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Abstract 

Background:  The overreliance on dwindling fossil fuel reserves and the negative climatic effects of using such fuels 
are driving the development of new clean energy sources. One such alternative source is hydrogen (H2), which can be 
generated from renewable sources. Parageobacillus thermoglucosidasius is a facultative anaerobic thermophilic bacte-
rium which is frequently isolated from high temperature environments including hot springs and compost.

Results:  Comparative genomics performed in the present study showed that P. thermoglucosidasius encodes two 
evolutionary distinct H2-uptake [Ni-Fe]-hydrogenases and one H2-evolving hydrogenases. In addition, genes encod-
ing an anaerobic CO dehydrogenase (CODH) are co-localized with genes encoding a putative H2-evolving hydroge-
nase. The co-localized of CODH and uptake hydrogenase form an enzyme complex that might potentially be involved 
in catalyzing the water-gas shift reaction (CO + H2O → CO2 + H2) in P. thermoglucosidasius. Cultivation of P. thermo-
glucosidasius DSM 2542T with an initial gas atmosphere of 50% CO and 50% air showed it to be capable of growth at 
elevated CO concentrations (50%). Furthermore, GC analyses showed that it was capable of producing hydrogen at an 
equimolar conversion with a final yield of 1.08 H2/CO.

Conclusions:  This study highlights the potential of the facultative anaerobic P. thermoglucosidasius DSM 2542T for 
developing new strategies for the biohydrogen production.

Keywords:  Biohydrogen production, Parageobacillus thermoglucosidasius, Carbon monoxide dehydrogenase, 
Hydrogenase, Water-gas shift reaction

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/
publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In the next 30  years, the global energy demand will 
expand by ca. 30% and the vast majority (ca. 85%) of the 
energy resources required to offset the rising demand will 
come from non-renewable sources such as natural gas 
and crude oil [1]. This will result in increased pressure on 
the dwindling fossil fuel reserves and in greater emission 
of greenhouse gases into the Earth’s atmosphere. There is 
thus an urgent need for further development and imple-
mentation of clean and renewable alternative energy 
sources [2, 3].

Hydrogen (H2) has recently become prominent as 
a very attractive clean and sustainable energy source, 
especially when generated via ‘eco-friendly’ strategies. 
In comparison to other fuels, H2 has the highest energy 
content (141.9  MJ/kg higher heating value) [2]. Addi-
tionally, its complete combustion with pure oxygen pro-
duces only water (2 H2 + O2 → 2 H2O) as a by-product. 
The majority of current industrial H2 production strat-
egies, such as coal gasification, steam reformation and 
partial oxidation of oil, are unsustainable, harmful to 
the environment, energy intensive and expensive [4, 
5]. As such, over the past few years, the production of 
H2 via microbial catalysis has drawn increasing inter-
est. Several different strategies to produce biohydro-
gen, such as photofermentation of organic substances 

Open Access

Microbial Cell Factories

*Correspondence:  teresa.mohr@kit.edu 
4 Section II: Technical Biology, Institute of Process Engineering in Life 
Science, Karlsruhe Institut für Technologie (KIT), Kaiserstrasse 12, 
76131 Karlsruhe, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-3479-0739
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12934-018-0954-3&domain=pdf


Page 2 of 12Mohr et al. Microb Cell Fact  (2018) 17:108 

by photosynthetic bacteria, bio-photolysis of water by 
algae and dark fermentation of organic substances by 
anaerobic microorganism, have been explored [6]. These 
strategies have the advantage of lower energy expendi-
ture, lower cost and higher yields than the industrial 
methods [7]. Another advantage is the potential to use 
cheap feedstocks, such as lignocellulosic waste bio-
mass, which can be converted into a gas mixture termed 
‘synthesis gas’. This gas consists primarily of carbon 
monoxide (CO), carbon dioxide (CO2) and H2 [8]. In a 
further step, the CO can react with water to generate 
H2 via a biologically- or chemically-mediated water-gas 
shift (WGS) reaction: CO + H2O → CO2 + H2. During 
the biologically mediated reaction, a carbon monoxide 
dehydrogenase (CODH) oxidizes CO and electrons are 
released. Subsequently, a coupled hydrogenase reduces 
the released electrons to molecular hydrogen [9]. Sev-
eral mesophilic, anaerobic prokaryotic taxa, including 
Rhodospirillum rubrum and Rhodopseudomonas palus-
tris, are known for the ability to perform the WGS reac-
tion [10].

It has been observed that higher yields of H2 can be 
obtained in higher temperature fermentations [11]. 
Thus, there has been increasing interest in the use of 
thermophilic anaerobic bacteria, such as Carboxydo-
thermus hydrogenoformans and Thermosinus carboxy-
divorans [12, 13], as well thermophilic archaea (e.g. 
Thermococcus onnurineus) [7].

