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Abstract

Accurate quantification of nerves in cancer specimens is important to understand cancer

behaviour. Typically, nerves are manually detected and counted in digitised images of thin

tissue sections from excised tumours using immunohistochemistry. However the images

are of a large size with nerves having substantial variation in morphology that renders accu-

rate and objective quantification difficult using existing manual and automated counting

techniques. Manual counting is precise, but time-consuming, susceptible to inconsistency

and has a high rate of false negatives. Existing automated techniques using digitised tissue

sections and colour filters are sensitive, however, have a high rate of false positives. In this

paper we develop a new automated nerve detection approach, based on a deep learning

model with an augmented classification structure. This approach involves pre-processing to

extract the image patches for the deep learning model, followed by pixel-level nerve detec-

tion utilising the proposed deep learning model. Outcomes assessed were a) sensitivity of

the model in detecting manually identified nerves (expert annotations), and b) the precision

of additional model-detected nerves. The proposed deep learning model based approach

results in a sensitivity of 89% and a precision of 75%. The code and pre-trained model are

publicly available at https://github.com/IA92/Automated_Nerves_Quantification.

Author summary

The study of nerves as a prognostic marker for cancer is becoming increasingly important.

However, accurate quantification of nerves in cancer specimens is difficult to achieve due

to limitations in the existing manual and automated quantification methods. Manual

quantification is time-consuming and subject to bias, whilst automated quantification, in

general, has a high rate of false detections that makes it somewhat unreliable. In this

paper, we propose an automated nerve quantification approach based on a novel deep

learning model structure for objective nerve quantification in immunohistochemistry

specimens of thyroid cancer. We evaluate the performance of the proposed approach by

comparing it with existing manual and automated quantification methods. We show that
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our proposed approach is superior to the existing manual and automated quantification

methods. The proposed approach is shown to have a high precision as well as being able

to detect a significant number of nerves not detected by the experts in manual counting.

This is a PLOS Computational Biology Methods paper.

1 Introduction

A growing number of studies have shown that nerves are involved in the initiation and pro-

gression of numerous cancers [1]. For example, in prostate, breast, pancreatic and bowel can-

cers, the presence of nerves has been associated with increased tumour aggressiveness and a

higher potential for metastatic spread [2–4]. With respect to thyroid cancer, it has been shown

that nerve density is higher in papillary thyroid cancer as compared to follicular thyroid can-

cers and benign thyroid tissues [5].

The detection of nerves in tissue sections presents challenges. Large nerve trunks that dis-

tribute the axons of central neurons to their peripheral targets are relatively easy to identify.

However, the terminal fields of neurons consist of individual fine axons with diameters

between 500 nm and 1 μm. As such, experts need to use specific neuronal markers and exam-

ine specimens at high magnification to identify them. This narrows the field of view and

makes manual quantification challenging.

A number of manual counting strategies exist, in which small regions of interest are first

identified, followed by counting of the stained nerves (as determined by immunohistochemical

labelling of specific neuronal markers) by a trained expert in these regions [2, 5–7] or in a ran-

dom selection of these regions [3, 4]. Automatic methods, e.g. computerised nerve planimetry,

involve an expert manually selecting a few regions of interest centred around the target obser-

vation to define a colour filter range in each image. The image is then converted to a binary

format using the colour filter, where the planimetry of the total nerve surface area will be deter-

mined [6, 7].

Manual counting has high precision. However, it is labour-intensive and usually has a low

sensitivity [8]. It is also susceptible to bias and inconsistency due to intra- and inter-expert var-

iability, as fatigue and other external factors may affect an expert’s judgement [8]. On the other

hand, computerised nerve planimetry is very fast and has a high sensitivity, but typically has a

very low precision. It should be noted that some studies, that use computerised nerve planime-

try, use manual region definition prior to planimetry analysis [6, 7].

Nerves vary largely in size and appearance. Fig 1 contains several examples that show varia-

tion in the size of nerves resulting from different ways in which a nerve can be observed in an

immunohistochemical sample, while Fig 2 contains a number of different nerve appearances.

An automatic detection algorithm must be able to competently identify, considering all of

these different sizes and appearances, a nerve.

As can be seen from both figures, the main identifier of the nerves is the immunohisto-

chemical labelling that gives the colour contrast to the nerves, brown in this case. Unfortu-

nately, the colour cannot be solely used as the nerve detection criteria. A key problem is that

even the most specific immunohistochemical labelling of nerve proteins inevitably has some

degree of non-specific labelling of background tissue that contributes to false positive nerve
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Fig 1. Examples of variation in the size of nerves.

https://doi.org/10.1371/journal.pcbi.1009912.g001

Fig 2. Examples of variation in the appearance of nerves.

https://doi.org/10.1371/journal.pcbi.1009912.g002
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detection. There are many different types of non-specific staining, a selection of which are

shown in Fig 3. As can be seen from Figs 1, 2 and 3, the differences between non-specific stain-

ing and the nerves are not obvious in terms of colour, size and appearance. This non-specific

staining results in the nerves being difficult for the experts to distinguish and also leads to an

overestimation of the number of nerves by the existing automatic methods.

