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A B S T R A C T

Phosphatidic acid (PA) is one of the phospholipids composing the plasma membrane and acts as a second
messenger to regulate a wide variety of important cellular events, including mitogenesis, migration and
differentiation. PA consists of various molecular species with different acyl chains at the sn-1 and sn-2 positions.
However, it has been poorly understood what PA molecular species are produced during such cellular events.
Here we identified the PA molecular species generated during retinoic acid (RA)-induced neuroblastoma cell
differentiation using a newly established liquid chromatography/mass spectrometry (LC/MS) method.
Intriguingly, the amount of 32:0-PA species was dramatically and transiently increased in Neuro-2a
neuroblastoma cells 24–48 h after RA-treatment. In addition, 30:0- and 34:0-PA species were also moderately
increased. Moreover, similar results were obtained when Neuro-2a cells were differentiated for 24 h by serum
starvation. MS/MS analysis revealed that 32:0-PA species contains two palmitic acids (16:0 s). RT-PCR analysis
showed that diacylglycerol kinase (DGK) δ and DGKζ were highly expressed in Neuro-2a cells. The silencing of
DGKζ expression significantly decreased the production of 32:0-PA species, whereas DGKδ-siRNA did not.
Moreover, neurite outgrowth was also markedly attenuated by the deficiency of DGKζ. Taken together, these
results indicate that DGKζ exclusively generates very restricted PA species, 16:0/16:0-PA, and up-regulates
neurite outgrowth during the initial/early stage of neuroblastoma cell differentiation.

1. Introduction

Phosphatidic acid (PA) is one of the phospholipids composing the
plasma membrane and acts as a second messenger to regulate a wide
variety of cellular events, including mitogenesis [1], migration [2] and
differentiation [3]. Previous reports have reported that PA regulates a
number of signaling proteins such as phosphatidylinositol-4-phosphate
5-kinase [4,5], mammalian target of rapamycin [1], atypical protein
kinase C [6], and p21 activated protein kinase 1 [7,8]. PA as an
intracellular signaling lipid is generated by phosphorylation of diacyl-
glycerol (DG) by DG kinase (DGK) [9–12] and hydrolysis of phospha-
tidylcholine (PC) by phospholipase D (PLD) [13–15].

PA consists of various molecular species with different acyl chains
at the sn-1 and sn-2 positions, and mammalian cells contain at least 50
structurally distinct PA species. However, it has been poorly under-
stood what PA species are produced during important cellular events
until now. The main reasons for this are that PA species are minor

components and it is difficult to quantify the amounts of PA molecular
species using conventional liquid chromatography (LC)/mass spectro-
metry (MS) methods. To overcome this difficulty, we recently estab-
lished an LC/MS method specialized for PA species [16]. Using this
LC/MS method, we reported that a DGK inhibitor, R59949, attenuated
the interleukin-2-dependent increases of 36:1-, 40:5- and 40:6-PA
species in CTLL-2 cells [16]. Moreover, we revealed that DGKδ
preferentially consumes palmitic acid (16:0)-containing DG species,
but not arachidonic acid (20:4)-containing DG species derived from the
phosphatidylinositol-turnover, in glucose-stimulated C2C12 myoblasts
[17].

The sprouting of neurites, which will later become axons and
dendrites, is an important event in early neuronal differentiation
[18]. Some previous reports showed that the amount of PA was
increased during neuronal differentiation [19,20]. However, it has
not been revealed what kind of PA species (the lengths and degrees of
unsaturation of the fatty acyl chains in PA species) are produced. In
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this study, we investigated the PA species production and its pathway
during neuroblastoma cell differentiation using the newly developed
LC/MS method [16]. We revealed that 16:0/16:0-PA species was
dramatically increased in Neuro-2a neuroblastoma cells differentiated
by retinoic acid (RA) treatment and serum starvation, and that ζ-
isozyme of DGK generated the specific PA species, 16:0/16:0-PA, and
up-regulated neurite outgrowth during neuroblastoma cell differentia-
tion.

2. Materials and methods

2.1. Materials

5-fluoro-2-indolyl deschlorohalopemide (FIPI) was purchased from
Calbiochem. RA was obtained from Wako Pure Chemical Industries.
Standard lipids 14:0/14:0-PA and 12:0/12:0-DG were purchased from
Sigma-Aldrich and Avanti Polar Lipids, respectively.

