessels lacking appropriate 
smooth muscle vasculature will be unable to respond. Several studies in preclinical tumour 
models have demonstrated the potential of BOLD contrast as a functional biomarker of vas-
cular maturity (Neeman et al 2001, Gilad et al 2005) and this approach has been success-
fully translated to derive a functional vascular maturation index in human brain tumours (Ben 
Bashat et al 2012). However, optical imaging studies have suggested that in a clinical setting 
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physiological fluctuations may confound measurement of haemodynamic response (Carpenter 
et al 2010a, 2010b). Respiration leads to both motion artefacts and modulation of the magn-
etic field, and is expected to be a particularly significant source of noise, depending on the 
target site. In general, background physiological variations and motion increase signal vari-
ance, and may even give rise to false-positive activation effects if they happen to be correlated 
with the stimulus.

Various methods for reducing physiological noise have been proposed, operating both in 
k-space (Hu et al 1995, Le and Hu 1996, Wowk et al 1997) and image space (Glover et al 
2000, Deckers et al 2006). Many correction schemes require acquisition of additional physi-
ological data using peripheral measures of cardiac and respiratory function (Hu et al 1995, 
Glover et al 2000), whilst a few methods utilize the MRI data itself to estimate noise param-
eters (Le and Hu 1996, Wowk et al 1997). Most physiological noise models can be included 
as nuisance variables in a general linear model (GLM) regression analysis (Lund et al 2006, 
Shmueli et al 2007, Kong et al 2012), although some may be used for straightforward data cor-
rection (Glover et al 2000). RETROICOR is an established retrospective image-based correc-
tion method, which is frequently applied in brain fMRI experiments to improve the statistical 
significance of activation signals. RETROICOR models cardiac and respiratory fluctuations 
using a Fourier series defined by the phase of the cardiac and respiratory cycles, relative to the 
time of image acquisition. The standard RETROICOR implementation, optimized for the cer-
ebrum, comprises two respiratory and two cardiac harmonics (Glover et al 2000). Harvey et al 
(2008) implemented a modified version of the RETROICOR algorithm to include higher order 
and multiplicative terms to account for the interaction between cardiac and respiratory signals. 
The optimized RETROICOR model significantly reduced signal variability in the brainstem 
and improved detection of activation in response to a finger-tapping task (Harvey et al 2008).

As well as quasi-periodic physiological fluctuations, low frequency (<0.1 Hz) variations 
related to respiratory depth and rate have previously been correlated with changes in BOLD 
signal intensity. Studies have shown that subtle fluctuations in respiratory volume per unit 
time (RVT) can account for a significant amount of variance in the resting-state BOLD signal 
(Wise et al 2004, Birn et al 2006). Shmueli et al (2007) additionally found significant correla-
tions between heart rate (HR) and BOLD signal time courses. The authors demonstrated that 
including delayed HR time series regressors in a GLM was able to explain an additional 1% of 
BOLD signal variance, beyond that explained by RVT and RETROICOR regressors (Shmueli 
et al 2007). Both cardiac (Chang et al 2009) and respiratory (Birn et al 2006) response func-
tions have been proposed in the brain fMRI literature to model these physiological noise 
effects. Decreasing signal variance should theoretically improve BOLD sensitivity. Hutton 
et  al (2011) found that applying a combination of physiological noise correction models, 
including HR and RVT regressors, resulted in a 50–70% increase in TSNR, which translated 
to a 10% increase in the number of significantly activated voxels in fMRI (Hutton et al 2011).

The impact of these physiological correction techniques on BOLD signal variance and 
sensitivity has been investigated in the fMRI literature; however, their use outside the brain 
has been limited. Cardiac and respiratory fluctuations, including low frequency variations in 
respiratory volume and heart rate, are expected to influence BOLD sensitivity and parameter 
estimation. The purpose of this work was to identify and remove variance in the BOLD signal 
attributed to physiological noise sources in order to improve detection of vascular reactivity to 
CO2. We sought to optimize the RETROICOR algorithm to account for the maximum amount 
of signal variance, without over-fitting to noise. We also assessed the impact of the optimized 
RETROICOR algorithm and regression of HR and RVT on the detection of haemodynamic 
response via BOLD contrast in the breast, both at rest and in response to a modulated respira-
tory stimulus paradigm.
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2. Methods

2.1. Subjects and stimulus design

MRI data was collected from ten healthy female volunteers aged between 22 and 37 years 
(median age 27 years). All participants provided written informed consent prior to enrol-
ment in the study, which was approved by the local Research Ethics Committee (REC: 14/
EE/0145). Resting state data was acquired as subjects breathed medical air for 12 min. The 
respiratory gas stimulus paradigm consisted of breathing carbogen interleaved with 100% 
oxygen in 2 min blocks, for a total of 16 min, as illustrated in figure 1. Medical gases were 
administered to the subject via an OxyMask™ (Southmedic Inc., Barrie, ON) at a flow rate of 
14 l min−1, with automated switching controlled by an in-house gas delivery system.