The variation of nerves in terms of size and appearance also results in no formal definition

of a standardised nerve detection criteria. As a result, it is difficult to compare detection and

quantification methods across studies. It can be seen in Fig 1 that the size of a nerve can vary

from 25μm2 to 22, 500μm2. While, in Fig 2, it can be seen that nerves have many different

appearances, e.g. a nerve can appear as a single formation (appearance 1), separated small for-

mations (appearance 2), separated formations (appearance 3), separated clusters (appearance

4), smudges (appearance 5) or other appearances (appearance 6). Although a nerve trunk can

be easily detected due to its characteristic morphology and location features, a cluster of axons

is more difficult to objectively quantify. A non-standardised detection criteria makes the devel-

opment of an objective approach difficult.

A significant challenge is also presented by the very large image size, i.e. 40, 000 × 40, 000

pixels or larger, of a digital whole-slide section. The large image size causes fatigue in experts

and a large computational time in computerised methods.

A convolutional neural network (CNN) is a type of deep learning model that has the ability

to recognise patterns and learn from a set of data samples to make sensible predictions for new

data samples. Deep learning is an automated method that has a feature-learning capability that

allows the system to extract features directly from an input image. By simply providing the

desired output, a deep learning model can be used to automatically learn from a set of data

samples directly. However, data preparation and training processes should be carefully

designed to ensure that the learning is effective. It is also a challenge to develop a deep learning

model with incomplete expert annotations and coarsely annotated data, as is the case in this

paper, where the data used is from a recent study [5] where many smaller nerves are not

detected or annotated.

In this paper, we propose a nerve detection approach that uses a CNN to improve nerve

quantification for thyroid cancer biomarker studies. The main contribution is in the develop-

ment of an objective nerve detection methodology based on a segmentation network incorpo-

rating a novel augmented classification structure. We evaluate our proposed CNN based

approach in performing the nerve detection and quantification task on data made available

from the study in [5].

Fig 3. Examples of non-specific staining.

https://doi.org/10.1371/journal.pcbi.1009912.g003
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In Section 2, we provide some background material for the proposed nerve detection

approach. In Section 3, we describe the tissue preparation and digitisation process, nerve

detection criteria, segmentation label extraction process, performance evaluation metrics and

details of our proposed approach, including the proposed architecture, and training process.

In Section 4, we describe the dataset and compare the performance of our proposed model to

manual counting and a colour filter only based approach for the nerve detection and quantifi-

cation task. In Section 5, we discuss the results of our study and challenges in the development

of the proposed approach. Finally, we present conclusions in Section 6.

2 Related work

Many CNN based approaches have been applied to object detection tasks, for example, object

detection in photographs [9–11], organ detection in medical images [12, 13] or mitosis, cyto-

plasm and nuclei detection in stained whole slide images (WSIs) [14–16]. However, to our best

knowledge, no CNN based approach has been applied specifically to the nerve detection and

quantification problem. In this section we will present the rationale for our approach based on

some object detection problems that are similar to this nerve detection problem.

2.1 Colour thresholding

In image processing it is typical to convert an image from the red, green and blue (RGB) colour

space to the hue, saturation and value (HSV) colour space for the purpose of colour image seg-

mentation and/or thresholding [17]. This is because the HSV colour space organises colour in

a similar way to the perception of the human eye [17], in that luma/intensity information are

separated from chroma/colour information in the HSV colour space [18]. This makes colour

range definition in the HSV colour space more straight forward in comparison to the RGB col-

our space.

To perform colour thresholding (i.e. filtering) on a WSI in a typical image processing pro-

gram, e.g. ImageJ [19], an expert takes a sample of the target instances to initialise the colour

filter range in the HSV colour space. Then, the expert will adjust the threshold limit manually

until the desired segmentation output is obtained.

2.2 Object detection and localisation in a WSI

In computer vision, an object quantification task is usually formulated as an object detection

or localisation task [20, 21]. Some of the most successful approaches in object detection and

localisation evolved from relying on either a multi-scale sliding-window (i.e. exhaustive

search) [22–24], a selective-search [9, 10, 25, 26] or deep learning models [9–11, 22–26].

Deep learning models such as U-Net and FCN have been shown to be successful in various

WSI segmentation applications [27], with U-Net proven to be superior [28]. U-Net has also

been shown to outperform human experts for lymphocyte detection in immunohistochemi-

cally stained tissue sections of breast, colon and prostate cancer [28]. The superiority of U-Net

performance with respect to the FCN has also been demonstrated on the application of renal

tissue segmentation [29].