An industrial process utilizing CO-oxidizing bacte-
ria for biohydrogen production has not yet been real-
ized, although many CO-using hydrogenogenic species 
have been isolated. This may largely be attributed to 
the sensitivity of both the hydrogenase and CODH 
enzymes to oxygen [6, 14]. For example, the hydro-
genase of Thermotoga maritima lost 80% of its activ-
ity after flushing with air for 10 s [15]. Removal of O2 
from industrial waste gases or from bioreactors is pro-
hibitively expensive, making the use of strictly anaero-
bic CO-oxidizing hydrogenogens unfeasible [16]. Here, 
we have analysed the hydrogenogenic capacity of the 
facultative anaerobe Parageobacillus thermoglucosi-
dasius. Comparative genomics revealed the presence 
of three distinct hydrogenases, two uptake hydroge-
nases as well as one H2-evolving hydrogenase, which 
is linked to an anaerobic CODH. Evolutionary analy-
sis showed that this combination of hydrogenases is 
unique to P. thermoglucosidasius and suggests that 
H2 plays a pivotal in the bioenergetics of this organ-
ism. Furthermore, fermentations and downstream GC 
analysis showed that this facultative anaerobe is capa-
ble of utilizing CO in the WGS reaction to generate an 
equimolar amount of H2 once most of the oxygen in 
the medium has been exhausted.

Methods
Microorganisms
The production of H2 by P. thermoglucosidasius when 
grown in the presence of CO was tested using P. ther-
moglucosidasius DSM 2542T. Two related strains, 
Geobacillus thermodenitrificans DSM 465T and P. toe-
bii DSM 14590T, which lack orthologues of the three 
hydrogenase loci as well as the CODH locus, were 
included as controls. All strains were obtained from 
the DSMZ (Deutsche Sammlung von Mikroorganismen 
und Zellkulturen GmbH, Braunschweig, Germany).

Culture conditions and media
Pre-cultures and cultures were grown aerobically in 
mLB (modified Luria–Bertani) medium containing 
tryptone (1% w/v), yeast extract (0.5% w/v), NaCl (0.5% 
w/v), 1.25 ml/l NaOH (10% w/v), and 1 ml/l of each of 
the filter-sterilized stock solutions: 1.05  M nitrilotri-
acetic acid, 0.59  M MgSO4·7H2O, 0.91  M CaCl2·2H2O 
and 0.04  M FeSO4·7H2O. The first pre-culture was 
inoculated from glycerol stock (20 µl in 20 ml mLB) and 
cultivated for 24 h at 60 °C and rotation at 120 rpm in 
an Infors Thermotron (Infors AG, Bottmingen, Swit-
zerland). A second pre-culture was inoculated from the 
first one to an OD600 of 0.1 and incubated as above for 
12  h. For the experiments, 250  ml serum bottles were 
prepared with 50 ml mLB and a gas phase of 50% CO 
and 50% atmospheric air at 1 bar atmospheric pressure, 
which were inoculated with 1 ml from the second pre-
culture. The experiments were conducted in quadrupli-
cate for a total duration of 84 h.

Analytical methods
Samples were taken at different time points during the 
experimental procedure. Before and after the sampling 
the pressure was measured using a manometer (GDH 
14 AN, Greisinger electronic, Regenstauf, Germany). 
To monitor the growth of the cultures, 1 ml of the cul-
ture was aspirated through the stopper and absorb-
ance was measured at OD600 using an Ultrospec 1100 
pro spectrophotometer (Amersham Biosciences, USA). 
The determination of the gas compositions at different 
time points was conducted using a 3000 Micro GC gas 
analyzer (Inficon, Bad Ragaz, Switzerland) with the col-
umns Molsieve and PLOT Q. A total of 3 ml was sam-
pled from the head space and injected into the GC. A 
constant temperature of 80  °C was maintained during 
the total analysis time of 180 s. The gas compositions at 
the different sampling points were calculated using the 
formulas in Additional file 1.
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Comparative genomic analyses
The large hydrogenase subunits were identified from the 
annotated genome of P. thermoglucosidasius DSM 2542T 
(CP012712.1) by comparison against the Hydrogenase 
DataBase (HyDB) [17]. The full hydrogenase loci were 
identified by searching the genome up- and downstream 
of the large subunit gene, extracted and mapped against 
the genome using the CGView server [18]. The proteins 
encoded on the genome were compared by BlastP against 
the NCBI non-redundant (nr) protein database to iden-
tify orthologous loci. Full loci were extracted from the 
comparator genomes and all loci were structurally anno-
tated using Genemark.hmm prokaryotic v.2 [19]. The 
resultant protein datasets were compared by local BlastP 
with Bioedit v 7.2.5 [20] to identify orthologues, where 
orthology was assumed for those proteins sharing > 30% 
amino acid identity over 70% sequence coverage.