2.2. Data acquisition

MR imaging was performed at 3 T (MR750, GE Healthcare, Waukesha, WI) using an eight-
channel phased-array breast coil with whole body radiofrequency excitation. An in-house 
developed multi-phase single-shot fast spin echo sequence was used to acquire dynamic  
T2-weighted images at a single sagittal slice location. A T2-weighted spin-echo based sequence 
was used for BOLD contrast generation, rather than the more conventional T2

∗-weighted 
gradient echo imaging, due to the adverse B0 field distortions created by the breast geom-
etry at higher field strengths (Rakow-Penner et al 2010). Scan parameters were as follows: 
TR  =  4000 ms, effective TE  =  58 ms, ±83 kHz receiver bandwidth, 128 phase and frequency 
encoding steps, 20 cm field of view, 5 mm slice thickness and chemical shift selective fat 
suppression. A total of 180 and 240 images were acquired for the resting-state and oxygen-
carbogen datasets respectively, with an in-plane spatial resolution of 1.56  ×  1.56 mm. A 
high-resolution T1-weighted image was acquired at the same sagittal slice location to provide 
anatomical detail.

Heart rate and respiration were monitored using the scanner’s built-in photoplethysmo-
graph placed on the subject’s index finger and a pneumatic respiratory belt positioned around 
the abdomen. The cardiac pulse signal and respiratory waveform were sampled at 40 Hz and 

Figure 1. Schematic showing the modulated gas fMRI stimulus design. Oxygen and 
carbogen are cycled in 2 min blocks for a total of 16 min. An example BOLD signal 
intensity time course extracted from the fibroglandular tissue in a representative 
volunteer is shown, with the sinusoidal model used to fit the signal intensity response 
(phase shifted to match the time lag of response and scaled to the amplitude of response) 
overlaid in red.
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10 Hz respectively, and recording was triggered by the start of the scan acquisition. Timing 
data for each slice acquisition was written to a file to allow retrospective synchronization of 
the physiological signals with the MRI data.

2.3. Image registration and data pre-processing

Each image series was registered using a non-rigid symmetric diffeomorphic normalization 
(SyN) based algorithm (Advanced Normalization Tools, Philadelphia, PA) to compensate for 
patient motion during the MR acquisition (Avants et al 2011). Mutual information was used 
as the similarity metric and all phases were registered to the mean of the time series. A con-
strained cost-function masking approach was used to localize the motion correction to the 
breast region. The non-rigid registration was initialized with an affine transform to account 
for any global motion in the breast. A multi-resolution framework (four resolution levels) was 
used for both the affine and SyN registration.

All subsequent data processing was performed using in-house software developed in 
Matlab version 8.6 (The Mathworks, Natick, MA). For the scans where subjects breathed the 
oxygen-carbogen stimulus, imaging data from the first alternating gas period (i.e. first 60 time 
points) was discarded to allow equilibration of the gas inhalation regime. A region of interest 
(ROI) was manually drawn to exclude fat in the outer border of the breast, and subsequent 
analysis was performed pixel-wise within this fibroglandular tissue ROI in each volunteer. A 
second order polynomial regressor was constructed by fitting linear and quadratic functions to 
the signal intensity-time course for each pixel to model low frequency temporal drifts, nomi-
nally attributed to the scanner hardware.

2.4. Physiological noise regression models

The registered datasets were corrected for cardiac pulsatility and respiratory motion arte-
facts using a modified version of the RETROICOR algorithm. F-test regression analysis was 
performed to compare models with different combinations of cardiac (C), respiratory (R) 
and multiplicative (X) terms to find the combination that most effectively reduced BOLD 
signal variability without over-fitting to noise. The construction and optimization of the 
RETROICOR model is described in detail in the appendix.

Low frequency changes in respiratory volume per unit time (RVT) and heart rate (HR) 
were modelled using previously published methods (Birn et  al 2006, Shmueli et  al 2007) 
(see appendix). The HR and RVT regressors were created by shifting the HR and RVT time 
courses relative to the imaging data, based on the time lag that resulted in the maximum 
correlation between HR and RVT and the BOLD signal in each pixel (Birn et al 2006). The 
temporal cross correlation was calculated pixel-wise over the range  ±1 min (±15 TR), which 
yielded normalized correlation coefficients for each temporal shift of HR and RVT, relative to 
the BOLD signal.

The mean and standard deviation of HR and RVT, as well as the correlations between the 
two time courses (within  ±1 min), were calculated for each subject at rest and during cycling 
of oxygen and carbogen. Fourier power spectra of the HR and RVT time courses were also 
computed for each subject both at resting-state and for the respiratory stimulus.