2.3 Supervised learning

To develop a supervised learning model for segmentation, including a CNN, a complete pixel-

wise annotated dataset is required as the ideal supervision information [30]. However, as a

complete pixel-wise annotated dataset is often unavailable in real-world applications, a basic
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assumption, e.g. a cluster assumption or a manifold assumption, can be adopted to annotate

the non-annotated data for training [30].

It is also crucial to ensure that the data for each class is balanced, i.e. intra- and inter-class

data [31] [32]. In the case where the data is highly skewed with respect to the number of anno-

tations in each class, the training data samples should be carefully selected to ensure that the

representations of each class are balanced [32]. Data balancing can be achieved by controlling

the proportion of the data samples of each class to be equal [32].

3 Materials and methods

3.1 Ethics statement

This study was approved by the Hunter New England Human Research Ethics Committee,

who granted a waiver of consent for access to archival pathology material and approved the

experimental protocol (2019/ETH13695). All study methodologies were carried out in accor-

dance with relevant guidelines and regulations.

3.2 Tissue preparation and digitisation

The images used in this study are from a dataset of histological specimens of benign and malig-

nant thyroid tissue that has previously been described [5]. This dataset [33] was chosen, firstly,

because of the high specificity of the immunohistochemistry for nerve tissue with minimal

background staining, and secondly, because a digital library of annotated nerves was readily

available. Briefly, 112 whole slide sections of 4 μm thickness, from formalin-fixed paraffin-

embedded blocks of benign and malignant thyroid tissue, were labelled with immunohis-

tochemistry for the pan-neuronal marker protein gene-product 9.5 (PGP9.5) using the Ven-

tana Discovery automated slide stainer (Roche Medical Systems, Tuscon, Az), then

counterstained with haematoxylin. The primary antibody was the anti-rabbit polyclonal

PGP9.5 antibody (catalogue number #Ab15503, Abcam, Cambridge, United Kingdom) at

1:600 dilution. Slides were then digitised at 20 × magnification using the Aperio AT2 scanner

(Leica Biosystems, Victoria, Australia). These images were analysed using the QuPath quanti-

tative pathology program [34]. Slides were initially viewed at 4x magnification as specified by

the program and screened for the presence of focal DAB staining suggestive of nerves. All focal

DAB staining was then examined at 20x magnification and ascribed the appropriate

annotation.

3.3 Criteria for nerve detection

As discussed in Section 1, nerve detection is considered to be a difficult task as nerves vary in

size, appearance and immunoreactivity to the PGP9.5 staining colour range. However, it is

critical to define comprehensive criteria to reduce bias in the study. Thus, we develop the crite-

ria based on four parameters: size, morphology, anatomical location and immunoreactivity to

PGP9.5. The definitions of the criteria are given in Table 1.

As can be seen from Table 1, a nerve should be in a plausible anatomical location and have

a minimum size of 25 μm2 (*100 pixels). In terms of appearance and colour, a nerve should

show immunoreactivity to PGP9.5 staining, i.e. be brown in colour, and show typical neural

structure, e.g. edges, clearly.

The minimum size of the manually annotated nerve in the dataset from [5] is approxi-

mately 100 μm2 (400 pixels), which is about four times the minimum nerve size that we would

like to detect. Hence, we use a 20 × 20 pixel (400 pixels) morphological closing operation [35]

to combine predicted positive instances located close to each other and consider it as a single
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predicted positive instance. Predicted positives instances that are far from each other (e.g.

axons of a nerve cluster) and that cannot be morphologically closed, will be counted as discrete

predicted positive instances.

3.4 Segmentation label extraction

Here we are faced with the problem of incomplete coarsely annotated data of only true posi-

tives. Thus, we use assumptions, based on colour and location, to determine the pixel-wise seg-

mentation labels of the coarsely annotated data to maximise the use of non-annotated data for

learning, as discussed in Section 2.3. If a pixel is brown in colour and intersects with the anno-

tations, it is labelled positive, otherwise it is labelled negative.

A significant challenge is in determining the colour filter range for the pixel-wise segmenta-

tion labels that results in a minimum number of label artifacts. It is difficult to determine a col-

our filter range that can detect the immunoreactivity to PGP9.5 staining with high sensitivity

and high precision (i.e. high true positives and low false positives), as a colour filter range with

high sensitivity usually results in low precision. Moreover, all the true positives and false posi-

tives cannot be determined from incomplete annotations. Thus, the range is defined empiri-

cally by observing the number of true positives (i.e. detected annotations) and estimated false

positives (i.e. label artifacts from detected non-annotated brown stains). A colour filter pre-

dicted positive instance is considered to be a true positive if the predicted positive instance

intersects with any of the annotations. Here we use a normalised colour filter range of (0.04,

0.2, 0.4) to (0.2, 1, 1) in HSV space that results in approximately 98% sensitivity, with respect

to the expert annotated data, to minimise the label artifacts.

