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Most in vitro fertilization (IVF) experts and infertility patients agree that the most ideal assisted reproductive technology (ART)
outcome is to have a healthy, full-term singleton born. To this end, the most reliable policy is the single-embryo transfer (SET).
However, unsatisfactory results in IVF may result from plenty of factors, in which aneuploidy associated with advanced maternal
age is a major hurdle. Throughout the past few years, we have got a big leap in advancement of the genetic screening of embryos
on aneuploidy, translocation, or mutations. This facilitates a higher success rate in IVF accompanied by the policy of elective SET
(eSET). As the cost is lowering while the scale of genome characterization continues to be up over the recent years, the contemporary
technologies on trophectoderm biopsy and freezing-thaw, comprehensive chromosome screening (CCS) with eSET appear to be
getting more and more popular for modern IVF centers. Furthermore, evidence has showen that, by these avant-garde techniques
(trophectoderm biopsy, vitrification, and CCS), older infertile women with the help of eSET may have an opportunity to increase

the success of their live birth rates approaching those reported in younger infertility patients.

1. Introduction

In a fresh IVF cycle, single-embryo transfer (SET) is asso-
ciated with a lower rate of multiple pregnancies than other
principles of embryo transfer. For this reason, SET became
more popular in the past decade and had a good perinatal
outcome in the US [1], in the Nordic countries [2], and even
in Asia in recent years [3]. A number of factors are responsible
for the variation in the practice of SET, such as advanced
maternal age, legislation, and economic factors, all of which
also play an important role in predicting favorable outcome
of assisted reproductive technology (ART), including SET,
to both physicians and patients. By and large, transfer of
a good blastocyst by embryo grading of the Society for
Assisted Reproductive Technology (SART) will produce a
good implantation rate and live birth rate [4].

In addition to morphological evaluation, several “Omics”
technologies, including genomics, transcriptomics, pro-
teomics, and metabolomics, can also be employed to evaluate

the implantation potential of an embryo. For instance, Seli
etal. [5] used infrared spectroscopy to analyze the condi-
tioned media from human embryos by metabolomic profiling
and showed good correlation with the embryo implan-
tation independent of morphology. Katz-Jaffe et al. have
demonstrated abnormal elevation of embryonic secretome in
aneuploidy embryos [6, 7]. Moreover, using transcriptome
assay, direct measurement of granulocyte colony-stimulating
factor (G-CSF) in the follicular fluid of individual oocytes
was found to well correlate with the potential for an ongoing
pregnancy [8]. Recently, a model of pregnancy prediction in
SET was built on selected quantified transcripts in cumulus
cells, which participate in the decision of embryo selection
[9]. Several differentially expressed miRNAs between euploid
and aneuploidy embryos were also confirmed by real-time
quantitative PCR (qPCR) [10].

Since the first attempt to karyotype embryos 30 years ago
[11], several techniques, such as fluorescence in situ hybridiza-
tion (FISH), comparative genomic hybridization (CGH),
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array CGH (aCGH), digital PCR (dPCR), single-nucleotide
polymorphism (SNP) array, qPCR, and next-generation
sequencing (NGS), have been developed to analyze 24-
chromosome copy number in human embryos clinically [12].
In this paper, we will review the accuracy and efficiency of
those technologies for clinical use.

2. Single-Embryo Transfer

For younger women, SET is an option with a similar success
rate to multiple embryo transfer. However, older women (>38
years old) had significantly lower pregnancy rates and seldom
chose SET [1]. In a recent study on women aged 40-44 years
in Finland, the researchers compared the outcomes in groups
of elective single-embryo transfer (eSET) and double-embryo
transfer (DET) [13]. They found that there were similar
clinical pregnancy rates, live birth rates, and miscarriage
between eSET and DET in fresh cycles, but eSET had higher
clinical pregnancy rates and live birth rates than those of DET
in cumulative results. The unfavorable outcomes in older
women, such as miscarriage or IVF failure, were mainly a
consequence of the increased number of aneuploidy [14]. A
recent report revealed that aneuploidy of embryos increased
predictably after 26 years of age. Notably by the age of 44,
88.2% of women’s embryos were aneuploid; namely, more
than 50% patients would barely have an euploid embryo to
transfer [15]. In contrast to transcriptomics, proteomics, or
metabolomics, embryo biopsy followed by genomic analysis
could provide direct evidence of aneuploidy.