2.5. Model evaluation

To evaluate the effect of different physiological noise models, a nested regression analy-
sis was performed using the GLM framework in Matlab. Five models were defined as 
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follows: (1) HW, (2) HW  +  CRX, (3) HW  +  CRX  +  HR, (4) HW  +  CRX  +  RVT, (5) 
HW  +  CRX  +  HR  +  RVT, where HW is the second order polynomial regressor constructed 
to account for low frequency hardware drifts, CRX represents the optimized RETROICOR 
regressor combination, and HR and RVT regressors are computed as outlined above. The 
regressors were fitted to the registered image data (following mean correction) using a GLM 
and correction was performed by subtracting the fitted effect from the BOLD signal.

The adjusted coefficient of determination (Radj
2 ) was calculated as a measure of the propor-

tion of variance accounted for by each of the models, normalized by the number of regressors. 
The regression models were chosen such that the explanatory power of each individual correc-

tion could be determined by comparing the results of different models. Pixel-wise Radj
2∆  val-

ues were calculated by subtraction of different models as a measure of the additional variance 

accounted for by each set of regressors. For example, comparing Models 1 and 2 ( Radj 2-1
2

( )∆ ) 
gives an indication of how much additional variance is explained by the RETROICOR regres-

sors (CRX) alone. Maps of Radj
2  and Radj

2∆  were created for each subject and values were aver-
aged within the fibroglandular tissue ROI and across subjects.

We also investigated the impact of each of the physiological noise models on the TSNR 
of the imaging data. TSNR was calculated as the mean of each pixel divided by the standard 
deviation of the time course. Maps of TSNR and percentage improvement in TSNR were cre-
ated for each subject and the mean TSNR and ΔTSNR (%) were calculated within the fibro-
glandular tissue ROI and averaged across subjects. No spatial smoothing was applied to the 

datasets in this analysis, consistent with previous investigations of the impact of physiological 

noise regressors on Radj
2  and TSNR (Kruger and Glover 2001, Hutton et al 2011).

2.6. Impact on BOLD parameter estimation

Prior to functional parameter estimation, both the resting-state and oxygen-carbogen datasets 
were smoothed using a Gaussian kernel (full width half maximum 4 mm), as spatial filtering is 
a commonly employed pre-processing step in these types of analyses (Wise et al 2004, Harvey 
et al 2008, Hutton et al 2011). The linear correlation coefficient between each pixel’s signal 
intensity-time course and sine and cosine functions at the stimulus frequency (0.0042 Hz)  
was calculated as a measure of the magnitude of the BOLD response, as described by Lee 
et al (1995). A sinusoidal waveform was chosen to model the block design stimulus as the 
haemodynamic response function effectively acts as a temporal low pass filter on the time 
series (Bulte et al 2006). The cosine function accounts for unknown delays in response. The 
magnitude of the maximum correlation coefficient and the temporal phase lag at which it 
occurs are given by the following expressions:

r r rm s
2

c
2= + (1)

r

r
tanr

1 s

c

⎛
⎝
⎜

⎞
⎠
⎟θ = − (2)

where rs and rc are the linear correlation coefficients between the BOLD signal intensity 
response and the sine and cosine waveforms, rm ranges from 0 to 1 and θr ranges from 0 to 2π.

This cross-correlation analysis with the stimulus was performed following each model cor-
rection (i.e. subtraction of the fitted regressors from the BOLD signal time course). The same 
analysis was carried out for the resting-state data, even though there was no imposed stimulus 
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periodicity, to determine the impact of each model correction on the extent of false-positive 
activation effects. Significantly activated pixels were defined using an uncorrected p-value 
threshold of less than 0.05 (rm  >  0.14) and the percentage of activated pixels within the fibro-
glandular tissue ROI was calculated for each subject during rest and activation. The median 
rm was also calculated over all pixels within the fibroglandular tissue ROI to allow unbiased 
comparison of oxygen-carbogen and resting-state data.

2.7. Statistical analysis

Two-tailed, paired (across subjects) Student’s t-tests were performed to assess the impact of 
each correction on the TSNR, median correlation coefficient (rm) and percentage of activated 
pixels in resting-state scans. Paired t-tests were also performed to assess the effect of each 
correction on the median rm and percentage of activated pixels in response to the vasoactive 
stimulus, relative to air-only breathing.

3. Results

3.1. Low frequency HR and RVT fluctuations

Summary statistics for HR and RVT, and the correlation between these two physiological 
time courses, are shown for each subject in table 1. One subject was excluded, due to failure 
to record a reliable physiological trace. The mean HR across all subjects was 70.2  ±  3.1 beats 
min−1 (bpm) during air-only breathing and 68.8  ±  4.3 bpm during cycling of oxygen and 
carbogen gas. RVT fluctuated about 8.2  ±  1.6% at rest and about 9.2  ±  1.6% during oxygen-
carbogen breathing. Resting-state HR and RVT were moderately correlated (R  =  −0.323 to 
0.403), and the strength of the correlation increased for interleaved oxygen and carbogen 
breathing in some subjects (R  =  −0.290 to 0.650). Figure 2 shows the Fourier power spectra 

Table 1. Mean and standard deviation (SD) of measured heart rate (HR) and respiratory 
volume per unit time (RVT) in each subject and the maximum cross correlation 
coefficient (CC) between HR and RVT for both air-only and modulated oxygen-
carbogen breathing.