Another challenge is to extract true negative training data samples. With incomplete

coarsely annotated data of only true positives, the negative data samples cannot be extracted

reliably. There are many nerves that were falsely annotated negative by exclusion in the expert-

annotated data. Therefore the colour filter predicted positive instances located outside the

annotations cannot be used directly as negative training data samples. To solve this problem,

we define an area within each training WSI where negative training data samples are to be

extracted. The regions are chosen such that the number of unspecified brown stains is maxi-

mised and the number of false negatives is minimised.

3.5 Performance evaluation

The main objective of this paper is to provide an automatic approach for the quantification of

nerves in a thyroid tissue WSI. From this perspective, it is important to evaluate the proposed

approach at a WSI level instead of at a patch level. As there is no precise pixel-wise label avail-

able, the performance will be evaluated by a hit or miss method. A hit indicates a true positive,

while a miss indicates either a false negative or false positive. A hit is determined when a pre-

dicted positive instance intersects with an expert annotation, i.e. true positive from manual

Table 1. Criteria for nerve detection.

Criterion Definition Justification

Anatomical

location

Plausible anatomical location for neural tissue (e.g.

vasa nevorum, interstitial spaces)

Structures outside of a plausible anatomical location are excluded.

Size Greater than 25μm2 (*100 pixels) Corresponds to a minimum size of 3 axons in cross-section. Smaller structures are

difficult to confidently distinguish from non-specific staining

Morphology Typical neural structures Axon: linear structure, discrete edge

Nerve: cluster of axons surrounded by perineurium

Immunoreactivity Focal and discrete PGP9.5 staining Diffuse and non-specific uptake of Dab are excluded.

https://doi.org/10.1371/journal.pcbi.1009912.t001
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annotations, TPm. When multiple predicted positive instances intersect with an expert annota-

tion, it will be scored as one hit. An expert annotation that has no intersection with any pre-

dicted positive instance will be scored as a miss, i.e. false negative, FN. If a predicted positive

instance does not intersect any of the expert annotations, a hit is then determined by experts,

who evaluate whether the predicted positive contains any nerve, i.e. additional detection true

positive, TPa. If the predicted positive instance contains no nerve, as determined by the

experts, it will be scored as a miss, i.e. false positive, FP. The evaluation (scoring) is performed

blindly by three experts, i.e. E1, E2 and E3, and the final number of true positives will be deter-

mined from the average across the experts. The inter-expert agreement is shown in Table 2.

Overall, the percentage of the scoring agreements between the experts (E1 and E2, E1 and E3,

and E2 and E3) has an average of 78.3%, which is broadly consistent with the literature [36,

37].

Sensitivity, also referred to as true positive rate (TPR), is used to evaluate the number of

annotated nerves detected. Sensitivity [38] is given by,

TPR ¼
TPm

ðTPm þ FNÞ
; ð1Þ

where TPm indicates the number of true positives detected from the manual annotations and

FN indicates the number of false negatives.

Precision, also referred to as positive predictive value (PPV), is used to evaluate the ability

of an approach to detect nerves. Precision [38] is given by,

PPV ¼
TP

ðTP þ FPÞ
; ð2Þ

where TP indicates the total number of true positives,

TP ¼ TPm þ TPa; ð3Þ

TPa indicates the number of true positives in the additional detections, i.e. nerves missed by

the experts in the manual annotations, and FP indicates the number of false positives.

3.6 Nerve detection approach

The nerve detection approach consists of three main stages, preprocessing, model prediction

and post-processing. The end-to-end process is shown in Fig 4.

The approach starts with a sliding-window having a 50% overlap that is used to extract

160 × 160 pixel image patches from the entire WSI. Then, a CNN is used to perform pixel-wise

segmentation of the nerve in each image patch before the predictions are combined for nerve

quantification.

The output of the network is the same size as the input and is a binary array of pixel-wise

predictions. However, the output may contain predicted positive instances that are too small,

or a cluster of predicted positive instances that are separated from each other. Hence, a post-

Table 2. Inter-expert scoring agreement.

Experts Average Agreement (%)

E1,E2 74.9

E1,E3 79.3

E2,E3 80.6

Average 78.3

https://doi.org/10.1371/journal.pcbi.1009912.t002

PLOS COMPUTATIONAL BIOLOGY Objective quantification of nerves in immunohistochemistry specimens of thyroid cancer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009912 February 28, 2022 8 / 21

https://doi.org/10.1371/journal.pcbi.1009912.t002
https://doi.org/10.1371/journal.pcbi.1009912


processing process is required to omit the small predicted positive instances below the mini-

mum size threshold, or to combine the predicted positive instances into a larger instance for

better nerve quantification.

