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Abstract
Scrub typhus is a neglected tropical disease, caused byOrientia tsutsugamushi, a Gram-

negative bacterium that is transmitted to mammalian hosts during feeding by Leptotrombi-
diummites and replicates predominantly within endothelial cells. Most studies of scrub

typhus in animal models have utilized either intraperitoneal or intravenous inoculation; how-

ever, there is limited information on infection by the natural route in murine model skin or its

related early host responses. Here, we developed an intradermal (i.d.) inoculation model of

scrub typhus and focused on the kinetics of the host responses in the blood and major

infected organs. Following ear inoculation with 6 x 104O. tsutsugamushi, mice developed

fever at 11–12 days post-infection (dpi), followed by marked hypothermia and body weight

loss at 14–19 dpi. Bacteria in blood and tissues and histopathological changes were

detected around 9 dpi and peaked around 14 dpi. Serum cytokine analyses revealed a

mixed Th1/Th2 response, with marked elevations of MCP-1/CCL2, MIP-1α/CCL3 and IL-10

at 9 dpi, followed by increased concentrations of pro-inflammatory markers (IL-6, IL-12,

IFN-γ, G-CSF, RANTES/CCL5, KC/CCL11, IL-1α/β, IL-2, TNF-α, GM-CSF), as well as mod-

ulatory cytokines (IL-9, IL-13). Cytokine levels in lungs had similar elevation patterns,

except for a marked reduction of IL-9. The Orientia 47-kDa gene and infectious bacteria

were detected in several organs for up to 84 dpi, indicating persistent infection. This is the

first comprehensive report of acute scrub typhus and persistent infection in i.d.-inoculated

C57BL/6 mice. This is a significant improvement over current murine models forOrientia
infection and will permit detailed studies of host immune responses and infection control

interventions.
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Author Summary

Scrub typhus is a life-threatening disease that presents as a severe acute febrile illness. It is
caused by mite-transmitted Orientia tsutsugamushi, a Gram-negative, obligately intracel-
lular bacterium. Every year, approximately one million people are infected globally; how-
ever, there is no vaccine for the control of this infection. Mechanistic studies of host
immune responses have been few, partially due to the limited availability of suitable ani-
mal models and research facilities. Here, we report our development of an intradermal
inoculation mouse model that mimics the natural infection. We also examined the kinetics
of immune and inflammatory responses during acute and chronic stages of O. tsutsugamu-
shi infection. As the first comprehensive report of an intradermal inoculation murine
model of scrub typhus, this study improves our understanding of host immune responses
following cutaneous exposure to the bacteria and opens new avenues for future vaccine-
based investigations.

Introduction
Scrub typhus (Tsutsugamushi disease) is a potentially severe acute febrile illness transmitted
through the bite of an infected feeding larval mite or chigger [1]. It is caused by Orientia tsutsu-
gamushi (formerly known as Rickettsia tsutsugamushi before 1995 when it was reassigned to
the new genus Orientia), a strictly intracellular, Gram-negative bacterium that resides free in
the cytoplasm of the microvascular endothelium [2]. Phylogenetically, Orientia is in the order
Rickettsiales, family Rickettsiaceae [3,4]. The vector and reservoir in nature of O. tsutsugamu-
shi are Leptotrombidium spp. mites or chiggers [5,6,7]. However, these parasites in both
nymphal and adult stages do not feed on vertebrates and are therefore irrelevant in transmis-
sion of human disease. Scrub typhus is prevalent in a large geographic area, comprising
approximately 13,000,000 km2, stretching from the Russian Far East, China, Japan and Korea
in the north, to northern Australia in the south, and to Afghanistan and Pakistan to the west
[3,8]. Many islands in the Pacific Ocean and Indian Ocean, including Taiwan, The Philippines,
Indonesia and Sri Lanka among others, also have reported cases. Accordingly, more than 1 bil-
lion people living in those areas are at risk of acquiring the infection, and overall more than 1
million cases are estimated to occur every year [9]. Historically, this disease had a dramatic
impact on U.S. troops during World War II and the VietnamWar and is now emerging as an
important disease in the Far East [3,10,11]. Scrub typhus is rated very high on the Armed
Forces Medical Intelligence Center’s Global Severity Risk Index assessment of risk of naturally
acquired infections of U.S. military personnel [12]. In 1999, the World Health Organization
referred to scrub typhus as “probably one of the most underdiagnosed and underreported
febrile illnesses requiring hospitalization in the region.”