Air-only Oxygen-carbogen

Subject HRa (bpm) RVTb CCc HR (bpm) RVT CC

1 75.1  ±  1.7 5.7  ±  0.9 −0.323 70.9  ±  2.1 6.9  ±  1.2 0.508
2 70.1  ±  2.8 5.7  ±  0.7 0.316 62.3  ±  2.1 5.6  ±  0.8 −0.246
3 57.6  ±  6.0 11.1  ±  1.7 −0.251 59.0  ±  7.6 11.4  ±  1.4 −0.283
4 59.3  ±  3.1 9.5  ±  1.9 0.219 58.7  ±  2.9 10.4  ±  1.8 0.243
5 86.2  ±  3.0 11.5  ±  2.1 −0.207 86.3  ±  12.2 10.8  ±  1.5 −0.151
6 77.9  ±  3.1 6.8  ±  1.5 −0.176 79.0  ±  3.3 8.6  ±  1.4 −0.290
7 74.2  ±  3.1 9.2  ±  1.2 0.246 74.8  ±  3.1 11.1  ±  1.4 0.276
8 69.8  ±  2.2 6.8  ±  2.6 0.328 67.4  ±  2.6 9.7  ±  2.9 0.650
9 60.7  ±  2.7 7.4  ±  1.5 0.403 61.0  ±  3.1 9.0  ±  2.2 0.624
Mean 70.2  ±  3.1 8.2  ±  1.6 68.8  ±  4.3 9.2  ±  1.6
SD 9.5  ±  1.2 2.2  ±  0.6 9.7  ±  3.4 2.0  ±  0.6

a Heart rate.
b Respiratory volume (in percent) per unit time (s).
c Maximum correlation coefficient.
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of HR and RVT both at rest and during the modulated respiratory stimulus. This confirms that 
fluctuations in heart rate and respiration occur in the low (<0.1 Hz) frequency range. Both 
HR and RVT spectra exhibited a peak at the stimulus frequency (0.0042 Hz) during oxygen-
carbogen breathing, suggesting they are correlated with the stimulus paradigm.

3.2. Optimization of RETROICOR

F-test results in table 2 show the percentage of all pixels in which each test model accounted 
for significantly more variance than the base model containing a subset of its regressors. 
Numbers in bold correspond to values above the percentage of pixels set by a binomial (null) 
threshold. The first order respiratory regressor (1R) accounted for the largest amount of noise, 
explaining a significant amount of BOLD signal variance in over 30% of pixels. Addition of 
the second order respiratory regressor (2R) and a single multiplicative term (11X) accounted 
for a small, but significant, additional amount of variance. Addition of cardiac terms and 
higher order respiratory and multiplicative regressors did not reduce BOLD signal variance 

Figure 2. Fourier power spectra of HR and RVT time courses during (a) and (b) air-
only breathing and (c) and (d) oxygen-carbogen breathing averaged over all subjects. 
The red dashed line denotes the stimulus frequency (0.0042 Hz).

T E Wallace et alPhys. Med. Biol. 62 (2017) 127



135

by a significant amount. The optimized RETROICOR model (‘2R11X’) was used in the sub-
sequent nested regression model analysis.

3.3. Impact of physiological corrections on signal variance

The impact of SyN-based non-rigid registration and the five physiological noise regression 
models on signal variance and image TSNR is summarized in table 3. A significant (P  <  0.001) 
increase (23.4%) in the mean TSNR of resting-state data was seen post-registration (comparing 
Models 0 and 1). The model comparison demonstrates the impact of each individual regressor 
in explaining additional variance, calculated pixel-wise within the ROI. After correction for 
low-frequency drifts attributed to hardware, adding the three optimal RETROICOR regressors 

(Model 2) accounted for the largest amount of additional variance in the resting-state BOLD 

signal ( Radj 2-1
2

( )∆   =  3.3  ±  2.1%). Adding the measured HR and RVT regressors to Model 2 

explained similar amounts of variance (2.0  ±  0.6% and 2.3  ±  0.3% respectively). The contin-

ued increase in mean Radj
2  demonstrates that each of the regressors were useful in explaining 

additional variance in the data, up to a maximum of 16.4  ±  3.1% for Model 5. Corresponding 
significant increases (P  <  0.001) in the mean TSNR were also observed within the fibroglan-
dular tissue ROI for each additional regressor, illustrated in figure 3 for a representative subject. 
Consistent with the variance analysis, RETROICOR had the largest impact on TSNR, increas-
ing pixel-wise ΔTSNR by an average of 4.4  ±  1.4% across all subjects. ΔTSNR increased to 
7.6  ±  1.5% when all physiological regressors were added to the model.