A maximum likelihood (ML) phylogeny was con-
structed based on the amino acid sequences of three 
commonly used housekeeping markers: translation ini-
tiation factor IF-2 (InfB), DNA recombination and repair 
protein RecN RNA polymerase subunit B (RpoB). The 
proteins were individually aligned using M-Coffee [21], 
the alignments concatenated and poorly aligned regions 
were trimmed using Gblocks [22]. Finally, the trimmed 
alignment was used to generate a ML phylogeny using 
PhyML-SMS, using the optimal amino acid substitution 
model as predicted by the Smart Model Selection tool 
[23, 24]. Similarly, ML phylogenies were constructed 
on the basis of the concatenated orthologous proteins 
encoded on the Pha, Phb, Phc and CODH loci.

Results
The genome of P. thermoglucosidasius encodes three 
distinct hydrogenases
Analysis of the complete, annotated genome sequence of 
P. thermoglucosidasius DSM 2542T showed the presence 
of three putative [Ni-Fe]-hydrogenase loci on the chro-
mosome. Two of these hydrogenases are encoded on the 
forward strand, while the third is located on the reverse 
strand (Fig.  1). Given the convoluted nomenclature of 
hydrogenase genes, we have termed these loci as Para-
geobacillus hydrogenase a, b and c, in accordance with 
their chromosomal locations), to distinguish between 
them.

The Pha locus (chromosomal position 2,456,963–
2,469,832; 12.9  kb in size) comprises eleven protein 
coding sequences (NCBI Accession ALF10692-10702; 
PhaA-PhaK) (Fig.  1; Additional file  2). Comparison of 
the amino acid sequence of the predicted catalytic subu-
nit (ALF10727—PhaB) against HydDB [17] classifies the 
hydrogenase produced by this locus as a [Ni-Fe] group 

1d uptake hydrogenase (E-value = 0.0). This unidirec-
tional, membrane-bound, O2-tolerant hydrogenase is 
present in a broad range of obligately aerobic and facul-
tatively anaerobic soil-borne, aquatic and host-associated 
taxa such as Ralstonia eutropha, Escherichia coli and 
Wolinella succinogenes [25, 26]. The H2 molecules con-
sumed by group 1d hydrogenases are coupled to aerobic 
respiration (O2 as electron acceptor) or to respiratory 
reduction of various anaerobic electron acceptors includ-
ing NO3−, SO4

2−, fumarate and CO2. The P. thermoglu-
cosidasius DSM 2542T hydrogenase locus incorporates 
genes coding for both small (PhaA; ALF10692; 324 aa) 
and large (PhaB; ALF10693; 573 aa) catalytic hydroge-
nase subunits. The strain also encodes seven additional 
proteins involved in hydrogenase formation, maturation 
and incorporation of the Ni-Fe metallocenter, includ-
ing a third hydrogenase subunit (PhaC) which is pre-
dicted to serve as cytochrome b orthologue and links 
the hydrogenase to the quinone pools of the respiratory 
chains (Fig. 1; Additional file 2) [26]. The pha genes are 
flanked at the 5′ end by two genes coding for orthologues 
of the Twin-arginine translocation (Tat) pathway proteins 
TatA and TatC (Fig. 1; Additional file 2). These have been 
shown to form part of the membrane targeting and trans-
location (Mtt) pathway which targets the fully folded 
hydrogenase heterodimer to the membrane [27].

The Phb locus (chromosomal position 2,488,614–
2,503,714; 15.1  kb in size), located ~ 19  kb downstream 
of the Pha locus, comprises 16 protein coding sequences 
(NCBI Accession ALF10723-738; PhbA-PhbP) (Fig.  1; 
Additional file  2). The predicted catalytic subunit 
(ALF10727—PhbE) compared against HydDB classifies 
the product of this locus as a [Ni-Fe] group 2a uptake 
hydrogenase (E-value = 0.0) [17]. Members of this group 
of uptake hydrogenases are widespread among aero-
bic soil bacteria and Cyanobacteria and play a role in 
recycling H2 produced by nitrogenase activity and fer-
mentative pathways [28, 29]. The recycled H2 is used in 
hydrogenotrophic respiration with O2 serving as termi-
nal electron acceptor, and thus group 2a hydrogenases 
are often O2-tolerant [26]. This locus encodes both large 
(PhbE; ALF10727; 544 aa) and small (PhbD; ALF10726; 
317) [Ni-Fe] hydrogenase subunits and eight additional 
proteins with predicted roles in hydrogenase formation, 
maturation and incorporation of the Ni-Fe metal center 
in the large subunit (Fig.  1; Additional file  2) [26]. Fur-
thermore, this locus encodes six proteins whose role 
in hydrogenase biosynthesis and functioning remains 
unclear. These include a tetratricopeptide-repeat (PhbH) 
and NHL repeat (PhbK) containing protein, which also 
occur in the [Ni-Fe] group 2a hydrogenase loci of Nos-
toc punctiforme ATCC 29133 and Nostoc sp. PCC 7120, 
where they are co-transcribed with the hydrogenase 
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genes and have been suggested to play a role in protein–
protein interactions and Fe–S cluster biogenesis (PhbJ) 
which may mediate electron transport to redox partners 
in downstream reactions [30].