2.2. Cell culture and siRNA transfection

Differentiation of mouse neuroblastoma Neuro-2a cell (European
Collection of Authenticated Cell Cultures) by serum withdrawal (0%
fetal bovine serum (FBS)) and RA treatment (20 μM RA in 2% FBS-
containing medium) presents a well-established model of neurite
outgrowth in vitro [21–23]. Neuro-2a cells were maintained
in Dulbecco's modified Eagle's medium (Wako Pure Chemical

Industries) supplemented with 10% FBS (Biological Industries),
100 U/ml penicillin and 100 μg/ml streptomycin (Wako Pure
Chemical Industries) at 37 °C in a humidified atmosphere containing
95% air and 5% CO2. Neuro-2a cells were seeded in 100-mm dishes at a
density of 5.0×105 cells/dish. To silence the expression of mouse
DGKδ, we used Stealth RNAi duplexes (Invitrogen) described pre-
viously [17]. The following Stealth RNAi duplexes (Invitrogen)
were used to silence the expression of mouse DGKζ: DGKζ-siRNA#1
(MSS200453), 3′-GAAUGUCCGUGAGCCAACCUUCGUA-5′ and 3′-
UACGAAGGUUGGCUCACGGACAUUC-5′, DGKζ-siRNA#2 (MSS20-
0454), 3′-CCAAGAUUCAGGACCUGAAACCGCA-5′ and 3′-UGCG-
GUUUCAGGUCCUGAAUCUUGG-5′. Stealth RNAi™ siRNA Negative
Control Med GC Duplex #2 (Invitrogen) was used as control siRNA.
The duplexes were transfected into Neuro-2a cells by electroporation
(at 350 V and 300 μF) using the Gene Pulser Xcell™ electroporation
system (Bio-Rad Laboratories). The transfected cells were cultured in
10% FBS-containing medium for 24 h.

2.3. Lipid extraction and analysis of PA molecular species

Neuro-2a cells were harvested in ice-cold phosphate buffered
saline. Total lipids were extracted according to the method of Bligh
and Dyer [24]. An aliquot of the extracted lipids was used for
measurement of the amount of inorganic phosphate in the phospho-
lipid preparation [25]. PA species in extracted cellular lipids (10 µl),
containing 65 pmol of the 14:0/14:0-PA internal standard (I.S.), were

Fig. 1. Analysis of PA molecular species during RA-induced Neuro-2a cell differentiation. (A, B) Neuro-2a cells were differentiated with 20 μMRA for 24 h. The amounts of total PA (A)
and major PA molecular species (B) in RA-treated (white bar) or RA-untreated (black bar) Neuro-2a cells were quantified using LC/MS (n=3). (C, D) Neuro-2a cells were differentiated
with 20 μM RA treatment for 0–3 days. (C) Morphological changes in Neuro-2a cells were observed using a phase-contrast microscope. (D) Changes in the quantity of 32:0-PA species
in a time dependent manner of RA treatment were analyzed using LC/MS (n=3). Values are presented as the mean ± S.D. *, p < 0.05. **, p < 0.01. ***, p < 0.005. The scale bars represent
40 µm.
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separated by LC and detected by MS as described previously [16]. The
MS peaks are presented in the form of X: Y, where X is the total
number of carbon atoms and Y is the total number of double bonds in
both acyl chains of PA. All LC/MS data were normalized based on the
inorganic phosphate content (cellular phospholipid content) and the
intensity of the internal standard. Identification of fatty acid residues in
30:0-, 32:0- and 34:0-PA species were performed by MS/MS analysis
as described previously [17]. A collision energy of 35 eV was used to
obtain fragment ions.