The SyN-based registration took approximately 6 min to align 180 images (using paralleli-
zation with four cores), whilst computational times for the GLM ranged from approximately 
1 min (Model 1)–6.5 min (Model 5).

Table 2. F-test results showing the percentage of pixels within the fibroglandular 
tissue ROI where variance was significantly reduced by adding specific regressors, 
relative to the base model, averaged across subjects. Numbers in bold correspond to a 
significant percentage of pixels above a threshold set by the binomial (null) distribution 
(corresponding to a 0.01 false-positive rate). The optimal model for reducing variability 
in the BOLD signal is ‘2R11X’.

Regressors Test model Base model % pixels

1Ca 1C 1.1
1Rb 1R 30.7
2C 2C1R 1C1R 1.0
2R 1C2R 1C1R 1.5
3C 3C2R 2C2R 0.7
3R 2C3R 2C2R 1.0
4C 4C3R 3C3R 1.2
4R 3C4R 3C3R 1.0
5C 5C4R 4C4R 0.8
5R 4C5R 4C4R 0.9
11Xc 2C2R11X 2C2R 1.9
21X 2C2R21X 2C2R11X 1.3
12X 2C2R12X 2C2R11X 0.9
22X 2C2R22X 2C2R12X 1.0

a1C: first order cardiac term (calculated according to equation (A.3) with A  =  1 and B  =  0).
b1R: first order respiratory term (calculated according to equation (A.3) with A  =  0 and B  =  1).
c11X: first order multiplicative term (calculated according to equation (A.4) with Cm  =  1 and 
Dm  =  1).
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Table 3. Mean adjusted coefficient of determination (Radj
2 ) and temporal signal-to-noise ratio (TSNR) of the resting-state BOLD signal within the 

fibroglandular tissue ROI, averaged across subjects for unregistered data and five nested regression models. Mean difference in voxel-wise Radj
2∆  

and ΔTSNR (%) for each model comparison shows the effect of each correction. The optimized RETROICOR model (denoted CRX) accounts for 

the largest amount of signal variance (highest Radj
2∆  and %ΔTSNR).

Model SyNa

Regressors

Mean Radj
2 Mean TSNR

Model 
comparison Mean Radj

2∆
Mean 
ΔTSNR (%)HWb CRXc HRd RVTe

X 0.156  ±  0.114 35.0  ±  8.4
1 X X 0.091  ±  0.047 43.2  ±  10.8
2 X X X 0.123  ±  0.035 44.9  ±  11.0 2-1 0.033  ±  0.021 4.4  ±  1.4
3 X X X X 0.144  ±  0.031 45.6  ±  11.1 3-2 0.020  ±  0.006 1.5  ±  0.3
4 X X X X 0.146  ±  0.034 45.6  ±  11.2 4-2 0.023  ±  0.003 1.6  ±  0.2
5 X X X X X 0.164  ±  0.031 46.2  ±  11.3 5-1 0.073  ±  0.024 7.6  ±  1.5

aSymmetric diffeomorphic normalization based non-rigid registration algorithm.
bHardware (second order polynomial) regressor.
cOptimized RETROICOR model.
dHeart rate regressor.
eRespiratory volume per unit time regressor.
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3.4. Impact of physiological corrections on BOLD parameter estimation

Non-rigid registration led to a significant reduction in the median correlation coefficient 
(P  =  0.033) and number of activated pixels (P  =  0.027) for resting-state data. The median 
correlation coefficient and area of activation also significantly decreased (P  =  0.003 and 
P  <  0.001) for the vasomotor stimulus. Overall, there was a significant difference in the 
median correlation coefficient and number of activated pixels between the resting-state and 
activated scans before any correction was applied (P  =  0.020 and P  =  0.015), which was 
improved after registration (P  =  0.012 and P  =  0.009). This difference was further improved 
by subtracting the three optimal RETROICOR regressors (‘2R11X’) from the registered data 
(P  =  0.002 and P  =  0.002).

Although regression of HR and RVT improved the TSNR of resting-state scans and signifi-
cantly reduced the number of false-positive activations during air-only breathing (P  =  0.038, 
comparing Model 5 and Model 2), it also significantly reduced the median correlation coeffi-
cient and number of activated pixels (P  <  0.001) for the oxygen-carbogen stimulus paradigm, 
yielding no significant difference between resting-state and activated scans for Models 3–5. 
These results are summarized in table 4 and the impact of these corrections on detecting acti-
vation is illustrated in figure 4 for a representative subject. The median correlation coefficient 
for resting-state and oxygen-carbogen data is shown for all subjects and correction models in 
figure 5.