The Phc locus (chromosomal position 2,729,489–
2,741,372), ~ 226  kb downstream of the Phb locus is 
11.9  kb in size and encodes 12 distinct proteins (PhcA-
PhcL) (Fig.  1; Additional file  2). These include a small 
(PhcE; ALF10919; 247 aa) and large (PhcG; ALF19021; 
574 aa) [Ni-Fe]-hydrogenase catalytic subunit and ten 
additional proteins involved in hydrogenase formation 
and maturation (Fig.  1; Additional file  2). The HydDB 
classifies the Phc hydrogenase as a [Ni-Fe] group 4a 
hydrogenase or formate hydrogenlyase complex I (FHL-
1) [17]. Members of this group are oxygen-sensitive, 
membrane-bound and are largely restricted to the fac-
ultatively fermentative Proteobacteria, particularly 

enterobacteria associated with animal intestinal tracts 
[25, 26]. FHL-1 couples the reduction of protons from 
water to the anaerobic oxidation of formate to form CO2 
and H2 [26, 31].

BlastP and tBlastN analyses of the protein sequences 
encoded in the P. thermoglucosidasius DSM 2542T hydro-
genase loci showed that the Pha, Phb and Phc loci are 
universally present in eight other P. thermoglucosida-
sius strains for which genomes are available (Additional 
file 2: Table S1). These loci are highly syntenous and the 
encoded proteins share average amino acid identities of 
99.73% ([Ni-Fe]-group 1d hydrogenase Pha—13 pro-
teins), 99.61% ([Ni-Fe]-group 2a hydrogenase Phb—16 
proteins) and 99.22% ([Ni-Fe]-group 4a hydrogenase 
Phc—12 proteins) with those of DSM 2542T, respec-
tively. Pairwise BlastP analyses showed limited orthology 
between the two uptake hydrogenase loci, with 36.29% 

Pha
Phb

Phc

Pha - [Ni-Fe] group 1d 
uptake hydrogenase

P. thermoglucosidasius
DSM 2542T

phaI
phaJ phaK thyAphaH

phaG
atlF tatA tatC phaA phaB phaC phaD

phaE
phaF

phbK phbL phbM phbNphbJphbIgrpB phbA
phbB

phbC phbD phbE phbF
phbG

phbH phbO phbP hsp70 aarF

2 kb

phcI
phcJ phcK phcLphcHphcGmdaB cooC cooS cooF phcC phcD phcE phcF empBphcBphcA

Phb - [Ni-Fe] group 2a 
uptake hydrogenase

Phc - [Ni-Fe] group 4a 
H2-evolving hydrogenase
Fig. 1  Schematic diagram of the [Ni-Fe] hydrogenase loci and their localization on the chromosome of P. thermoglucosidasius DSM 2542T
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average amino acid identity in nine proteins encoded 
on the two loci. The group 1d (Pha) and group 2a (Phb) 
uptake hydrogenase loci share 33.40 and 62.32% average 
amino acid identity for three proteins with the H2 evolv-
ing hydrogenase (Phc) locus. The higher level of orthol-
ogy for Phb and Phc loci proteins can be correlated with 
the HypA-like (PhbB and PhcK) and the HypB-like (PhbC 
and PhcL) proteins, which share 75.22 and 86.08% amino 
acid identity, respectively, and are predicted to play a 
role in the incorporation of nickel into the hydrogenase 
enzyme [32]. Limited orthology is observed between 
the hydrogenase catalytic subunits or other hydroge-
nase formation and maturation proteins, suggesting dis-
tinct evolutionary histories for the two uptake and one 
H2-evolving hydrogenases in P. thermoglucosidasius.

