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Abstract: Dipeptidyl peptidase-IV (DPP-IV) inhibitors, often known as gliptins, have been used to
treat type 2 diabetes mellitus (T2DM). They may be combined with other medications as an additional
treatment or used alone as a monotherapy. In addition to insulin, sulfonylureas, thiazolidinediones,
and metformin, these molecules appear as possible therapeutic options. Oxadiazole rings have
been employed in numerous different ways during drug development efforts. It has been shown
that including them in the pharmacophore increases the amount of ligand that may be bound. The
exceptional hydrogen bond acceptor properties of oxadiazoles and the distinct hydrocarbon bonding
potential of their regioisomers have been established. Beside their anti-diabetic effects, oxadiazoles
display a wide range of pharmacological properties. In this study, we made the assumption that
molecules containing oxadiazole rings may afford a different approach to the treatment of diabetes,
not only for controlling glycemic levels but also for preventing atherosclerosis progression and other
complications associated with diabetes. It was observed that oxadiazole fusion with benzothiazole,
5-(2,5,2-trifluoroethoxy) phenyl, β-homophenylalanine, 2-methyl-2-{5-(4-chlorophenyl), diamine-
bridged bis-coumarinyl, 5-aryl-2-(6′-nitrobenzofuran-2′-yl), nitrobenzofuran, and/or oxindole leads
to potential anti-diabetic activity.

Keywords: oxadiazole; sulfonylureas; DPP-IV inhibitors; diabetes mellitus; peptidomimetics

1. Introduction

Dipeptidyl peptidase-IV (DPP-IV) inhibitors, often known as gliptins, are a class of
oral anti-diabetic medications that have been given approval by the Food and Drug Admin-
istration (FDA) to treat individuals with type 2 diabetes mellitus (T2DM) [1]. Following
oral ingestion of food, the production of incretin hormones, which are hormones that
are vital for maintaining glucose homeostasis, occurs in the gut. These hormones are the
targets through which these drugs act [2]. Independent of the incretin pathway, in addition
to their antihyperglycemic activities, this family of drugs also displays antihypertensive
properties [3], anti-inflammatory effects [4], and antiapoptotic effects [5], as well as im-
munomodulatory effects [6,7] on the heart, kidneys, and blood vessels. A number of studies
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have demonstrated that this class of molecules may also be useful for treating transplant
patients who have acquired new-onset diabetes after their transplantation (NODAT). These
molecules may be combined with other medications as an additional treatment or used
alone as a monotherapy. Sulfonylureas, thiazolidinediones, and metformin are also possible
therapeutic options in addition to insulin [8,9]. Iminosugars represent a kind of polyhydrox-
ylated secondary or tertiary amines that mimic monosaccharide sugars, but which contain
nitrogen in lieu of oxygen in the ring. Iminosugars constitute a wide variety of different
types of small organic molecules. These molecules belong to the class of pyrrolidines,
piperidines, azepanes, nortropanes, pyrrolizidines, and indolizidines. The capacity of
iminosugars to function as inhibitors of glycosidases and glycosyltransferases constituted
the first role they were utilized in. These inhibitors work mostly through competitive
inhibition and are mainly used to treat diabetes [10–14].