The post-processing begins with a 20 × 20 pixel morphological closing [35] that combines

the predicted positive instances that are located closer than 20 pixels in both horizontal and

vertical axes. For each of the predicted positive instances the minimum x and y coordinate is

determined and the maximum width and height of the instance is calculated. The box is then

generated around the predicted positive instance where one corner is located at the minimum

coordinate and the box is given the width and height of the calculated maximum values. Then,

the predicted positive instances with prediction boxes that are larger than 100 pixel are

extracted, while smaller instances are omitted. Finally, the prediction boxes that overlap by at

least 50% are combined and counted as one, while two prediction boxes that overlap less than

50% are counted as two individual nerves. The post-processing flowchart is shown in Fig 5.

3.7 Proposed architecture

In this section, we propose the novel addition of a classification structure to the U-Net archi-

tecture [39] as the nerve detection task involves an image classification process. Although a

multi-stage classification and segmentation approach can be used, the training can be compu-

tationally expensive, as separate training processes are required. Thus, we propose to augment

the U-Net architecture [39] with an image classification structure that can be trained in an

end-to-end manner to improve the segmentation results.

The U-Net architecture [39] uses an encoder-decoder structure to perform pixel-wise clas-

sifications. The encoder is used for automatic feature extraction of the input image, while the

decoder is used to map the extracted high-level features back to the original input resolution

and use them to perform pixel-wise classification for the segmentation output. The augmented

classification structure is designed to use the extracted high-level features for image classifica-

tion and then have the classification output assist the final segmentation results. The aim of the

augmented classification structure is to reduce the false positive predictions of the segmenta-

tion network. The proposed network architecture with the augmented classification structure

is shown in Fig 6.

As shown in Fig 6, the U-Net based network [39] begins with a 160 × 160 × 3 input layer

and ends with a 160 × 160 × 1 sigmoid activated output layer. It consists of convolution blocks

Fig 4. End-to-end process flowchart.

https://doi.org/10.1371/journal.pcbi.1009912.g004

Fig 5. Post-processing flowchart.

https://doi.org/10.1371/journal.pcbi.1009912.g005
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Fig 6. Proposed network architecture with augmented classification structure.

https://doi.org/10.1371/journal.pcbi.1009912.g006
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containing 3 × 3 convolution layers with ReLU activation. A 2 × 2 average pooling layer is

used for the downsampling in the encoder and a 2 × 2 nearest neighbour interpolation fol-

lowed by 2 × 2 convolution layer with ReLU activation is used for the upsampling in the

decoder. Skip connections with concatenation are used to pass feature maps within each con-

volution block as well as from the encoder to the decoder. Dropout layers, with dropout rate of

0.5, are applied in the lowest resolution convolution block for regularisation. Batch normalisa-

tion (BN) layers are applied before every activation layer to normalise the input and speed up

the training process.

The augmented classification structure consists of a 1 × 1 convolution layer for a feature

layer dimensional reduction, a 2-layer fully connected network for classification and a reshap-

ing layer for the classification output shape adjustment. The reshaping layer takes the 1 × 1

classification output (with probability range of 0 to 1) and reshapes it to the input image size of

160 × 160 by duplication. A dropout layer, with a dropout rate of 0.5, is applied directly after

the 1 × 1 convolution layer and before the last fully connected layer for regularisation. The

reshaped output is then multiplied by the output of the segmentation network to obtain the

final model output which has a threshold of 0.5. This results in a segmentation network that

only produces a positive segmentation output when the results of the classification and seg-

mentation output are higher than 0.5. The block diagram of the proposed network with the

augmented classification structure is shown in Fig 7.

3.8 Training

The training consists of four main stages, pre-processing with a colour filter for ROI extrac-

tion, training data sample selection, image patch conversion and training data generation. The

training process is shown in Fig 8.

Pre-processing includes filtering based on colour for the extraction of ROIs and network

input preparation. For the extraction of the ROIs, we downsampled the WSI by 4 to reduce the

Fig 7. Block diagram of the proposed network with augmented classification structure.

https://doi.org/10.1371/journal.pcbi.1009912.g007

Fig 8. CNN training process.

https://doi.org/10.1371/journal.pcbi.1009912.g008
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size of the image to approximately 10, 000 × 10, 000 pixels. The WSI is then divided into 256

non-overlapping image blocks, where each image block consists of approximately 625 × 625

pixels. We then apply the colour filter described in Section 3.4. Note that the binary output of

the colour filter is quite noisy, as it catches many small artifacts of brown stains that do not

belong to a nerve. A 20 × 20 pixel morphological closing is performed to combine brown stains

that potentially belong to a nerve, i.e. separated axons in a nerve fibre or nerve trunks, and

extract the resulting structures that exceed 100 pixels as ROIs. Finally, we combine ROIs that

overlap each other to form a larger ROI. The ROI extraction flowchart is shown in Fig 9.