P. thermoglucosidasius contains a unique profile 
of hydrogenases with distinct evolutionary histories
The proteins encoded by the Pha, Phb and Phc loci were 
used in BlastP comparisons against the NCBI non-
redundant (nr) protein database and HydDB (catalytic 
subunits) to identify orthologous loci in other bacterial 
taxa. This revealed that, aside from the α-proteobacteria 
Azospirillum halopraeferens DSM 3675T and Rhodopseu-
domonas palustris BAL398, the combination of [Ni-Fe] 
group 1- 2- 4 hydrogenases appears to be unique to P. 
thermoglucosidasius (Fig.  2). In these two proteobacte-
rial taxa the group 2a uptake hydrogenase is, however, 
replaced by a group 2b uptake hydrogenase. Group 2b 
uptake hydrogenases do not have a direct role in energy 
transduction but are flanked by a PAS domain protein 
which accepts the hydrogenase-liberated electrons, mod-
ulating the activity of a two-component regulator that 
upregulates the expression of other uptake hydrogenases, 
thereby serving as H2-sensing system [33, 34].

The Pha uptake hydrogenase locus is relatively well 
conserved among members of the Firmicutes, includ-
ing a number of taxa belonging to the Classes Bacilli, 
Clostridia and Negativicutes, as well as the phyla 
Proteobacteria and Bacteroidetes (Fig.  2; Additional 
file 3). However, the more distantly related taxa retain 
little synteny with the Pha locus in P. thermoglucosi-
dasius (Fig.  3a). Orthologues of the Pha are present 
in one other Parageobacillus spp., namely genomosp. 

NUB3621, with an average amino acid identity of 
92.37% (13 proteins) with the DSM 2542T Pha pro-
teins. A phylogeny on the basis of nine conserved Pha 
proteins (PhaABCDGHIJK) showed a similar branch-
ing pattern (Fig.  3a) as observed for the phylogeny 
housekeeping protein (InfB-RecN-RpoB) phylogeny, 
suggesting that this is an ancestral locus that has been 
vertically maintained. This is supported by the low level 
of discrepancy in G+C content for the P. thermoglu-
cosidasius strains, which are on average 0.87% above 
the genomic G+C content. Larger discrepancies are, 
however, evident among the Bacteroidetes, where G+C 
contents for the locus are on average 4.43% above that 
of the genome, and the absence of Pha loci in other 
Parageobacillus spp. including P. toebii (five genomes 
available) and P. caldoxylosilyticus (four genomes avail-
able) and Geobacillus spp. suggest a more complex evo-
lutionary history for the group 1d hydrogenase.

Orthologous [Ni-Fe] group 2a uptake hydrogenase 
(Phb) loci are also common among the Firmicutes, but 
show a more restricted distribution within the fam-
ily Bacillaceae, with only Aeribacillus pallidus 8m3 and 
Hydrogenibacillus schlegelii DSM 2000T containing 
orthologues outside the genus Parageobacillus. Highly 
conserved and syntenous loci are, however, present in 
three non-thermoglucosidasius strains: Parageobacillus 
sp. NUB3621, Parageobacillus sp. W-2 and P. toebii DSM 
18751 (Fig.  3b; Additional file  3). Orthologous loci are 
present across a much wider range of phyla than the Pha 
locus, including members of the Chloroflexi, Gemmati-
monadetes, Actinobacteria, Proteobacteria, Nitrospirae 
and Deinococcus-Thermus (Fig. 2). The latter is of inter-
est as Thermus thermophilus SG0.5JP17-16 clusters with 
the Firmicutes in a phylogeny of ten conserved proteins 
(PhbBCDEFHJLMN—72.76% average amino acid iden-
tity with P. thermoglucosidasius DSM 2542T) (Fig.  3b), 
but is phylogenetically disparate from the Firmicutes. 
The T. thermophilus locus is present on the plasmid 
pTHTHE1601 (NC_017273) suggesting that this locus 
forms part of the mobilome. Furthermore, the G+C con-
tent of the Phb locus differs by an average of 4.55% from 
the average genomic G+C among the eight compared P. 
thermoglucosidasius strains, suggesting recent horizontal 
acquisition of this locus.

Fig. 2  Prevalence of [Ni-Fe] hydrogenases orthologous to those in P. thermoglucosidasius among other bacterial taxa. The ML phylogeny was 
constructed on the basis of the trimmed alignment (1597 amino acids in length) of the concatenated InfB, RecN and RpoB amino acid sequences. 
Different taxa and branch colours indicate the different phyla/classes. Values on the branches indicate bootstrap values (n = 500 replicates) and 
the tree was rooted on the midpoint. The presence of [Ni-Fe] group 1d, group 2a and group 4a hydrogenases is represented by dark blue, red and 
green blocks, respectively. Where [Ni-Fe] hydrogenases belonging to the same groups but not the same subtype as those in P. thermoglucosidasius 
are present they are indicated by light blue ([Ni-Fe] group 1 hydrogenases), pink ([Ni-Fe] group 2 hydrogenases) and light green ([Ni-Fe] group 4 
hydrogenases) blocks, respectively

(See figure on next page.)
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The [Ni-Fe] group 4a H2-evolving hydrogenase (Phc) 
locus shows the most restricted distribution of the three 
loci among the Firmicutes, with orthologous loci only 
present in the eight compared P. thermoglucosidasius 
strains and members of the clostridial family Thermoa-
naerobacteraceae (Fig.  2). Further, Phc-like loci appear 
to be restricted to members of the Proteobacteria. High 
levels of synteny and sequence conservation can be 
observed among the Phc loci in both phyla, with the 
exception of the PhcK and PhcL proteins, which are only 
present in the P. thermoglucosidasius and Moorella ther-
moacetica DSM 21394 Phc loci (Fig.  3c). BlastP analy-
ses indicate that PhcK and PhcL show highest orthology 
with PhbB and PhbC in the Phb locus and may have been 
derived through gene duplication events.