2.4. Reverse transcription polymerase chain reaction

The isolation of total RNA, reverse transcription and PCR ampli-
fication were performed as previously described [26]. The PCR
amplification was performed using rTaq polymerase (TOYOBO) and
the following mouse DGKα~θ-specific oligonucleotide primers. The
DGKα primers were the following: forward primer (nucleotide posi-
tions 333–352, 5′-GATGGCCAAAGAGAAGGGCC-3′) and reverse pri-
mer (nucleotide positions 658–675, 5′-GTCTTCTGGCCGGCCACC-3′).
The PCR conditions were as follows: 94 °C for 3 min, 32 cycles of 94 °C
for 30 s, 64 °C for 30 s, and 72 °C for 0.5 min, and 72 °C for 15 min.
The DGKβ primers were the following: forward primer (nucleotide
positions 435–457, 5′-CCATGACAAACCAGGAAAAATGG-3′) and re-
verse primer (nucleotide positions 847–866, 5′-CCTCGGGT-
CTTCCTCTTTCG-3′). The DGKγ primers were the following: forward

primer (nucleotide positions 458–477, 5′-GATGAGCGAAGAA-
CAATGGG-3′) and reverse primer (nucleotide positions 965–981, 5′-
CCTGAGGTCGCCCGGTC-3′). The DGKδ [27], DGKκ [28], DGKη [28],
DGKε [29], DGKζ [29], DGKι [29] and DGKθ [29] primers were
previously described. The amplified PCR products were separated by
agarose gel electrophoresis and stained with ethidium bromide (Wako
Pure Chemical, Osaka, Japan). A mouse whole brain was used for
positive control.

2.5. Western blot analysis

Neuro-2a cells (5×105 cells/100-mm dish) were lysed in 200 µl of
lysis buffer (50 mM HEPES, pH 7.2; 150 mM NaCl; 5 mM MgCl2;
1 mM dithiothreitol; 1 mM phenylmethylsulfonyl fluoride; Complete
protease inhibitor cocktail (Roche Applied Science) with 1% Nonidet P-
40 (MP Biomedicals)). Cell lysates were separated using SDS-PAGE.
The separated proteins were transferred to a polyvinylidene difluoride
membrane (Bio-Rad Laboratories) and blocked with 5% (w/w) skim
milk. The membrane was incubated with polyclonal anti-DGKδ anti-
body [30,31], polyclonal anti-DGKζ antibody [32] or anti-β-actin
antibody (Sigma Aldrich) in 5% (w/v) bovine serum albumin for
overnight. The immunoreactive bands were visualized using peroxi-
dase-conjugated goat anti-rabbit IgG antibody or goat anti-guinea pig
IgG antibody (Jackson Immuno Research Laboratories), and the ECL
Western-Blotting detection system (GE Healthcare). The relative band
intensity was analyzed by Image J software. The expression levels of
DGKδ or DGKζ were normalized with β-actin.

2.6. Assay of neurite outgrowth

To examine the effect of DGKζ-siRNA on RA- and serum starvation-
induced neurite outgrowth of Neuro-2a cells, DGKζ-siRNA#2 trans-
fected-cells were differentiated with 20 μM RA treatment or by serum
starvation for 24 h. These cells were fixed with 3.7% paraformaldehyde
for 15 min. The morphological changes were observed by a phase-

Fig. 2. Analysis of PA molecular species during serum starvation-induced Neuro-2a cell differentiation. Neuro-2a cells were differentiated by serum starvation for 24 h. (A)
Morphological changes were observed using a phase-contrast microscope. The amounts of total PA (B) and major PA molecular species (C) in Neuro-2a cells incubated in 10% FBS
containing medium (white bar) or FBS-free medium (black bar) for 24 h were analyzed using LC/MS (n=3). Values are presented as the mean ± S.D. ***, p < 0.005. The scale bars
represent 40 µm.

Table 1
Identification of the acyl species in each PA molecular species.

PA species Identified acyl chains

30:0-PA 14:0/16:0 (100%)
32:0-PA 16:0/16:0 (95.04%) 14:0/18:0 (4.96%)
34:0-PA 16:0/18:0 (100%)

Neuro-2a cells differentiated with 20 μM RA for 24 h were used. The relative abundance
(%) was based on the peak areas of the fragment ions (MS/MS) for each molecular ion.
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contrast microscope (Olympus). The percentage of cells with neurites
extending at least 2 diameters of the cell body was determined.

2.7. Statistics

Statistical analysis was performed by the two-tailed t-test.