The glucagon-like peptide-1 (GLP-1) has recently emerged as a possible target for
T2DM treatment. GLP-1 is produced by the gut after a meal, enhancing insulin output. It
has been demonstrated that increased levels of GLP-1 may contribute to a better glycemic
control in T2DM individuals. DPP-IV controls the activity of GLP-1 by cleaving the
N-terminus of GLP-1 [7–36]-amide to generate inert GLP-1 [9–36]-amide. The quantity
of GLP-1 in the circulation may be increased by inhibiting DPP-IV [15]. As a result,
a significant amount of time and effort has been dedicated to the research of DPP-IV
inhibitors as potential treatments of T2DM. Sitagliptin [16] is one of these drugs, and it has
been available in the United States since 2006 as the first FDA-approved DPP-IV inhibitor.
Saxagliptin [17,18], vildagliptin [19], alogliptin [20], and linagliptin [21] (Figure 1) are all
medications that have either been studied in diabetic patients or approved for sale in some
countries. Based on structural similarities or differences with the DPP-IV molecule, DPP-IV
inhibitors may be classified as either peptidomimetics (vildagliptin and saxagliptin) or
non-peptidomimetics (sitagliptin, alogliptin, linagliptin). They are reversible competitive
inhibitors of the DPP-IV substrates. These compounds have various degrees of affinity with
DPP-IV substrates. The selectivity of the peptidomimetics toward DPP-IV is often lower
as compared to DPP8/9. The greater the relative inhibition of DPP8/9 and the lower the
relative selectivity toward DPP-IV, the greater the risk of adverse consequences (allergic skin
manifestations, etc.) [22,23]. When compared to non-peptidomimetics, peptidomimetics
display a distinct DPP-IV inhibition mechanism. Because non-peptidomimetics generate
non-covalent extra-cellular interactions with residues in the catalytic region of the DPP-IV
substrate, their inhibiting activity is powerful and rapid. In contrast, inhibition of the DPP-
IV substrate by peptidomimetics takes place in a mode that includes the development of a
reversible covalent enzyme-inhibitor complex. This complex may be broken down again.
This complex binds to and dissociates from the catalytic site of the DPP-IV substrate in a
very slow manner, resulting in the persistent inhibition of the DPP-IV enzyme a long time
after the medication has been rendered ineffective. Because of this, the catalytic activity is
hindered long after the free drug has been eliminated from circulation. In fact, vildagliptin
and saxagliptin may be able to suppress DPP-IV activity for a longer period while having
relatively short half-lives [24,25].

The usage of gliptin has been proven to be equally effective as compared to metformin,
sulfonylureas (glimepiride, glipizide), thiazolidinediones (rosiglitazone, pioglitazone), and
alfa-glucosidase inhibitors (voglibose). Compared to sulfonylureas, this therapy almost
never causes hypoglycemia or affects body weight [26–28]. According to the findings of a
meta-analysis that compared the effectiveness of sitagliptin and vildagliptin, the reported
total HbA1c decrease was ~0.74% and 0.73%, respectively. If the starting HbA1c was
superior to 9% instead of 8%, the glycemic results were shown to be more favorable [22].
According to a recent meta-analysis, the use of a gliptin was associated with a larger
percentage of patients reaching the HbA1c target of <7% without any weight gain or
hypoglycemia [29]. We have thus reviewed here the possible utilization of heterocyclic
compounds as DPP-IV inhibitors, with special emphasis on oxadiazoles as potent anti-
diabetic agents.



Molecules 2022, 27, 6001 3 of 17Molecules 2022, 27, x FOR PEER REVIEW 3 of 19 
 

 

 
Figure 1. Structures of clinically-approved DPP-IV inhibitors. 

The usage of gliptin has been proven to be equally effective as compared to met-
formin, sulfonylureas (glimepiride, glipizide), thiazolidinediones (rosiglitazone, 
pioglitazone), and alfa-glucosidase inhibitors (voglibose). Compared to sulfonylureas, 
this therapy almost never causes hypoglycemia or affects body weight [26–28]. Accord-
ing to the findings of a meta-analysis that compared the effectiveness of sitagliptin and 
vildagliptin, the reported total HbA1c decrease was ~0.74% and 0.73%, respectively. If the 
starting HbA1c was superior to 9% instead of 8%, the glycemic results were shown to be 
more favorable [22]. According to a recent meta-analysis, the use of a gliptin was associ-
ated with a larger percentage of patients reaching the HbA1c target of <7% without any 
weight gain or hypoglycemia [29]. We have thus reviewed here the possible utilization of 
heterocyclic compounds as DPP-IV inhibitors, with special emphasis on oxadiazoles as 
potent anti-diabetic agents. 

2. Review of Different Heterocyclic Compounds as Potent DPP-IV Inhibitors 
Yasufumi Miyamoto et al. [15] used structure-based drug design (SBDD) to modify 

compound 1 to generate a novel and strong DPP-IV inhibitor for the treatment of T2DM. 
Using the results of X-ray co-crystallography studies on compound 1 revealed that 
Arg125 might be a suitable target amino acid residue for obtaining a stronger inhibitory 
activity. According to the theory, the guanidino group of Arg125 may engage bidentately 
with two separate hydrogen bond acceptors at the same time. As a result, scientists have 
synthesized a number of 3-pyridylacetamide derivatives that each include an extra hy-
drogen bond acceptor and have the potential to take part in bidentate interactions with 
Arg125. Compound 2 was shown to bind in a bivalent manner with the guanidino group 
of Arg125, which is a powerful and selective DPP-IV inhibitor. The structures of com-
pounds 1 and 2 are illustrated in Figure 2. 