Figure 3. Maps showing successive differences in the adjusted coefficient of 

determination ( Radj
2∆ ) between regression models and corresponding percentage 

difference in temporal signal-to-noise ratio (TSNR) of resting-state BOLD data, 
illustrating the importance of each set of physiological noise regressors in a 

representative volunteer. Maps are overlaid on an anatomical image with Radj
2∆  scaled 

between 0 and 0.2 and ΔTSNR scaled between  −20% and  +20%. The optimized 
RETROICOR model (denoted CRX) accounts for the largest amount of signal variance, 

corresponding to the brightest Radj
2∆  map for a single physiological noise model.
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Figure 4. Activation maps showing magnitude of correlation coefficients (P  <  0.05) 
for a representative volunteer, illustrating the impact of physiological corrections on 
the detection of BOLD activation effects for air-only and oxygen-carbogen data. Maps 
are shown for the same subject as in figure 3. In this volunteer, SyN-based non-rigid 
registration reduced activation in both air-only and oxygen-carbogen states, addition of 
the optimized RETROICOR regressors (Model 2) removed false positive activations in 
the air-only state, whilst addition of HR and RVT regressors had a negative impact on 
activation detection during oxygen-carbogen gas breathing.

Table 4. Median correlation coefficient (CC) and percentage of activated pixels 
(rm  >  0.14) within the fibroglandular tissue ROI and statistical inferences comparing 
the oxygen-carbogen stimulus to resting-state (air-only) data, averaged across subjects 
for unregistered data and five physiological noise regression models.

Model SyN

Regressors Air-only Oxygen-carbogen

HW CRX HR RVT
Median  
CC

Activation  
(%)

Median CC  
(P-value)

Activation (%) 
(P-value)

X 0.133  ±  0.046 39.3  ±  22.4 0.181  ±  0.047 
(0.020)a

59.6  ±  13.5 
(0.015)a

1 X X 0.108  ±  0.025 27.4  ±  14.8 0.137  ±  0.020 
(0.012)a

44.6  ±  9.8 
(0.009)a

2 X X X 0.103  ±  0.013 24.5  ±  8.9 0.133  ±  0.016 
(0.002)b

42.0  ±  9.3 
(0.002)b

3 X X X X 0.100  ±  0.016 23.2  ±  9.7 0.113  ±  0.012  
(0.052)

31.6  ±  7.9 
(0.038)a

4 X X X X 0.100  ±  0.017 22.6  ±  10.6 0.104  ±  0.028  
(0.702)

26.1  ±  16.7 
(0.625)

5 X X X X X 0.098  ±  0.018 21.7  ±  11.0 0.092  ±  0.022  
(0.594)

20.2  ±  12.7 
(0.790)

aSignificant P  <  0.05.
bHighly significant P  <  0.005.
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4. Discussion

Signal intensity changes induced by the modulated gas stimuli are small, on the order of 
1–2%, and the TSNR of the time series is critical to reliably detect vasomotor activation 
effects. Furthermore, the BOLD signal is dependent on various physiological parameters and 
it can be difficult to disentangle true vasomotor reactivity due to hypercapnic and hyperoxic 
gas from false activation effects that arise due to motion artefacts or natural physiological 
fluctuations influencing blood oxygenation. In this study we investigated the impact of various 
physiological correction models, both on the signal variance and TSNR, as well as activation 
parameters during air-only breathing (resting-state) and in response to a vasoactive stimulus 
design.

Respiratory effects were the dominant source of physiological noise in this study and reg-
istration of the dynamic series was important both in increasing TSNR and reducing false-
positive activation effects, even when motion artefacts were small. After registration and 
correction for low-frequency hardware drifts, the optimized RETROICOR model accounted 
for the largest amount of additional signal variance. The subsequent increase in TSNR after 
application of RETROICOR translated to an improvement in BOLD sensitivity, demonstrated 
by the highly significant difference (P  =  0.002) between resting-state and vasoactive scans, 
illustrated in figure 4 (column 3). As the phase of respiration relative to the timing of image 
acquisition is expected to vary randomly, removing signal components that are correlated 
with the respiratory phase waveform intuitively should decrease signal variance and improve 
BOLD sensitivity. This approach could also be generalized to BOLD and T1-weighted 

Figure 5. Boxplot showing the impact of SyN-based non-rigid registration and 
the five nested physiological noise models on the median correlation coefficient 
of air-only (resting-state) and oxygen-carbogen data. Over all volunteers, Model 2 
(SyN  +  HW  +  CRX) yielded the most highly significant difference between air-only 
and oxygen-carbogen states.
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oxygen-enhanced experiments investigating changes in oxygenation of healthy and diseased 
tissue, to improve detection of the small changes induced by the step change in inspired oxy-
gen fraction. The performance of the optimized RETROICOR was not reported on unreg-
istered data, as preliminary work demonstrated that applying the RETROICOR algorithm 
without registration did not perform as well (Wallace et al 2016b). Furthermore, in a study 
by Jones et al (2008) investigating the introduction of motion correction parameters into a 
RETROICOR-based regression paradigm in the brain, it was demonstrated that the optimal 
order of corrections in terms of temporal standard deviation reduction resulted by performing 
image registration prior to RETROICOR. This is expected, since the RETROICOR model 
does not account for movement of physiological fluctuations between voxels.