3. Fluorescence In Situ Hybridization

The first molecular cytogenetic technique to be applied
in comprehensive chromosome screening (CCS) is FISH
combined with chromosome-specific probes labeled with
different fluorochromes. Although, via washing technique,
multicolor FISH can detect 5-9 probes, the accuracy and
efficiency would decline rapidly. Since FISH can analyze only
a limited number of chromosomal loci, some of the embryos
transferred might be diagnosed as “normal” but in fact be
aneuploid for one or more chromosomes not tested. So recent
advance will focus on analyzing all 24 chromosomes [16].
However, in 2007, a multicenter, randomized, double-
blind, controlled trial comparing three cycles of IVF with
and without preimplantation genetic screening (PGS, using
FISH probe on chromosomes 1, 13, 16, 17,18, 21, X, and Y) in
women 35 to 41 years of age was conducted. It showed FISH
did not increase but instead significantly decreased the rates
of ongoing pregnancies and live births after IVF [17]. Several
mechanisms were proposed. First, the biopsy on day 3 may
hamper the embryo’s potential. Second, limited chromosome
number detected cannot promise normal embryo. Third,
mosaic embryos from IVF exist substantially. Regarding the
mosaicism, a Belgian series recently reported its incidence
as high as 71.4% in human preimplantation embryos with
good quality [18]. At present, there are numerous studies
indicating that aneuploidy diagnosis in morphologically nor-
mal blastocysts is poorly predicted by cleavage stage FISH.
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The differences between the cleavage and blastocyst stages
(including mosaicism, self-correction of aneuploidy) were
explained by the preferential segregation or confinement of
aneuploidy to the trophectoderm (TE) [19].

4. Comparative Genomic Hybridization

CGH, a technique that emerged in 1992 [20], has proved
to be a powerful tool for molecular cytogenetic analysis of
neoplasms. It provides an overview of DNA sequence copy
number changes (losses, deletions, gains, and amplifications)
in a tumor specimen and also maps these changes on
normal chromosomes. At present, CGH is a research tool
that complements previous methods for genetic analysis, for
example, CCS before embryo transfer in an IVF cycle. For
isolated single cells, whole genome amplification (WGA) is
necessary to provide enough DNA for subsequent PCRs [21,
22].

It is performed by competitive fluorescence in situ
hybridization. DNA isolated from the samples and refer-
ence was independently labeled with different fluorophores.
DNA were then denatured to single stranded conformation,
and a 1:1 ratio mix of two sources was hybridized to a
normal metaphase spread of chromosome (CGH-metaphase
spreads). Microscopic inspections were performed along the
length of each chromosome for identification of chromoso-
mal sections displaying difference of fluorescence intensities.
It reflects its relative copy number in the test genome
compared with the control genome. In 1999, Wells et al.
have successfully used CGH to analyze single blastomere
from human preimplantation embryos [23]. Using this CGH
technique followed by a frozen embryo transfer (FET), a
healthy infant was born to a woman with a history of
implantation failure in 2001 [24]. However, this method is
time consuming (up to 72 hours) and labor intensive. When
a blastocyst biopsy is performed, it will need embryo freezing
and will therefore delay transfer. In addition, the sensitivity
is limited for traditional CGH (5-10 Mbp). Recently, a faster
(12-hour protocol) and more sensitive method (detecting
translocation) was developed to improve these shortcomings
(25, 26].