3. Results

3.1. Analysis of PA molecular species during neuroblastoma cell
differentiation

We first examined whether the amount of total PA was increased
during Neuro-2a neuroblastoma cell differentiation. To induce neuro-
nal differentiation, the cells were cultured in 2% FBS-containing
medium with 20 μM RA for 24 h. Control cells were cultured in 2%
FBS-containing medium with 0.1% (v/v) DMSO for 24 h. As shown in
Fig. 1A, our LC/MS analysis revealed that the amount of total PA
significantly increased 2.0-fold in RA-treated Neuro-2a cells. Notably,
we observed 6.8-fold increase in the amounts of 32:0-PA molecular
species in RA-treated Neuro-2a cells (Fig. 1B). Moreover, 30:0- and
34:0-PA species also moderately increased (Fig. 1B).

The time course of the production of 32:0-PA species was mon-

itored during Neuro-2a cell differentiation with RA treatment. Neuro-
2a cells were differentiated with RA treatment for 0–3 days. We
confirmed that Neuro-2a cells gradually extended several neurites
and differentiated (Fig. 1C). The amount of 32:0-PA species was
significantly increased at day 1 and 2 after RA treatment, with maximal
increases (11.9-fold) occurring at day 2 (Fig. 1D). The 32:0-PA species
was then clearly decreased at day 3 after RA treatment (Fig. 1D). These
results indicate that 32:0-PA species is transiently generated at the
initial/early stage of RA-induced Neuro-2a cell differentiation.

We next tested whether the significant increase of 32:0-PA species
was occurred by different differentiation stimulation, serum starvation.
To induce Neuro-2a cell differentiation, the cells were cultured in FBS-
free medium for 24 h. We confirmed that Neuro-2a cells actively
extended several neurites and differentiated within 24 h after serum
starvation (Fig. 2A). Control cells were cultured in 10% FBS-containing
medium for 24 h. As shown in Fig. 2B, the amount of total PA was
significantly increased by serum starvation (2.6-fold). The amount of
32:0-PA species dramatically increased by serum starvation (7.2-fold)
(Fig. 2C) as observed for RA (Fig. 1). 30:0- and 34:0-PA species also
moderately increased (3.6- and 5.0-fold, respectively). These results
suggest that the production of specific PA species, 30:0-, 32:0- and
34:0-PA, is a common event during Neuro-2a cell differentiation.

Additionally, we analyzed the fatty acyl components of 30:0-, 32:0-
and 34:0-PA species in Neuro-2a cells differentiated with 20 μM RA for
24 h by LC-MS/MS. Our analysis revealed that 32:0-PA is primarily
dipalmitoyl-PA (16:0/16:0-PA) and that 30:0-, 32:0- and 34:0-PA
species commonly contain palmitic acid (16:0) (Table 1).

3.2. Identification of the 32:0-PA species production enzyme

To gain an insight into the 32:0-PA production pathway, we
examined whether PLD, which hydrolyzes PC to generate PA, produces
32:0-PA species during Neuro-2a cell differentiation. To determine the
involvement of PLD activity, FIPI, which inhibits both PLD1 and PLD2
at a 10–100 nM concentration range in vitro and in intact cells [33,34],
was used. Neuro-2a cells were differentiated with 20 µm RA or by
serum starvation for 24 h in the presence of 1 µm FIPI. LC/MS analysis
showed that, although 1 µm FIPI decreased several PA species such as

Fig. 3. Effect of PLD inhibitor on 32:0-PA species production during Neuro-2a cell
differentiation. Neuro-2a cells were differentiated with 20 μM RA (A) or by serum
starvation (B) in the presence or absence of 1 μM FIPI (dual PLD1/2 inhibitor) for 24 h.
The amounts of 32:0-PA species were analyzed using LC/MS (n=3). Values are presented
as the mean ± S.D. N.S., not significant.