The ‘2R11X’ model was chosen as the optimal RETROICOR model as it accounted for 
significant variance in the data, without over-fitting to noise. The first order respiratory regres-
sor accounted for the largest amount of structured noise in the BOLD signal. This regressor is 
likely to be correlated with the residual motion artefact or magnetic susceptibility changes that 
occur due to thoracic movement during respiration. Cardiac fluctuations did not account for a 
significant amount of noise in the data. In the brain, the magnitude of signal variation due to 
cardiac effects is often largest around major vessels (Dagli et al 1999, Glover et al 2000), so 
the absence of large vascular structures in the breast may help explain why the cardiac regres-
sors were not useful in explaining BOLD signal variance in this case. The effect of including 
higher order respiratory or multiplicative harmonics was not found to be significant.

We also investigated the impact of including regressors describing low-frequency varia-
tion in heart rate and inspired respiratory volume per unit time, as these have been shown 
to be another source of signal variance in the fMRI literature. In agreement with previous 
studies in the brain, the HR and RVT regressors accounted for additional signal variance in 
the fibroglandular tissue ROI and led to incremental improvements in TSNR and a reduction 
of false-positive activation effects in the resting-state data (Shmueli et al 2007, Hutton et al 
2011). Variations in the depth and rate of breathing will alter arterial CO2 levels. It has also 
been proposed that CO2-mediated vasodilation will in turn trigger chemoreflexes to adjust the 
depth and rate of subsequent breaths in order to maintain optimal blood gas parameters, thus 
forming a feedback cycle. The period of this chemoreflex-mediated feedback cycle has been 
measured between 25 s and several minutes, resulting in low frequency (<0.04 Hz) temporal 
fluctuations (Van Den Aardweg and Karemaker 2002). Therefore, accounting for subtle vari-
ations in heart rate and breathing patterns that occur naturally at rest intuitively will explain 
some of the variance in the BOLD signal and help account for false-positive activations.

Although increased TSNR should improve BOLD sensitivity, inclusion of lagged HR and 
RVT time courses in the regression model had a detrimental effect on the detection of vaso-
motor response to the vasoactive stimulus. This may be explained by the moderate correla-
tions between the experimental design and these physiological time courses, evidenced by 
the peaks in the Fourier power spectra at the stimulus frequency. Kong et al (2012) similarly 
found that although regression of HR and RVT reduced BOLD signal variance, regression of 
these physiological time courses had a negative impact on parameter estimation in response to 
a painful thermal stimulus design due to concurrent changes in heart rate and breathing pat-
terns. Without ground truth it is difficult to determine the relative impact of these processes, 
which may either remove false-positive activation effects or remove true active pixels that 
share variance with HR and RVT. In this case, the latter possibility is highly likely, given the 
established relationship between HR, RVT and blood CO2 levels, which is the source of the 
BOLD contrast being manipulated in this experiment. Therefore, although the combination of 
all regressors (Model 5) gave the largest improvement in TSNR, Model 2 gives the greatest 
improvement in BOLD sensitivity.
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Several limitations are recognized in this work. First, we did not directly measure changes 
in end tidal CO2, which may have helped to disentangle BOLD reactivity to the inspired 
CO2 fraction from BOLD contrast changes due to fluctuations in RVT. Increased ventila-
tion causes arterial oxygen saturation to increase on the order of ~1%, which would further 
reduce deoxyhaemoglobin levels in venous blood. In subjects where the correlation between 
RVT and BOLD response was particularly strong, it is possible that hyperventilation during 
carbogen breathing artificially increased the apparent reactivity to CO2; however, further 
work is needed to elucidate the exact mechanisms of BOLD response. Second, the temporal 
resolution of the BOLD acquisition used in this experiment (4 s/image) may not be able to 
sufficiently model cardiac noise fluctuations due to aliasing, which could provide an alter-
native explanation as to why inclusion of cardiac phase regressors did not have a significant 
impact on BOLD signal variability. Third, due to the nature of the GLM regression analysis, 
any shared variance between the physiological noise regressors and the BOLD signal will 
be removed, thereby reducing the detected BOLD activation for regressors correlated with 
the stimulus design. The cardiac and respiratory response functions derived in fMRI experi-
ments were not applied here as they have not been found to be beneficial outside the brain 
(Kong et al 2012).