5. Array CGH

A new technique, microarray-based CGH, has been devel-
oped to increase the diagnostic accuracy and efficiency [27,
28]. Now the aCGH provides 24-chromosome analysis to
screen the translocation and all the other aneuploidies rather
than a set of 5-12 chromosomal probes used by traditional
FISH method. It allows automation in data reading through
computerized calculation of signal intensities, not observing
the signals by eye as in the FISH method. So, aCGH method
is robust (2.9% no results) with high specificity (1.9% error
rate) when applied to rapid (24-hour) analysis of single
cells biopsied from cleavage-stage embryos [29]. The first
birth after preimplantation diagnosis (PGD) of structural
chromosome abnormalities using aCGH was reported in
2011 [30]. Recently, it has been demonstrated that aCGH for
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cleavage stage PGS is a feasible and safe option for aneuploidy
screening that shows excellent outcomes when used in fresh
cycles [31]. In fact, the influence of advanced maternal age
(up to 42 years) on implantation of IVF was diminished after
implementing aCGH screening [32].

Although CGH and aCGH performed well on many
types of embryonic material tested (PBs, blastomeres, and
trophectoderm), there is still debate over the efficacy of
day-3 (blastomere) biopsy. Cell biopsy at the cleavage stage
involves the loss of a significant proportion of the embryo
volume, potentially impacting viability [33]. Now, we can
routinely retrieve more genetic materials from blastocyst
biopsy, providing more reliable results [34], and aCGH offers
not only more comprehensive analysis of 24 chromosomes
than traditional FISH but also shorter test duration (12-24
hours) to transfer in fresh cycles.

6. Digital PCR

The principle of dPCR is based on partitioning a sample into
many individual real-time PCR reactions; some portions of
these reactions contain the target molecule (positive), while
others do not (negative). It is not dependent on the number of
amplification cycles to determine the initial sample amount,
but it provides absolute quantification of DNA template.
Applications include copy number variation, aneuploidy
detection, rare sequence detection, mutation detection, and
gene expression analysis. So dPCR was frequently applied
for illness such as cancer, in which molecular copy-number
counting is vital [35]. Also, it has been used for detection of
aneuploidy (e.g., trisomy 21) of fetal cells in maternal serum
[36].

Recently, a more advanced technique, droplet digital
PCR (ddPCR), was developed for very low copy event
detection [37]. It is a digital PCR method utilizing a water-
oil emulsion droplet for partitioning of DNA template. The
droplet generator uses microfluidics to partition each sample
into 20,000 water-in-oil nanoliter droplets. It offers a higher
level of partitioning at a low cost compared to the traditional
dPCR. ddPCR can be also used as a tool to precisely measure
HER2 copy number alterations in formalin-fixed paraffin-
embedded tissue of breast cancer [38].

7. SNP Array

Like aCGH, a SNP array contains a high number of probes in
order to study the whole genome or to target specific regions.
Up to date, almost 50 million SNPs have been identified
in the human genome. In SNP arrays, a patient’s DNA is
not cohybridized with a DNA control but the fluorescent
signal intensity of each probe is compared with a reference
bioinformatic file. SNP arrays can be used to detect loss of
heterozygosity (LOH) in which one allele of a gene is lost
and results in loss of normal function, for example, tumor
suppressor gene. In addition, SNP array is able to detect copy-
neutral LOH in which one allele or whole chromosome from
a parent is missing and disease may occur.

For aneuploidy screening, Treff et al. have validated SNP
array with over 99% accuracy on single cells [39] and it is
significantly more consistent than FISH on 24-chromosome
aneuploidy screening [40]. Later, this group conducted a
prospective, double-blinded, randomized study in which a
total of 255 IVF-derived human embryos were cultured and
selected for transfer independent of CCS analysis. They noted
that CCS by SNP array was highly predictive for aneuploidy
screening and well correlated with clinical outcome [41]. They
also applied this technique in trophectoderm biopsy followed
by FET and achieved a very high implantation rate (65%) and
live birth rate (73%) [42].

For translocation detection, SNP array has been used to
detect the chromosome imbalance and improve outcomes
for these couples carrying translocations [43, 44]. Rabinowitz
et al. also used SNP array-based genotyping and informatics-
based techniques to characterize the origins and rates of
aneuploidy in human blastomeres [45]. They showed the
rate of maternal meiotic trisomy rose significantly with age,
whereas other types of trisomy showed no correlation with
age. In addition to monogenic disease, aneuploidy, and imbal-
anced translocation, commercial SNP arrays services such
as 23andMe could allow for analysis of other multifactorial
diseases, such as diabetes or heart disease.