Fig. 4. Expression of DGK isozyme mRNAs in Neuro-2a cells. (A) mRNA expression of
DGK isozymes in Neuro-2a cells was detected by RT-PCR. DGKα; 343 bp, DGKβ; 453 bp,
DGKγ; 523 bp, DGKδ; 406 bp, DGKη; 828 bp, DGKκ; 843 bp, DGKε; 592 bp, DGKζ;
545 bp, DGKι; 451 bp, DGKθ; 533 bp. (B) As control, mRNA expression of DGK
isozymes in mouse brain was also detected by RT-PCR.
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38:5- and 40:6-PA in undifferentiated cells (0.81-fold and 0.70-fold,
respectively) (data not shown), RA-dependent 32:0-PA production was
not decreased by FIPI (Fig. 3A). FIPI also failed to suppress serum
starvation-dependent 32:0-PA production; rather it modestly enhanced
the 32:0-PA production (Fig. 3B). These results indicate that FIPI-
sensitive PLD does not substantially contribute to the production of
32:0-PA species during Neuro-2a cell differentiation.

DGK is another enzyme that is known to produce PA by phosphor-
ylating DG. Although two DGK inhibitors, R59949 and R59022, are
generally used, these inhibitors are non-specific and cannot inhibit all
DGK isozymes, such as DGKα–θ [35]. Thus, we explored which DGK
isozymes were strongly expressed in Neuro-2a cells using RT-PCR. RT-
PCR analysis revealed that Neuro-2a cells expressed DGKα, δ, η, ε, ζ, ι

and θ (Fig. 4). DGKβ, γ, and κ were undetectable in Neuro-2a cells.
Because Neuro-2a cells highly expressed DGKδ and DGKζ (Fig. 4), we
assessed the involvement of DGKδ and/or DGKζ in the neuronal
differentiation-dependent production of 32:0-PA species.

We first examined the effect of DGKδ-siRNA on the production of
32:0-PA species. The suppression of DGKδ expression in Neuro-2a
cells was confirmed by western blotting. Neuro-2a cells expressed
DGKδ2, a splice variant of DGKδ gene [26]. DGKδ-siRNA efficiently
suppressed DGKδ2 expression as shown in Fig. 5A. However, LC-MS
analysis revealed that the RA-dependent production of 32:0-PA species
was not attenuated by a deficiency of DGKδ expression (Fig. 5B).
DGKδ-siRNA also failed to decrease the 32:0 PA production induced by
serum starvation (Fig. 5C).

Neuro-2a cells expressed two alternative splicing products of DGKζ
gene, ζ1 (104-kDa) and ζ2 (130-kDa) [36,37] (Fig. 6A). DGKζ-specific
siRNA#1 and #2 efficiently suppressed DGKζ1 and DGKζ2 expression
(Fig. 6A). Notably, DGKζ-siRNA#2 silenced DGKζ1 and DGKζ2
expression more effectively. Our LC/MS showed that the suppression
of DGKζ expression markedly inhibited the production of 32:0-PA
species with RA treatment (Fig. 6B and C). The treatment with these
siRNAs also reduced 30:0- and 34:0-PA species (Fig. 6B). However,
other PA species were not markedly affected (Fig. 6B). Furthermore,
DGKζ-siRNA#1 and #2 also suppressed the production of 32:0-PA
species by serum starvation (Fig. 6D and E). DGKζ-siRNA#2 more
effectively inhibited the production of 32:0-PA species than siRNA#1
(Fig. 6B – E). The stronger effects of siRNA#2 are explainable by the
stronger inhibition of DGKζ1/2 expression by siRNA#2 (Fig. 6A).
These results suggest that 32:0-PA species is, at least in part, generated
by DGKζ during Neuro-2a cell differentiation.

3.3. Effect of DGKζ-siRNA on neurite outgrowth

We tested if the suppression of DGKζ expression by DGKζ-siRNA#2
attenuates neurite outgrowth in Neuro-2a cells. RA treatment and
serum starvation markedly promoted neurite outgrowth (Fig. 7A and
C). The suppression of DGKζ expression by DGKζ-siRNA#2 signifi-
cantly decreased the number of Neuro-2a cells with RA-induced long
neurites (Fig. 7A and B). Moreover, DGKζ-siRNA#2 strongly inhibited
long neurite extension induced by serum starvation (Fig. 7C and D).
Taken together, these results suggest that DGKζ promotes neurite
outgrowth in Neuro-2a cells.