In conclusion, these results demonstrate that reducing signal variance attributed to physi-
ological processes is associated with changes in activation parameter calculation, confirming 
the importance of certain physiological corrections in reliably detecting functional changes in 
the breast. The ‘2R11X’ RETROICOR model was found to be optimal in accounting for sig-
nal variance without over-fitting to noise and improved detection of BOLD activation effects. 
Subtle variations in HR and RVT that occurred naturally at rest accounted for additional vari-
ance in the resting-state BOLD data. However, inclusion of these regressors in the physi-
ological noise model is not recommended as they appear to be correlated with the vasoactive 
stimulus design, making it difficult to disentangle BOLD signal reactivity due to CO2 changes 
from the associated ventilatory and cardiac responses.
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Appendix 

A.1. RETROICOR method

The RETROICOR correction method assumes that the functional time series in a voxel is 
 corrupted by additive noise resulting from quasi-periodic cardiac and respiratory processes. 
The cardiac phase (φc) is defined as follows (Glover et al 2000):

φ π=
−

+ −
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t i t j

t j t j
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where i represents the ith image, t(i) is the image acquisition time and ts( j ) and ts( j  +  1) are 
the peaks defining the beginning and end of the jth cardiac cycle, as illustrated in figure A1(a). 
The phase of respiration (φr) is defined by the depth of breathing at the time of image acquisi-
tion (R(t)), relative to a histogram H(b) (scaled from 1 to 100) of the respiration depth across 
the entire scan, illustrated in figure A1(b). The transfer function relating respiratory amplitude 
and phase is given by:
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The physiological noise component may be modelled as a low-order Fourier series expanded 
in terms of the cardiac and respiratory phases as follows (Harvey et al 2008):
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where NA  ⩽  5, NB  ⩽  5 and β represents unknown amplitude coefficients. The multiplicative 
terms ψm are given by:
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where Cm and Dm are positive integers and β represents unknown amplitude coefficients.
A basis set of up to fifth order sine and cosine Fourier series components was calculated, 

based on the phase of the cardiac and respiratory cycles relative to the timing of each image 
acquisition, yielding a total of 20 regressors. An additional 16 sine and cosine regressors (i.e. 
Cm and Dm  ⩽  2) were calculated to account for any interaction between these two processes.

This analysis was performed using a Matlab implementation of the modified RETROICOR 
algorithm, adapted from code developed by New York University Centre for Brain Imaging 
(cbi.nyu.edu/software). The code repository and sample physiological data is available at 
https://github.com/tesswallace/retroicor.

A.2. Extraction of heart rate and respiratory volume per unit time 

Heart rate was defined as the inverse of the interval between two consecutive beats, as illus-
trated in figure  A1(c). Spurious beat frequencies were removed from the time course by 
replacing frequencies more than two standard deviations away from the local median with 
the median value within an 8 s sliding window. The resulting clean cardiac time course was 
averaged for each sliding window, defined by the (k  −  1)th, kth and (k  +  1)th TRs, yielding 
a measure of heart rate for each imaging time point, as shown in figure A1(e). The result was 
divided into 60 to convert to units of beats min−1.

A time series representing the percentage change in respiratory volume per unit time (RVT) 
was calculated from the normalized respiratory waveform as the difference between the maxi-
mum and minimum belt positions of each respiratory cycle (i.e. amplitude difference between 
inspiration and expiration), divided by the duration of respiration (i.e. the time between the 
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peaks of inspiration and expiration), as illustrated in figure A1(d). The RVT time series was 
interpolated to the imaging TR to yield a measure for each time point, as shown in figure A1(f).

A.3. Optimization of RETROICOR model 

Each RETROICOR model was compared to a base model, containing the same set of regres-
sors as the test model minus the regressor to be investigated. F-test regression was used to 

Figure A1. Schematic illustrations showing determination of physiolgoical noise 
regressors: calculation of (a) cardiac and (b) respiratory phases for RETROICOR; 
calculation of HR from the (c) cardiac time course and RVT from the (d) respiratory 
waveform; example (e) HR and (f) RVT time-courses extracted from physiological data.
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determine whether including higher order and multiplicative terms could explain a significant 
amount of additional variance in the BOLD signal. The number of pixels exceeding the thresh-
old for the F-statistic (P  <  0.01) was counted for each subject. This was compared to a bino-
mial null distribution parameterized by the total number of pixels in the ROI, which accounts 
for the fact that there will always be some random correlation with regressors. The null distri-
bution threshold (t) for the number of significant F-test voxels was calculated such that:

p n t N
m p p1 0.01

m

N

m N m

1
( )(   ⩾   ) ( )   ⩽  ∑= −

=

− (A.5)

Only regressors where the percentage of pixels with significantly reduced variance across all 
subjects exceeded this threshold (corresponding to a false positive rate of 0.01) were consid-
ered significant and were included in the final regression model.
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