It is notable that the P. thermoglucosidasius Phc locus 
clusters with a subset of the Thermoanaerobacteraceae 
in the concatenated Phc protein phylogeny, including 
Moorella glycerini NMP, M. thermoacetica DSM 21394, 
Thermoanaeromonas toyohensis DSM 14490T, Caldan-
aerobacter subterraneus subsp. tencogensis DSM 15242T 
and subsp. yonseiensis DSM 13777T and Thermoanaero-
bacter sp. YS13 (Fig. 3c). These differ from the remaining 
Thermoanaerobacteraceae taxa and the proteobacterial 
orthologous loci in that they are flanked by three genes, 
cooCSF, coding for an anaerobic carbon monoxide (CO) 
dehydrogenase, rather than genes coding for a formate 
dehydrogenase (FdhH) as is typical for the [Ni-Fe] group 
4a hydrogenases [25]. These are generally accompanied 
by flanking genes coding for the formate dehydrogenase 
accessory sulfurtransferase protein FdhD, electron trans-
porter HydN, transcriptional activator FhlA and formate 
transporters FdhC and FocA, which together with FdhH 
drive the anaerobic oxidation of formate (Fig.  3c) [26, 
35–37].

BlastP analysis with the FdhH protein of M. ther-
moacetica DSM 2955T (AKX95035) shows that an ortho-
logue is present in P. thermoglucosidasius DSM 2542T 
(ALF09582). The latter protein, however, shares lim-
ited orthology (39% amino acid identity; Bitscore: 497; 
E-value: 6e−614) with its M. thermoacetica counterpart 
and is furthermore localised ~ 1.5  Mb upstream of the 

Phc locus, suggesting the P. thermoglucosidasius FdhH 
protein does not function together with the [Ni-Fe] 
group 4a hydrogenase. Instead, the P. thermoglucosida-
sius Phc hydrogenase may form a novel complex with the 
adjacent anaerobic CODH locus.

The P. thermoglucosidasius [Ni‑Fe] group 4a hydrogenase 
forms a novel complex with the anaerobic (Coo) CO 
dehydrogenase, with a distinct evolutionary history
The three genes located just upstream of the Phc 
hydrogenase locus, cooC, cooS and cooF code for a CO 
dehydrogenase maturation factor (Figs. 3c, 4), a CO dehy-
drogenase catalytic subunit and CO dehydrogenase Fe–S 
protein, respectively. Together these proteins catalyse the 
oxidation of CO to generate CO2 (CO + H2O → CO2 + 2 
H+ + 2ē). The electrons are then used in reduction 
reactions, including sulphate reduction, heavy metal 
reduction, acetogenesis, methanogenesis and hydrogeno-
genesis [38, 39].

The CODH locus is also co-localised with the Phc 
hydrogenase locus and highly conserved among the eight 
other P. thermoglucosidasius genomes (99.36% average 
amino acid identity with CooCSF in P. thermoglucosi-
dasius DSM 2542T), while no CODH orthologues are 
encoded on the genomes of any other Parageobacillus 
or Geobacillus spp. A phylogeny on the basis of the con-
served CooS and CooF proteins (Fig. 4) showed that, as 
with the Phc locus phylogeny (Fig. 3c), those taxa where 
cooCFS flanks the Phc hydrogenase locus cluster together 
and show extensive synteny in both the coo and phc 
gene clusters. This would suggest the co-evolution of the 
anaerobic CODH and Phc [Ni-Fe] group 4a hydrogenase 
loci. However, differences in the G+C contents could be 
observed among the P. thermoglucosidasius coo (average 
G+C content 46.97%) and phc (average G+C content 
49.02%) loci. This is even more pronounced among the 
Thermoanaerobacteraceae with this CODH-Phc arrange-
ment, where the G+C contents of the two loci differs 
by an average of 6.62% and is particularly evident in C. 
subterraneus subsp. tencongensis where the G+C con-
tents of the coo and phc loci differ by 11.77%, suggesting 
independent evolution of these two loci. This is further 