4. Discussion

It is known that total PA is increased during neuronal differentia-
tion [19,20]. However, it has not been identified until now what PA
species are increased. The main reasons for this are that PA species are
minor components and it is difficult to quantify the amounts of
individual PA species using conventional LC/MS methods. In this
study, we revealed for the first time that the production of 32:0-PA
(dipalmitoyl (16:0/16:0)-PA) was significantly enhanced during
Neuro-2a cell differentiation induced by both retinoic acid (RA) and
serum starvation (Figs. 1B and 2B) and DGKζ is involved in the
production of 32:0-PA (Fig. 6). It should be noted that the 32:0-PA
amount is greatly enhanced at the initial/early stage of RA-induced
Neuro-2a cell differentiation (24–48 h after the RA addition) (Fig. 1D).
Since budding, neurite formation, pathfinding, blanching and polariza-
tion occur at the initial/early stage of neuroblastoma differentiation
[38], the 32:0-PA and its generating enzyme, DGKζ, may play
important roles in those processes.

DGKδ and DGKζ were highly expressed in Neuro-2a cells (Fig. 4).
Because the production of 32:0-PA species was unaffected by DGKδ-
specific siRNA (Fig. 5B and C), DGKδ may be inactive during RA- and
serum starvation-induced Neuro-2a cell differentiation. On the other
hand, DGKζ-siRNA significantly reduced the production of 32:0-PA
species induced by RA-treatment and serum starvation (Fig. 6C – E).

Fig. 5. Effect of DGKδ-siRNA on 32:0-PA species production during Neuro-2a cell
differentiation. After 24 h of DGKδ-siRNA transfection, Neuro-2a cells were differen-
tiated with 20 μM RA (B) or by serum starvation (C) for 24 h. (A) The suppression of
DGKδ expression was confirmed by western blotting. (B, C) The amounts of 32:0-PA
species were analyzed by LC/MS (n=3). The results are presented as the percentage of the
value of 32:0-PA species in control siRNA-transfected cells. Values are presented as the
mean ± S.D. N.D., not detectable. N.S., not significant.
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DGKζ was reported to promote neurite outgrowth in NIE-115 cells
[39]. Rac1 is essential for RA-induced neurite extension of Neuro-2a
cells [40]. DGKζ-derived PA activates p21 activated protein kinase 1,
which initiates the release of Rac1 from Rho guanine nucleotide
dissociation inhibitors [8]. We showed that RA-induced neurite out-
growth was attenuated by a deficiency of DGKζ (Fig. 7B). Therefore, it
is possible that 32:0-PA species generated by DGKζ activates Rac1 and
promote neurite extension. DGKζ-mediated synaptic conversion of DG
to PA is required for the maintenance of dendritic spines [41]. In this
study, we observed the role of DGKζ in the morphological changes at
the initial/early stage of neuronal differentiation. Therefore, DGKζ
would play important roles in both initial/early stage of neuronal
differentiation and maintenance of dendritic spines through controlling
PA contents. However, we could not analyze direct effects of 32:0-PA
on neurite extension at present because introduction of PA into cells
was technically difficult. Although we tried to stably and transiently
express a kinase-dead DGKζ mutant in Neuro-2a cells many times, the
expression levels were low. It was reported that overexpression of
DGKζ in NIE-115 cells promoted neurite formation and this effect was
independent of DGKζ kinase activity [39]. Thus, we cannot deny the
possibility that DGKζ enhanced neurite extension in a kinase activity-
independent manner. Further studies are needed to determine the role
of 32:0-PA molecular species in neuronal differentiation. It is interest-
ing to explore 32:0-PA-specific targets in neuronal cells and brain.

Even DGKζ-siRNA#2, which quite effectively silenced DGKζ1 and
DGKζ2 expression (Fig. 6A), did not completely attenuated RA- and
serum starvation-dependent 32:0-PA production (approximately 40%
remains) (Fig. 6C and E), suggesting the involvement of other enzymes
including other DGK isozymes and PLD. Although DGKδ was intensely

expressed in Neuro-2a cells (Fig. 4A), the RA-dependent production of
32:0-PA species was not inhibited by a deficiency of DGKδ expression
(Fig. 5B). Because DGKι, which is structurally highly similar to DGKζ
[9–12], was also strongly expressed (Fig. 4A), this isozyme may be
involved in the 32:0-PA production.