After the ROIs have been extracted from the WSI, they are categorised into positive and

negative training data samples. We use the same method to determine a true positive as in Sec-

tion 3.5, where any ROI that intersects with any of the expert annotations will be considered as

positive training data samples, while any ROI that intersects with the predefined areas for the

extraction of the negative training samples will be considered as negative training data sam-

ples. To ensure accurate representation of the target class, i.e. nerves, the*2500 positive train-

ing data samples were manually examined and approximately 500 positive training data

samples that contain a significant number of label artifacts were excluded. Examples of

excluded positive training data samples due to label artifacts are shown in Images A and B of

Fig 10, while the pixel-wise segmentation labels of the corresponding image patches are shown

in Labels A and B of Fig 10. As can be seen in these examples, a significant number of label

artifacts, i.e. positive pixel-wise labels located outside the red box, are apparent in the form of a

blob, Label A, and scattered structure, Label B.

The CNN accepts a fixed 160 × 160 pixel, 3 channel (RGB) image. Due to the variation in

the size of the nerves, we convert each of the arbitrary size ROIs to 160 × 160 pixel image

Fig 9. ROI extraction flowchart.

https://doi.org/10.1371/journal.pcbi.1009912.g009

Fig 10. Excluded positive training data samples due to label artifacts from the colour filter. The red box surrounds the actual nerve.

https://doi.org/10.1371/journal.pcbi.1009912.g010
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patches. To accomplish this, we use the process shown in Fig 11. Here, we divide the ROI into

50% overlapping, 160 × 160 pixel image patches without the use of any reshaping function.

Basically, we check if the size of the ROI is greater than 160 × 160 pixels, and if true, we divide

the ROI height and width with the image patch size and obtain the number of image patches

that will be extracted from the ROI. The number of image patches extracted from each ROI

can be calculated as follows,

N ¼
ROI
P

� �

� 2 � 1; ð4Þ

where N denotes the number of 50% overlapping patches that are required to cover the size of

either the ROI height or width, and P denotes either the size of the patch height or width.

As discussed in Section 2.3, to ensure the training is effective, a balanced dataset is required.

Here a training generator is used to perform data augmentation (e.g. flip, rotate and shifting)

and generates balanced training data samples, where an equal number of positive and negative

data samples are randomly chosen at every iteration.

The He initialisation is used for the weight initialisation. The Adam optimiser is utilised in

the model training using a learning rate of 10−4 with a binary cross-entropy cost function. The

model is trained over 250 epochs with the*2000 handpicked positive training data samples.

A few examples of both the positive and negative training data samples and their correspond-

ing labels are shown in Fig 12.

4 Results

In this section, we explain how the dataset is used and divided for the development of the

model, as well as the test results at a WSI level. The results of the proposed approach are com-

pared with the results from the manual counting and traditional automatic approach, i.e. col-

our filter based approach.

4.1 Dataset

The dataset consists of 112 stained thyroid tissue WSIs annotated by two experts. The dataset

is split into training, validation and test sets. The training set consists of 80 WSIs, which

includes 52 WSIs containing the largest number of annotated nerves and 28 randomly selected

WSIs. The validation set consists of 10 randomly selected WSIs, while the test set consists of

the remaining 22 WSIs.

Fig 11. Image patches conversion flowchart.

https://doi.org/10.1371/journal.pcbi.1009912.g011
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4.2 Performance comparison

In this section, we present a performance comparison between manual counting by experts

and two automatic approaches, i.e. the colour filter and the proposed CNN based approaches.

The colour filter based approach (APR-CF) relies on a colour filter, while the CNN based

approach (APR-CNN) relies on a CNN to perform a pixel-level nerve detection, as described

in Section 3.6. Here, the CNN based approach uses the proposed U-Net with the augmented

classification structure, as shown in Fig 6. The main objective of this section is to evaluate the

proposed CNN based approach in terms of performance for automatic nerve detection.

Sensitivity (TPR) and precision (PPV) are used for performance evaluation of the three

approaches on each WSI in the test set. The evaluation scores of the corresponding metrics for

each WSI are presented in Tables 3 and 4. Due to the large number of predicted positive

instances by the APR-CF, we use a random sampling to obtain 100 predictions for each WSI

to facilitate the experts in the evaluation of the true positives. The performance evaluation of

the APR-CF in Table 4 will be based on these 100 samples, where the proportion of correct

predictions will be multiplied by the total number of predictions, and hence denoted as esti-

mated performance.

Fig 12. Examples of the positive and negative training data samples.

https://doi.org/10.1371/journal.pcbi.1009912.g012
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Table 3 provides the number of detected nerves for the APR-CF and APR-CNN with

respect to the expert manual annotations. The identified manual annotations columns indicate

the number of expert annotations that are detected by each approach. The additional detection

columns indicate nerves detected by the approaches that were missed by the experts. Note,

that the additional detections may contain false positives.