Figure 1. Structures of clinically-approved DPP-IV inhibitors.

2. Review of Different Heterocyclic Compounds as Potent DPP-IV Inhibitors

Yasufumi Miyamoto et al. [15] used structure-based drug design (SBDD) to modify
compound 1 to generate a novel and strong DPP-IV inhibitor for the treatment of T2DM.
Using the results of X-ray co-crystallography studies on compound 1 revealed that Arg125
might be a suitable target amino acid residue for obtaining a stronger inhibitory activity.
According to the theory, the guanidino group of Arg125 may engage bidentately with two
separate hydrogen bond acceptors at the same time. As a result, scientists have synthe-
sized a number of 3-pyridylacetamide derivatives that each include an extra hydrogen
bond acceptor and have the potential to take part in bidentate interactions with Arg125.
Compound 2 was shown to bind in a bivalent manner with the guanidino group of Arg125,
which is a powerful and selective DPP-IV inhibitor. The structures of compounds 1 and 2
are illustrated in Figure 2.
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Figure 2. 3-Pyridylacetamide derivatives as DPP-IV inhibitors.

Utilizing the SAR of pyrrole-2-carbonitrile inhibitors, a variety of new hetero-aromatic
moiety-substituted amino pyrrole-2-carbonitrile derivatives were synthesized. IC50 values
ranged from 0.004 to 113.6 µM for all drugs, indicating that they were effective DPP-
IV inhibitors. Compounds 3 (IC50 = 0.004 µM) and 4 (IC50 = 0.01 µM) were found to
have excellent inhibitory activities against DPP-IV and a good efficacy in an oral glucose
tolerance test (OGTT) in mice. Moreover, compounds 3 and 4 exhibited intermediate
pharmacokinetic characteristics (3, F% = 37.8%, t1/2 = 1.45 h; 4, F% = 16.8%, t1/2 = 3.64 h).
The structures of compounds 3 and 4 are displayed in Figure 3 [30].
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Figure 3. Pyrrole-2-carbonitrile has been shown to be effective as a DPP-IV inhibitor.

New beta-amino pyrrole-2-carbonitrile derivatives have been discovered and devel-
oped using the rational drug design approach. Compounds 5 and 6 (Figure 4) were reported
to be powerful and specific DPP-IV inhibitors in vivo, leading to a reduction in glucose
amounts in the blood. Compound 5 significantly inhibited DPP-IV (IC50 = 0.05 µM), and
also displayed a high oral bioavailability (F = 53.2%). Compound 6 demonstrated strong
DPP-IV inhibitory action (IC50 = 0.01 µM), high selectivity against related peptidases, good
effectiveness during the oral glucose tolerance test (OGTT) in ICR mice, and a moderate
pharmacokinetic profile [31].
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A novel family of 1,2,3-Triazole-4-carboximidamide compounds was successfully de-
veloped for their DPP-IV inhibitory activity. When compared to the other drugs examined,
compounds 7, 8, and 9 (Figure 5) displayed excellent inhibitory effects against DPP-IV, with
IC50 values of 14.75, 6.75, and 6.57 nM, respectively. Compound 7, at a dose of 10 mg/kg,
enhanced glucose tolerance during OGTT in mice. Chronic treatment with compound 7
for 14 days in diabetic Wistar rats resulted in a significant drop in blood glucose levels,
equivalent to the impact of Sitagliptin employed as a conventional treatment [32].
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Figure 5. 1,2,3-Triazole-4-carboximidamide derivatives.

Six viable compounds were found using SBDD methods, and it was determined that
compound 10 (Figure 6) had the highest docking score, i.e., −10.463 K.cal/mol with the
DPP-IV enzyme (PDB ID-2ONC). Molecular dynamics (MD) simulations were also used to
confirm the protein–ligand complex’s stability. Alogliptin and compound 10 were revealed
to have a root-mean-square deviation (RMSD) smaller than 2.0 Å [33].
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Figure 6. Benzimidazole derivative.