It was reported that PLD2-derived PA promotes NGF-induced
neurite outgrowth [42,43]. However, Oliveira et al. demonstrated that,
in PLD2 knock-out brains, 32:1- and 38:4-PA species were decreased
but 32:0-PA, which was decreased by DGKζ-siRNA in RA-treated and
serum starved Neuro-2a cells (Fig. 6), was increased [44]. In this study,
FIPI failed to inhibit RA- and serum starvation-dependent 32:0-PA
production (Fig. 3A and B). Thus, it is likely that PLD does not mainly
participate in 32:0-PA production during Neuro-2a cell differentiation.
Recently, protein arginine methyltransferase 8 was also reported to
have PLD activity [45]. If protein arginine methyltransferase 8-PLD is a
FIPI-insensitive enzyme, it is possible that this enzyme contributes to
the DGKζ-independent PA production. Antonescu et al. [46] reported
that cellular PA levels increased upon inhibition of PLD (750 nM FIPI)
in epithelial BSC-1 monkey kidney cells and speculated that a DGK-
dependent negative feedback regulation though PLD inhibition pro-
duced PA. Serum starvation-dependent 32:0-PA production also
modestly increased with FIPI treatment (Fig. 3B). There might be a
DGK-dependent negative feedback regulation to produce 32:0-PA.

The expression levels of DGKζ2 were only modestly increased
(approximately 30% increase) and those of DGKζ1 were moderately
decreased (approximately 20% decrease) with RA treatment for 24–
48 h (data not shown). The expression changes cannot explain the
drastic increase of 32:0-PA (approximately 7-fold increase) (Fig. 1). In
addition, the membrane translocation of DGKζ was not observed

Fig. 6. Effects of DGKζ-siRNAs on 32:0-PA species production during Neuro-2a cell differentiation. After 24 h of DGKζ-siRNA#1 or DGKζ-siRNA#2 transfection, Neuro-2a cells were
differentiated with 20 μM RA (B, C) or by serum starvation (SS) (D, E) for 24 h. (A) The suppression of DGKζ expression was confirmed by western blotting. (B) The amounts of major
PA species were analyzed using LC/MS. Representative data from four independent experiments are shown. (C) The relative values of 32:0-PA species in RA-treated, DGKζ-siRNA#1- or
DGKζ-siRNA#2-transfected Neuro-2a cells are shown. The amounts of 32:0-PA species were analyzed using LC/MS (n=4). (D) The amounts of major PA species were analyzed using
LC/MS. Representative data from three independent experiments are shown. (E) The relative values of 32:0-PA species in serum starved, DGKζ-siRNA#1- or DGKζ-siRNA#2-
transfected Neuro-2a cells are shown. The amounts of 32:0-PA species were analyzed using LC/MS (n=3). The results are presented as the percentage of the value of 32:0-PA species in
control siRNA-transfected cells. Values are presented as the mean ± S.D. *, p < 0.05, ***, p < 0.005.
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during RA-induced differentiation. Intriguingly, 32:0-DG, substrate of
DGKζ, was substantially increased at 24 h after the RA addition (data
not shown). Therefore, it is possible that the production of 32:0-PA is
regulated by the DG supply at the initial/early stage of RA-induced
Neuro-2a cell differentiation.

Our recent report showed that R59949, a DGK inhibitor, attenuated
the interleukin-2-dependent increases of 36:1-, 40:5- and 40:6-PA
species in CTLL-2 cells [16]. Moreover, we also demonstrated that,
compared to DGKζ, DGKδ generated relatively broad PA species such
as 30:0-, 30:1-, 32:0-, 32:1-, 34:0- and 34:1-PA in glucose-stimulated
C2C12 myoblasts [17]. These profiles are clearly different from that of
DGKζ in Neuro-2a cells (Figs. 1B and 2B). These results further
support the fact that DGK isozymes utilize a wide variety of DG
molecular species as a substrate in different stimuli and cells.

In conclusion, the present study indicates that palmitic acid (16:0)-
containing PA species, especially 16:0/16:0-PA species, were dramati-
cally increased during RA- and serum starvation-induced Neuro-2a cell
differentiation. Moreover, our results suggest that DGKζ is involved in
the production of these PA species and promotes neurite outgrowth.
These results provide a novel biochemical insight into the molecular
mechanisms underlying neuroblastoma differentiation.
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