(See figure on previous page.)
Fig. 3  Prevalence and synteny of the P. thermoglucosidasius-like [Ni-Fe] hydrogenases. a [Ni-Fe] group 1d orthologues. The ML phylogeny was 
determined on the basis of the trimmed alignment of nine Pha locus proteins (PhaABCDGHIJK—2206 amino acids in length). Hydrogenase genes 
are coloured in light blue (dark blue for large and small catalytic subunits), tatAE genes in purple and flanking genes in yellow in the synteny 
diagrams. b [Ni-Fe] group 2a orthologues. The ML phylogeny was determined on the basis of the trimmed alignment of 10 Phb locus proteins 
(PhbBCDEFHJLMN—2348 amino acids in length). Hydrogenase genes are coloured in red (dark red for large and small catalytic subunits), genes 
of no known function in biosynthesis and functioning of the hydrogenase in white and flanking genes in yellow in the synteny diagrams. c [Ni-Fe] 
group 4a orthologues. The ML phylogeny was determined on the basis of the trimmed alignment of nine Phc locus proteins (PhcABCDFGHIJ—2744 
amino acids in length). Hydrogenase genes are coloured in light green (dark green for large and small catalytic subunits), anaerobic CODH genes 
in purple, formate dehydrogenase-related genes in blue and flanking genes in yellow in the synteny diagrams. Values on all trees reflect bootstrap 
analyses (n = 500 replicates) and all trees were rooted on the midpoint
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support by the phylogeny (Fig.  4), where the CODH-
Phc loci cluster with CODHs which appear on their own 
and those flanked by an NAD/FAD oxidoreductase are 
thought to play a role in oxidative stress response [40]. 
The Energy Conserving Hydrogenase (ECH–[Ni-Fe] 
group 4c hydrogenase)-CODH complex, which has been 
shown to couple CO oxidation to proton reduction to 
H2 in C. hydrogenoformans and Rhodospirillum rubrum, 
clusters more distantly from the CODH-[Ni-Fe] group 
4a complex [41, 42]. Overall, the results suggest that the 
CODH and [Ni-Fe] group 4a hydrogenase have evolved 
independently, but may form a complex linking CO oxi-
dation to reduction of protons to produce CO2 and H2.

The CODH‑[Ni‑Fe] group 4a hydrogenase complex 
effectively couples CO oxidation to hydrogenogenesis
The predicted function of the co-localized genes encod-
ing the anaerobic CODH and H2-evolving hydrogenase 
(Fig.  3c) was tested using P. thermoglucosidasius DSM 
2542T. Two related strains, Geobacillus thermodenitri-
ficans DSM 465T and P. toebii DSM 14590T, which lack 
both orthologues of the three hydrogenases and the 

anaerobic CODH, were included as controls. The cultiva-
tion of P. thermoglucosidasius DSM 2542T in serum bot-
tles with a gas atmosphere consisting of 50% CO and 50% 
air showed that this strain was able to effectively grow in 
the presence of 50% CO, reaching a maximum absorb-
ance of 0.82 after 6 h of cultivation (Fig. 5). A fractional 
amount of CO was consumed at the beginning of the 
experiment, when oxygen was still available, by P. toebii 
DSM 14590T (0.37  mmol) and G. thermodenitrificans 
DSM 465T (0.216 mmol), respectively. This suggests that 
these strains may possess an alternative mechanism, such 
as an aerobic CO dehydrogenase, where CO oxidation 
is coupled to an electron transport chain which finally 
reduces oxygen [38]. For instance, a predicted aerobic 
CODH is present (CoxMSL—OXB91742-744) in P. toebii 
DSM 14590T but is absent from G. thermodenitrificans 
DSM 465T.