To interact with Try629 and Lys554 at the S2′ position, novel uracil analogues with
benzoic acid moieties at the N3 position were synthesized and tested for their DPP-IV
inhibitory efficacy. From SAR studies, compound 11 was selected as the best candidate as a
strong and selective DPP-IV inhibitor (IC50 = 1.7 nM). Based on docking data, it seems that
additional salt bridging between the carboxylic acid group and the primary amine group
of Lys554 plays a crucial role in increasing activity. According to the findings, compound
11 (Figure 7) showed no cytotoxicity in human hepatocyte L-O2 cells at doses up to 50 µM.
Later, in vivo testing revealed that the ester of compound 11 considerably enhanced normal
mice’s glucose tolerance. According to the study’s results, compound 11 has the potential
to be a safe and effective medication for T2DM [34].
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Qing Li et al. [35] reported another DPP-IV inhibitor with minor modifications in com-
pound 11 [12, methyl 3-((4-((R)-3-aminopiperidin-1-yl)-3-(but-2-ynyl), Figure 8] displaying
excellent resultst in vivo.
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From the above investigations, it was observed that oxygen and nitrogen heteroatoms
play an important role in binding with receptors, resulting in significant conformational
changes leading to potential biological activities. This led us to review the literature
concerning the anti-diabetic activity of oxadiazoles.

3. Oxadiazoles as Potential Nuclei

Owing to their unique properties, oxadiazoles have attracted the attention of sci-
entists in the disciplines of polymer and material science. These compounds feature
five-membered rings comprised of two carbons, two nitrogens, and one oxygen atom
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(Figure 9). The number of patent applications for oxadiazoles has climbed to a total of
646 over the last nine years. This suggests that the scientific community has attached
great importance to this class of chemicals [36]. Zibotentan, a potential anticancer agent,
and ataluren (Figure 10), a potential therapeutic for cystic fibrosis, are two examples of
oxadiazole-containing compounds that are now participating in late-stage clinical stud-
ies [37]. The only compound available on the market that currently contains oxadiazole is
an antiviral drug called raltegravir (Figure 10), which is used to treat HIV infection [38].
Oxadiazoles are now being included in an increasing number of therapeutic approaches
in a wide range of disease areas, including but not limited to diabetes [39], obesity [40],
inflammation [41], cancer [42], and infection [43].
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A wide array of applications have been found for oxadiazole rings in drug develop-
ment projects. It has been shown that including them in the pharmacophore improves
ligand binding in various ways. The carbonyl groups of molecules such as esters, amides,
carbamates, and hydrogenated hydroxamic esters may be replaced with oxadiazoles, con-
stituting another use for these types of molecules [44–46].

Oxadiazole rings exist in form of numerous regioisomers, including 1,2,4-, 1,3,4-,
and 1,2,5-isomers (Figure 9). Because the side chains R1 and R2 of the 1,2,5-regioisomer
are orientated in a different way compared to that of the side chains in the other two
isomers, this isomer is found less often. Oxadiazoles may display different regioisomeric
configurations, but they always contain the same R1 and R2 side chains. As a consequence,
the positions of these side chains are quite similar. It is envisaged that matching pairings
would have identical overall molecular structures and, as a result, would form bonds in
the same way. The exceptional hydrogen bond acceptor properties of oxadiazoles and the
distinct hydrocarbon bonding potentials of their regioisomers have been established [47–49].
We will now investigate how oxadiazoles may help in treating diabetes.

3. An Overview of the Potential Use of Oxadiazole Derivatives as Anti-Diabetic Drugs

1,3,4-Oxadiazole and 1,2,4-oxadiazole have the potential to be used for many thera-
peutic applications [50–56].

Omarigliptin is a sulfonamide-containing moiety that inhibits the DPP-IV enzyme
to achieve its antihyperglycemic activity [57]. Investigations into its pharmacokinetic
properties have shown that it may be given on a once-weekly basis, which distinguishes
it from all other DPP-IV inhibitors. The derivatives of 2-cyanopyrrolidine are classified
as glycine-based inhibitors, which fall within the larger category of peptidomimetic in-
hibitors [58,59]. The presence of a nitrile group on the five-membered pyrrolidine ring in
2-cyanopyrrolidine derivatives is indicative of their capacity to exert reversible nanomolar
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inhibition of the DPP-IV enzyme [60]. We reasoned that compounds based on oxadiazoles
would be able to provide an alternative therapy for diabetes for not only controlling glu-
cose levels but also preventing the progression of atherosclerosis and other complications
associated with diabetes.