As can be seen from Table 3, the APR-CF has a higher rate of annotated nerve detection,

with an average sensitivity of 98%, while the CNN based approach has an average sensitivity of

89%. However, the APR-CF predicted a total of 84,941 additional positive detections, while the

CNN based approach predicted a total of 4346, which is more than an order of magnitude less

than the APR-CF. However, the quality of the overall performance can only be determined by

the evaluation of the true positives of these predictions.

Table 4 details the additional detections from the colour filter and CNN based approach in

terms of true and false positives. It provides the number of nerves (i.e. true positives, TPa) that

were not detected by expert manual annotation, and the number of predicted positive

instances that were not nerves (i.e. false positives, FP). It also shows the precision of the auto-

matic approaches.

As can be seen from Table 4, the automatic approaches are capable of detecting a signifi-

cantly higher number of true positives, at least eleven times more than the number of nerves

Table 3. Results with respect to the expert manual annotations.

WSI ID Manual Annotations Identified manual annotations Additional detections

APR-CF APR-CNN

TPm TPR TPm TPR APR-CF APR-CNN

10012 10 9 0.9 9 0.9 847 50

10023 12 12 1 11 0.92 2658 63

10029 11 11 1 8 0.73 3390 21

10036 9 8 0.89 9 1 4316 385

10039 35 35 1 31 0.89 6591 419

10049 15 15 1 12 0.8 7185 26

10064 28 28 1 25 0.89 1922 33

10067 27 27 1 25 0.93 815 146

10071 21 20 0.95 18 0.86 3113 40

10072 15 14 0.93 14 0.93 492 45

10073 2 2 1 1 0.5 8348 25

10078 15 15 1 13 0.87 9884 99

10087 0 0 - 0 - 877 11

10088 8 8 1 8 1 1689 100

10093 11 11 1 11 1 2773 17

10096 1 1 1 1 1 1019 32

10097 19 18 0.95 18 0.95 6907 511

10102 25 25 1 24 0.96 4799 405

10113 16 15 0.94 14 0.88 1504 245

10114 14 14 1 13 0.93 6529 1059

10116 16 16 1 15 0.94 5005 318

10121 8 8 1 7 0.88 4278 296

Overall 318 312 0.98 287 0.89 84941 4346

Abbreviations: WSI: Whole Slide Image; APR-CF: Colour filter; APR-CNN: CNN based approach; TPm: True positives detected from the manual annotations; TPR:

Sensitivity.

https://doi.org/10.1371/journal.pcbi.1009912.t003
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manually detected by the experts shown in Table 3. However, compared to the APR-CF, the

APR-CNN performs substantially better in correctly identifying nerves (precision). The

APR-CF has an average precision of 9%, while APR-CNN has an average precision of 75%.

Although, the APR-CF has the highest number of additional positive detections, the number

of false positives is extremely large, hence the detection is not meaningful. This significant

improvement in precision makes the detection substantially more meaningful.

A summary of the sensitivity and precision of the automatic approaches, as evaluated on

the test set, is presented in the box-and-whiskers plots shown in Fig 13 where it can be seen

that APR-CNN outperforms the APR-CF.

Several examples of true positives detected by the CNN approach are shown in Fig 14(A)–

14(H). It can be seen that the CNN approach can detect nerves of various sizes and appear-

ances. Here we present one of the largest nerves detected, 40.5 x 300 μm2 (Fig 14A), and the

smallest 4.5 x 7 μm2 (Fig 14B). Nerves within the model input size (160 × 160 pixels) are

shown in Fig 14(C)–14(E) and 14(G)–14(H), as well as larger nerves shown in Fig 14(A) and

14(F). A nerve in the form of a cluster of axons that are close to each other, considered as a sin-

gle nerve, is shown in Fig 14(C)–14(F). Multiple clusters of axons that are far apart from each

other are considered to be separate nerves and quantified as multiple discrete nerves, as shown

in Fig 14(G)–14(H).

Table 4. Precision scores of the automatic approaches.