While the two control strains tolerated the presence 
of CO, no H2 production was observed for either strain 
(Figs.  6 and 7). By contrast GC analyses revealed the 
production of H2 by P. thermoglucosidasius DSM 2542T 
after ~ 36 h (Fig. 8). This corresponds with O2 reaching a 
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Fig. 4  Prevalence and synteny of the P. thermoglucosidasius-like CODH loci. A phylogeny was constructed on the basis of the concatenated 
alignments of two proteins (CooFS—692 amino acids in length). Boostrap analysis (n = 500 replicates) was performed and the tree was rooted on 
the mid-point. In the synteny diagrams the CODH genes are coloured in purple (dark purple for the catalytic subunit gene cooS), the [Ni-Fe] group 
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Fig. 5  Growth curves of P. thermoglucosidasius DSM 2542T, P. 
toebii DSM 14590T and G. thermodenitrificans DSM 465T. All strains 
were grown in quadruplicate in stoppered serum bottles with 
an initial gas atmosphere composition of 50% CO and 50% air. P. 
thermoglucosidasius DSM 2542T reached a maximum absorbance 
(OD600 = 0.82) after 6.01 h, by the end of the cultivation the OD600 
increased to a value of 0.71. A maximum absorbance for P. toebii DSM 
14590T was reached after 9.12 h (OD600 = 0.73). The OD600 decreased 
during the cultivation to a final value of 0.24. For G. thermodenitrificans 
DSM 465 the highest OD600 = 0.64 was observed after 6.04 h. The 
OD600 decreased to a final value of 0.40
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Fig. 6  Gas phase composition during the cultivation of P. toebii DSM 
14590T. Initial gas composition was 50% CO and 50% air. O2 (dark 
blue) decreased from 0.66 to ~ 0.01 mmol after 23.25 h. CO (dark red) 
decreased fractionally about 0.34 mmol. No hydrogen (dark grey) 
was detected. CO2 (dark yellow) increased during the cultivation to 
0.56 mmol. After 9.12 h a maximum absorbance (OD600 in black) with 
a value of 0.73 was reached
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Fig. 7  Gas phase composition during the cultivation of G. 
thermodenitrificans DSM 465. Initial gas composition was 50% CO 
and 50% air. O2 (dark blue) decreased from 0.83 to ~ 0.03 mmol after 
24.01 h. CO (dark red) decreased fractionally about 0.22 mmol. No 
hydrogen (dark grey) was detected. CO2 (dark yellow) increased 
during the cultivation to 0.49 mmol. After 6.04 h a maximum 
absorbance (OD600 in black) with a value of 0.64 could be detected
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Fig. 8  Gas phase composition during the cultivation of P. 
thermoglucosidasius DSM 2542T. Initial gas composition was 50% CO 
and 50% air. O2 (dark blue) decreased from 0.85 to ~ 0.03 mmol after 
22 h. CO (dark red) decreased until the start of hydrogen production 
(dark grey) from 3.20 to 2.79 mmol (35.89 h). After 84 h the CO was 
consumed completely and 2.47 mmol hydrogen was produced. CO2 
(dark yellow) increased during the cultivation to 2.84 mmol. After 
6.01 h a maximum absorbance (OD600 in black) with a value of 0.82 
was reached
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plateau value of ~ 0.03 mmol. After 84 h 2.28 mmol CO 
was consumed and 2.47  mmol H2 produced. P. thermo-
glucosidasius DSM 2542T is thus capable of producing H2 
at a near equimolar conversion to CO consumption once 
most residual oxygen has been exhausted with a final 
yield of 1.08 H2/CO.

Discussion
The redox potential and diffusion coefficient of molecular 
H2 make it a key component of metabolism and a potent 
energy source for many microbial taxa [25]. The abil-
ity to utilize this energy source relies on the production 
of various hydrogenase enzymes, which power both the 
consumption and production of H2 and inextricably cou-
ple H2 to energy-yielding pathways such as acetogenesis, 
methanogenesis and respiration [26, 43]. Our compara-
tive genomic analysis revealed that P. thermoglucosidasius 
contains a unique hydrogenase compliment comprised 
of two uptake hydrogenases (group 1d and 2a) and one 
H2-evolving hydrogenase (group 4a). Evolutionary analysis 
showed that these hydrogenases are derived through three 
independent evolutionary events. This indicates that H2 is 
likely to play a pivotal role in P. thermoglucosidasius metab-
olism and bioenergetics in the ecological niches it occupies. 
By contrast, members of the sister genus Geobacillus lack 
orthologous hydrogenase loci and, aside from P. thermoglu-
cosidasius, only the group 1d and 2a uptake hydrogenases 
share orthology in one and three Parageobacillus spp., 
respectively, even though they are frequently isolated from 
the same environments.

The group 4a H2-evolving hydrogenase of P. thermoglu-
cosidasius is not found in any other members of the class 
Bacilli and is most closely related to those found in mem-
bers belonging to the class Clostridia, particularly the 
family Thermoanaerobacteraceae. Furthermore, it forms 
an association with a CODH, which is found in common 
with a more restricted subclade of strict anaerobes within 
the family Thermoanaerobacteraceae. Our fermentation 
studies with P. thermoglucosidasius in the presence of CO 
showed that P. thermoglucosidasius grows efficiently when 
exposed to high concentrations of CO and that the CODH-
group 4a hydrogenase complex can effectively couple CO 
oxidation to H2 evolution, P. thermoglucosidasius can do 
so at a near-equimolar conversion. Furthermore, unlike 
other CO oxidizing hydrogenogenic bacteria, which are 
strict anaerobes, P. thermoglucosidasius is a facultative 
anaerobe capable of first removing residual oxygen from 
CO gas sources prior to producing H2 via the water-gas 
shift reaction. The combination of these features makes 
P. thermoglucosidasius an attractive target for potential 
incorporation in industrial-scale production strategies of 
biohydrogen.
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