Kumar et al. [61] discovered that some 2-((benzothiazol-2-ylthio) methyl)-5-phenyl-
1,3,4-oxadiazole derivatives have the potential to act as anti-diabetic compounds. Using
glibenclamide as the reference, each of the synthetic compounds were evaluated for their
capacity to combat diabetes in an animal model. At a dose of 350 mg/kg p.o., compound
13 (Figure 11) displayed the most noticeable effect of all molecules, even though all showed
a significant activity (orally).
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Figure 11. Benzothiazole tethered with 1,3 4-oxadiazole derivatives as an anti-diabetic oxadia-
zole derivative.

Benzothiazole-1,3,4-oxadiazole-4-thiazolidinone hybrid derivatives were synthesized
by Bhutani et al. [62]. OGTT in non-diabetic rats and streptozotocin-induced diabetic rat
models were used to evaluate seven compounds with the highest docking scores. The
blood glucose levels were significantly reduced with all of the studied compounds, ranging
from good to moderate. The anti-diabetic effects of the three compounds (14, 15 and 16,
Figure 12) were superior to those of the conventional medicine pioglitazone, showing
a glucose concentration of 178.32 ± 1.88 mg/dL, compared to the lower concentrations
of glucose of 157.15 ± 1.79 mg/dL, 154.39 ± 1.71 mg/dL, and 167.36 ± 2.45 mg/dL
reported for 14–16. Acarbose (IC50 = 18.5 ± 0.20 µM) was found to be the most potent
inhibitor of alpha-glucosidase among the seven derivatives examined. However, three
of its derivatives, compounds 14, 17, and 18 (Figure 12), displayed lower IC50 values
(0.21 ± 0.01 µM, 9.03 ± 0.12 µM and 11.96 ± 0.40 µM, respectively), suggesting that they
were less effective than the ordinary acarbose. In other words, these innovative hybrids
could be used as a basis for the development of novel agents [62].
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New 5-(2,2,2-trifluoroethoxy)phenyl-1,3,4-oxadiazol-2-thiol derivatives have been
synthesized and analyzed for their biological activities in vitro and in vivo. In comparison
to acarbose (IC50 = 34.71 µg/mL), these compounds showed α-amylase inhibitory activities
in the IC50 range of 40.00–80.00 µg/mL. Compounds 19 and 20 were the ones that exhibited
the highest levels of activity in vitro compared to the other synthesized compounds. Animal
experiments showed that compounds 19, 20, and 21 (Figure 13) were able to reduce glucose
levels in Drosophila, but displayed a 17–30% lower capacity than acarbose. It was shown
that compounds 19 and 20 exhibited the highest activity among the produced compounds.
In this study, compounds 19, 20, and 21 were revealed to be good candidates for further
research as possible anti-diabetes drugs [63].
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Figure 13. 1,3,4-Oxadiazole-2-thiol derivatives.

New benzothiazoles clubbed oxadiazole-Mannich bases (M-1 to M-22) synthesized by
Bhutani et al. were evaluated using OGTT and STZ-induced diabetes in normal rats. Glu-
cose levels were reduced with compound M-14 (22, Figure 14) (161.39 ± 4.38 mg/dL) in the
STZ model, which was equivalent to treatment with glibenclamide (140.29 ± 1.24 mg/dL).
The antihyperglycemic efficacy of the other substances tested ranged from fair to excel-
lent [64].
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Nordhoff et al. [65] demonstrated that amide substitutions enhanced the absorp-
tion, distribution, metabolism, and excretion (ADME) characteristics of a series of β-
homophenylalanine-based inhibitors of DPP-IV. Thanks to the efforts of this group, a new
class of powerful and selective DPP-IV inhibitors with an appealing pharmacokinetic pro-
file and good performance was synthesized and evaluated in an animal model of diabetes.
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Compounds 23 and 24 (Figure 15) from this new series of compounds were shown to
display interesting pharmacokinetic properties and to work very well in animal models
of diabetes.
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Figure 15. β-homophenylalanine-based inhibitors of DPP-IV.