8. Real-Time Quantitative PCR

In 2012, Treff et al. developed a quantitative real-time PCR-
(qPCR-) based method for blastocyst trophectoderm and
got 98.6% identical diagnosis with SNP array [46]. The
overall euploidy and aneuploidy were assigned with 100%
consistency. With this method, a preamplification step is
used to amplify at least two sequences on each arm of each
chromosome (1.5 hours). Then real-time qPCR is used for
the rapid quantification of each product (2 hours). This
qPCR was capable of accurate aneuploidy screening of all 24
chromosomes in 4 hours and could provide an opportunity
to evaluate the trophectoderm biopsies with subsequent fresh
euploid blastocyst transfer [47]. Due to this rapid, real-time
qPCR technique, it alters clinical management: traditional
morphology-based embryo selection [48].

There is no need for WGA in qPCR and the number of
DNA probe is low. It is fast and of low cost compared to aCGH
or SNP array. The only limitation of this technology is the lim-
ited number of samples, currently two on each plate, which
can be run on the available equipment. However, excellent
outcomes may be achieved by vitrifying all tested blastocysts
and sending biopsy samples to a reference laboratory for
qPCR examination.

9. Next-Generation Sequencing

The high demand for low-cost sequencing has driven the
development of next-generation sequencing (NGS) technolo-
gies that run the sequencing process in parallel. It provides
novel high-throughput, highly parallel, and base-pair reso-
lution data for genetic analysis. Prior to NGS technology,
genomics only investigated genomes which were feasible
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TaBLE 1: Comparison of available CCS for 24 chromosomes.

aCGH dPCR SNP array Real-time qPCR NGS

Test time (hours) 12-24 8 16-72 4 15
Single gene disease Y* Y* Y" Y* Y
Resolution Medium Low High Low High
WGA needed Y N Y N Y
Probe number 2~32K ~20 262~370K 96 3x10°
Posttest algorithm Moderate Easy Moderate Easy Intensive
Cost ($) High Medium High Low Very high

*Only deletion/duplication can be detected; * with known mutations.

from the standard point of size and with characterization
of single genes related to diseases. Between 2008 and 2010,
the 1000 Genomes Project has built the 1,092 haplotype-
resolved genomes [49]. In the era of NGS, sequencing now
enables clinical diagnostics and other aspects of medical
care, including disease risk, therapeutic identification, and
prenatal testing.

In 2011, one remarkable study using NGS has shown
the clinical and analytic validity of the targeted exome
sequencing of a preselected group of genes that are known to
be associated with severe pediatric onset autosomal recessive
diseases including Tay-Sachs disease (OMIN#272800) and
cystic fibrosis (OMIN#219700) [50]. For PGD, Yin et al.
introduced a method of massively parallel sequencing for
aneuploidy of blastocyst and showed 68.4% euploidy rate [51].
Those results were confirmed by SNP array and produced
97.4% consistency. More recently, Treff et al. used NGS to
diagnose single gene disease (SGD) and validated it as a100%
equivalent diagnosis to qPCR [52]. Moreover, by increasing
the read depth, NGS can provide accurate sequencing infor-
mation of mutation site.

10. Conclusion

The universal goal of assisted reproduction technologies is a
singleton delivery of a healthy full-term baby. Thus far, SET
is the most effective strategy to prevent multiple pregnancies.
However, advanced maternal age is a critical determinant for
IVF efficiency to most ART centers. According to a recent
review, the aneuploid percentage was over 50% if a woman
was older than 38 years of age due to a failure of embryo
implantation [15]. To provide an effective SET option for older
women, improved methods of embryo selection by CCS are
required [53].

Genomics is a relatively new scientific discipline, having
DNA sequencing as its core technology. Today, with the far
and quick advance of molecular genetic technologies, we are
able to analyze the “24 chromosomes” and, moreover, the
single gene polymorphism, translocation, or SGD [54]. In this
study, we have reviewed the available methods of CCS for
24 chromosomes and compared their power and limitations
(Table 1). However, final assessment, which includes live birth
rates per cycle commenced, will be most important in the
clinical evaluation of CCS.
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