WSI ID Additional detections Total

APR-CF APR-CNN APR-CF APR-CNN

Total Est. TPa Est. FP Total TPa FP TP PPV TP PPV
10012 847 45 802 50 34 16 54 0.06 43 0.73

10023 2658 89 2569 63 39 24 101 0.04 50 0.68

10029 3390 0 3390 21 11 10 11 0 19 0.66

10036 4316 432 3884 385 304 81 440 0.1 313 0.79

10039 6591 712 5879 419 316 103 747 0.11 347 0.77

10049 7185 48 7137 26 15 11 63 0.01 27 0.71

10064 1922 26 1896 33 21 12 54 0.03 46 0.79

10067 815 244 571 146 126 20 271 0.32 151 0.88

10071 3113 197 2916 40 29 11 217 0.07 47 0.81

10072 492 77 415 45 37 8 91 0.18 51 0.86

10073 8348 167 8181 25 17 8 169 0.02 18 0.69

10078 9884 659 9225 99 70 29 674 0.07 83 0.74

10087 877 9 868 11 10 1 9 0.01 10 0.91

10088 1689 146 1543 100 70 30 154 0.09 78 0.72

10093 2773 55 2718 17 11 6 66 0.02 22 0.79

10096 1019 27 992 32 18 14 28 0.03 19 0.58

10097 6907 1036 5871 511 395 116 1054 0.15 413 0.78

10102 4799 720 4079 405 285 120 745 0.15 309 0.72

10113 1504 140 1364 245 185 60 155 0.1 199 0.77

10114 6529 1372 5157 1059 806 253 1386 0.21 819 0.76

10116 5005 233 4772 318 222 96 249 0.05 237 0.71

10121 4278 399 3879 296 198 98 407 0.09 205 0.68

Overall 84941 6833 78108 4346 3219 1127 7145 0.09 3506 0.75

Abbreviations: WSI: Whole Slide Image; APR-CF: Colour filter; APR-CNN: CNN based approach; Est.: Estimated performance based on 100 samples; TPa: The number

of true positives in the additional detections; FP: False Positives; TP: Total true positives; PPV: Precision.

https://doi.org/10.1371/journal.pcbi.1009912.t004
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Overall, the experts detect the least number of nerves in the test set, with a high precision

and low sensitivity. The APR-CF detects approximately 22 times the nerves detected by the

experts, however, with an extremely low precision of 9% due to the large number of false posi-

tives. The CNN based approach detects approximately 11 times the number of nerves detected

by the expert and has an average precision of 75%. This shows that the CNN based approach

can detect considerably more nerves than the manual approach while having more meaningful

results than the traditional colour filter based approach.

5 Discussion

In this paper, we propose an automated CNN based approach that is more suitable than either

manual counting or a simple colour filter to perform nerve detection and quantification. We

have shown that although the colour filter based approach is highly sensitive, it tends to have a

very low precision. On the other hand, the proposed CNN based approach (APR-CNN) is

slightly less sensitive than the colour filter based approach (APR-CF), but has a much greater

precision which makes the detection considerably more meaningful.

Influence of nerves on tissues is a function of “nerve density”. More specifically the density

of terminal fields and neurotransmitter release sites. An individual varicosity (release site) is

around 1 micron in diameter. To catch every varicosity is unrealistic due to the fact that

pathology specimens are sectioned 4 microns and the microtome blade will slice through parts

of varicosities. So there has to be a compromise. As stated in the introduction manual counting

has previously only been able to detect large nerve trunks. Essentially giving no information

on nerve density within the tumour. The size filter employed in this study is conservative with

respect to single varicosities and parts thereof. However, it is a vast improvement on any previ-

ous quantification of nerve density. As such it has the potential to significantly add to the

understanding of cancer progression in these patients.

Fig 13. Sensitivity of the APR-CF and APR-CNN in the detection of the expert annotated nerves (blue). Precision of

APR-CF and APR-CNN in the detection of nerves (orange). The × symbol in the box indicates the mean value, while

the line in the box indicates the median value. The � represents an outlier, the box represents the interquartile range

and the whiskers represent the upper and lower extreme, excluding the outliers.

https://doi.org/10.1371/journal.pcbi.1009912.g013
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This proof of concept study, demonstrating machine learning techniques for detection of

nerves in cancer tissues, is expected to be widely generalisable to detection of nerves in many

cancer (and non-cancer) histology specimens. Thyroid cancer was chosen for this study as a

pragmatic available dataset, however any appropriately prepared tissue-type could have been

used.

Note that although the development was affected by the inconsistency of the experts due to

intra- and inter-expert variability, we believe that the developed model will be able to minimise

the intra- and inter-expert variability in future studies.

6 Conclusion

In this paper, we defined a detailed nerve quantification criteria and developed an automatic

nerve detection system based on a CNN. We proposed a novel augmented classification

Fig 14. Examples of nerves detected (i.e. true positives, TPa) by the proposed CNN based approach. Each image patch contains one prediction

instance indicated by a green box.

https://doi.org/10.1371/journal.pcbi.1009912.g014
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structure for a U-Net to reduce the number of false positives in an object detection task. This

new CNN based approach resulted in having a much higher precision score (75%) with respect

to the traditional colour filter based approach (9%) while also being more consistent than the

manual counting. The proposed approach resulted in an increase of the nerve detection capa-

bility of approximately 11 times with respect to manual counting by the experts, while main-

taining an 89% sensitivity.
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