A new class of powerful, selective, and orally accessible DPP-IV inhibitors has been
discovered by Xu et al. [66] Without an electrophilic trap, they are among the most powerful
chemicals known to date. Regarding DPP-IV homologs, compound 25 (Figure 16) was
shown to have a higher selectivity. However, their short half-life, observed after oral
treatment in rats and dogs, led to further research being stopped on these compounds.
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Figure 16. 1,2,4-Oxadiazole derivative as a potent DPP-IV inhibitor.

N-aryl/aralkyl derivatives of 2-methyl-2-{5-(4-chlorophenyl)-1,3,4-oxadiazole-2-ylthiol}
acetamides were synthesized and the α-glucosidase inhibitory potential of each drug was
examined. Compounds 26–31 (Figure 17) displayed a strong α-glycosidase inhibitory activity
(IC50 of 81.72 ± 1.18, 52.73 ± 1.16, 62.62 ± 1.15, 56.34 ± 1.17, 86.35 ± 1.17, 52.63 ± 1.16 µM,
respectively). These results were validated by molecular modelling and ADME predictions.
It was then possible to synthesize a library of compounds using ordinary basic materials
possibly leading to the development of new medicines [67].

One-pot multicomponent design and synthesis of three series of diamine-bridged
bis-coumarinyl oxadiazole conjugates were reported by Kazmi et al. [68]. The conjugates
produced were tested for their ability to inhibit glucosidases. With an IC50 value of only
0.07 ± 0.001 µM (acarbose: 38.2 ± 0.12 µM), compound 32 (Figure 18), including the
4,4′-oxydianiline linker, was shown to be the primary and selective inhibitor of alpha-
glucosidase enzymes. Its inhibitory activity was about 545 times higher compared to con-
ventional drugs. Compound 32 was also shown to be a strong inhibitor of intestinal maltase-
glucoamylase (IC50 = 0.04 ± 0.02 µM) compared to acarbose (IC50 = 0.06 ± 0.01 µM). With
an IC50 value of 0.08 ± 0.002 µM, this compound was reported to be the primary inhibitor
of the β-glucosidase enzyme. The mechanism of the inhibition was investigated using
Michaelis–Menten kinetic studies. All the generated molecules were docked against the
glucosidase enzyme. According to the obtained results, numerous interactions were ob-
served with catalytic residues in a coordinated manner, which might stabilize inhibitors in
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the active site. In addition, β-glucosidase inhibitors were successfully identified via the use
of molecules having strong binding interactions with amino acid residues.
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Taha et al. [69] designed and synthesized twenty 5-aryl-2-(6′-nitrobenzofuran-2′-yl)-
1,3,4-oxadiazole derivatives and tested them for their ability to inhibit α-glucosidase.
Compared to acarbose (IC50 = 856.45 ± 5.60µM), compounds with hydroxyl groups and
halogens (compounds 33–38, Figure 19) were shown to be five to seventy times more
active, with IC50 values in the range of 12.75 ± 0.10 to 162.05 ± 1.65 µM. A hybrid family
of oxadiazole and benzofuran compounds is now being studied for its ability to block
α-glucosidase. Researchers may be prompted to use these results for the treatment of
hyperglycemia. Within docking studies, hydrogen bonds and arene–arene interactions
were shown to be the primary means of interactions with Glu 276, Asp 214, and Phe 177.

Molecules 2022, 27, x FOR PEER REVIEW 12 of 19 
 

 

bonds and arene–arene interactions were shown to be the primary means of interactions 
with Glu 276, Asp 214, and Phe 177. 

 
Figure 19. Nitrobenzofuran-1,3,4-Oxadiazoles derivatives. 

Anti-diabetic drugs derived from 1,3,4-oxadiazoles have been discovered by Ullah et 
al. [70]. The ability of these newly synthesized compounds to inhibit α-glucosidase ac-
tivity was investigated. As compared to acarbose (38.45 ± 0.80 μM), all compounds 
showed strong inhibitory activities with IC50 values ranging from 0.80±0.1 to 45.1 ± 1.7 
μM. Thirteen compounds revealed potential inhibitory actions, though only one mole-
cule (IC50 = 45.1 ± 1.7 μM) was found to be less active. Among all the synthesized deriva-
tives, one compound (IC50 = 0.80 ± 0.1 μM) demonstrated the most promising inhibitory 
efficacy. 

Taha et al. [71] discovered hybrid analogues of oxindole-based oxadiazoles (based 
on the structure of compound 39, Figure 20) as potential α-glucosidase inhibitors. As 
compared to acarbose (IC50 = 895.09 ± 2.04 μM), all compounds were shown to be pow-
erful inhibitors of this enzyme, with IC50 values ranging from 1.25 ± 0.05 to 268.36 ± 4.22 
μM. In this work, a new series of powerful α-glucosidase inhibitors have been discov-
ered, suggesting further investigations. 

 
Figure 20. α-Glucosidase inhibitors based on oxadiazole hybrids. 

New 1,2,4-oxadiazole derivatives, whose structures were reported in the US patent 
issued by Xu et al. [72] (compound 40, Figure 21), are DPP-IV enzyme inhibitors and may 
be used to treat or prevent disorders involving this enzyme, such as diabetes, and more 
specifically type 2 diabetes. A pharmaceutical composition including these compounds 
and their application in the prevention or treatment of illnesses involving the DPP-IV 
enzyme are also contemplated by this invention. 

Figure 19. Nitrobenzofuran-1,3,4-Oxadiazoles derivatives.



Molecules 2022, 27, 6001 11 of 17

Anti-diabetic drugs derived from 1,3,4-oxadiazoles have been discovered by
Ullah et al. [70]. The ability of these newly synthesized compounds to inhibit α-glucosidase
activity was investigated. As compared to acarbose (38.45 ± 0.80 µM), all compounds
showed strong inhibitory activities with IC50 values ranging from 0.80 ± 0.1 to 45.1 ± 1.7 µM.
Thirteen compounds revealed potential inhibitory actions, though only one molecule
(IC50 = 45.1 ± 1.7 µM) was found to be less active. Among all the synthesized derivatives,
one compound (IC50 = 0.80 ± 0.1 µM) demonstrated the most promising inhibitory efficacy.

Taha et al. [71] discovered hybrid analogues of oxindole-based oxadiazoles (based on
the structure of compound 39, Figure 20) as potential α-glucosidase inhibitors. As compared
to acarbose (IC50 = 895.09± 2.04 µM), all compounds were shown to be powerful inhibitors
of this enzyme, with IC50 values ranging from 1.25 ± 0.05 to 268.36 ± 4.22 µM. In this
work, a new series of powerful α-glucosidase inhibitors have been discovered, suggesting
further investigations.
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Figure 20. α-Glucosidase inhibitors based on oxadiazole hybrids.

New 1,2,4-oxadiazole derivatives, whose structures were reported in the US patent
issued by Xu et al. [72] (compound 40, Figure 21), are DPP-IV enzyme inhibitors and may
be used to treat or prevent disorders involving this enzyme, such as diabetes, and more
specifically type 2 diabetes. A pharmaceutical composition including these compounds and
their application in the prevention or treatment of illnesses involving the DPP-IV enzyme
are also contemplated by this invention.
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Hamdani et al. [73] synthesized three 1,3,4-oxadiazole derivatives (compounds 41,
42, and 43, Figure 22) and used X-ray diffraction, density functional theory (DFT), and
other methods to demonstrate their inhibitory potential of α-amylase. X-ray diffraction
and other spectro-analytical methods were employed to validate the structures of the
obtained compounds, which were prepared in excellent yields (70–83%). In addition to
validating X-ray data, DFT calculations also examined charge dispersion and reactivity,
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utilizing frontier molecular orbitals and molecular electrostatic potential (MEP) approaches.
α-amylase inhibition experiments were used to determine the enzymatic inhibitory capacity
of the produced compounds (41, 42, and 43). Compound 42 displayed a low IC50 value of
86.83 ± 0.23 µg/mL, which indicates its strong ability to inhibit α-amylase.
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The anti-diabetic properties of oxadiazole derivatives were studied in silico using the
DFT approach, employing the B3LYP version with compounds set by Ibrahim et al. [74].
Four models were generated using the Genetic Function Algorithm (GFA). Based on the
obtained results, researchers determined that Model 1 had the highest LOF (0.030552), R2
(0.09681), R2adj (0.09567), Q2CV (0.09364), and R2 (0.06969) values. Findings from molecu-
lar docking indicated that few ligands had the greatest docking scores of −9.9 kcal/mol
among the co-ligands. The docking ratings produced here were shown to be in concordance
with findings from previous studies. As a result of this work, anti-diabetic drugs with
improved inhibitory action against α-glucosidase could potentially be developed.

In order to investigate the sequential conversion of indolyl butanoic acid into 1,3,4-
oxadiazole-2-thiols, Nazir et al. [75] employed several chemical transformations. Several
different amine derivatives were reacted with 2-bromoacetyl bromide to serve as an elec-
trophile, leading to the production of 2-bromo-N-phenyl/arylacetamides in a series of
operations that ran in parallel with one another. A nucleophilic 1,3,4-oxadiazole-2-thiol
analogue was then applied to the electrophilic compounds to produce a variety of N-
substituted derivatives (compounds 44a and 44b, Figure 23). In this study, the anti-diabetic
potential of all produced compounds was first examined through the inhibition of the
α-glucosidase enzyme, and then by studying them in silico. In addition, their hemolytic
activity was used to determine their cytotoxicity profile, and all of the compounds were
shown to display minimal cytotoxicity. The most active compounds (44a and 44b) had IC50
values of 9.46 ± 0.03 µM and 9.37 ± 0.03 µM, respectively. As a result, they may serve in
future studies to develop more efficient anti-diabetic drugs, as they showed excellent to
moderate inhibitory potentials (IC50 = 12.68 ± 0.04 to 37.82 ± 0.07 µM, respectively).
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4. Structural Activity Relationship (SAR)

A brief structural activity relationship (SAR) is depicted in Figure 24. It was observed
that almost all the potent derivatives were found to hold substitutions with different hete-
rocyclic compounds or alkyl groups. Substitution with benzothiazoles and thiazolidinones
leads to potent in vivo activity and displays significant overall anti-diabetic activities. The
transformation of oxadiazole into the acetamido functional group has led to the devel-
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opment of potential anti-diabetic agents, which were revealed as excellent DPP-IV in-
hibitors. However, many more substitutions, such as aminophenyl, β-homophenylalanine,
coumarinyl, nitrobenzofuran, oxindole, trifluorophenyl-thiol, etc., could act as potential
anti-diabetic agents, and especially as potential DPP-IV inhibitors.
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5. Conclusion

1,3,4-Oxadiazole and 1,2,4-oxadiazole derivatives can be used in a variety of ways
within the medical sector. Oxadiazoles possess diverse pharmacological activities, in-
cluding anti-diabetic potential, and specifically acting as DPP-IV inhibitors. It has been
reported that oxadiazoles fused with benzothiazoles, 5-(2,2,2-trifluoroethoxy)phenyl, β-
homophenylalanine, 2-methyl-2-{5-(4-chlorophenyl), diamine-bridged bis-coumarinyl, 5-
aryl-2-(6′-nitrobenzofuran-2′-yl), nitrobenzofuran, and/or oxindoles demonstrate potential
anti-diabetic activities. Furthermore, the most potent derivatives were obtained by sub-
stituting sulfur-containing heterocyclic compounds, as the sulfur atom has the potential
to form interactions with the target enzymes. It was observed that almost all the potent
derivatives were found to possess substitutions with different heterocyclic compounds or
alkyl groups. Many of these derivatives induced strong conformational changes to the
DPP-IV enzyme, resulting in excellent anti-diabetic activity. From this analysis, we came
to the conclusion that oxadiazoles have properties that make them potent drugs. Further
research is needed to consider them as valuable drugs to treat diabetes, especially as DPP-IV
inhibitors. As discussed above, substitutions at the R1 and R2 positions leads to more
potent and effective DPP-IV inhibitors. It may be possible to design some potent derivatives
in future by appending different heterocyclic and alkyl groups at the R1 and R2 positions. It
is a great challenge to maintain the binding mode of the derivatives following substitutions.
After substitution, each derivative can be screened through molecular docking studies to
determine its ability to cause conformational changes in the DPP-IV enzyme.
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