Scrub typhus is responsible for a large proportion of severe undifferentiated fevers, as well
as up to 23% of all febrile episodes in rural endemic areas and has relatively high mortality
rates [13]. The average case-fatality rate is ~10%, but has been reported to be as high as 35% in
some series, mostly due to delays in initiating effective antimicrobial treatment. In the pre-anti-
biotic era, case-fatality ratios could be as high as 50% [14]. However, the disease spectrum is
extremely broad, and it is likely that disease severity in humans might depend, in part, on the
strain of O. tsutsugamushi involved in human cases. In fact, more than 70 strains of O. tsutsu-
gamushi are currently described [15]. Reinfection with the same genotype is possible in highly
endemic areas. Some individuals can progress to persistent infection even after antibiotic treat-
ment [16], and there are no effective vaccines for scrub typhus [4,17]. Adaptive immunity or
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cross-protection following O. tsutsugamushi infection in humans appears strain-related and
short-lived [13,18,19,20], but the underlying mechanisms of waning immunity are largely
unclear.

Non-human primates, especiallyMacaca fascicularis (cynomolgus macaques) and Presbytis
cristatus (silvered leaf monkeys), have been used to study the histopathology and immunologi-
cal responses to O. tsutsugamushi [21,22,23,24]. Walsh and colleagues have used cynomolgus
macaques to evaluate the clinical manifestations and antibody responses, as well as histological
features of eschars, a unique and localized pathological skin lesion often occurring in humans
following inoculation of the organism at a cutaneous mite feeding site [22]. More recently,
Paris and colleagues have developed a cynomolgus macaque intradermal (i.d.) challenge model
that closely mimics natural infection and eschars in humans and have used it to evaluate pro-
tective immune responses induced by p47-DNA vaccination against infection with O. tsutsuga-
mushi Karp strain (OtK) [25]. They have provided the first phenotypic correlations of immune
protection in scrub typhus. While non-human primates are the best models for human scrub
typhus, they are not widely used in laboratories due to the high expense and other logistical
issues. Thus, there is a great need to develop murine models that mimic the natural entry route
of organism inoculation and manifest certain immunological and pathogenic features of
human scrub typhus.

Elucidation of pathogenic mechanisms or protective immunity to OtK has been hampered
by the lack of availability of well-standardized rodent animal models that mimic the pathologi-
cal features of the human disease. Most publications report murine models that were initiated
via the intraperitoneal (i.p.) inoculation route in outbred mouse strains, which resulted in dif-
fuse peritonitis and severe mesothelial infection of the peritoneum, rather than disseminated,
systemic infections following an incubation period [26,27,28,29,30]. The newly developed
model of intravenous (i.v.) inoculation in C57BL/6 mice leads to disseminated infection of
endothelial cells, and lesions resembling the human pathology in cases of fatal scrub typhus
[31,32]. However, this model bypasses the natural route of infection since infections transmit-
ted in nature follow i.d. entry of the organisms. Several groups have explored other routes of
infection via subcutaneous (s.c.) or i.d. needle inoculation or mite-based transmission; how-
ever, most of these reports have focused on the early phases of infection in BALB/c mice [33],
or in outbred mice which cannot be utilized for reproducible mechanistic studies [34,35,36].

Here, we report a sub-lethal murine model for acute scrub typhus and persistent infection
following i.d. inoculation of C57BL/6 mice with OtK. This represents an advance that comple-
ments our recent development of a lethal scrub typhus model that used i.v. inoculation [31,32].
Validation of this i.d. inoculation model should permit in-depth mechanistic studies related to
the pathogenesis and specific immunological investigations of the host immune response fol-
lowing route-specific exposure to the bacteria, and it will open new avenues for future vaccine-
or immune-based investigations for disease control.

Materials and Methods

Mouse infection and ethics statement
Female wild-type C57BL/6 (B6, from Harlan Laboratories, Indianapolis, IN) were used in this
study. Mice were maintained under specific pathogen-free conditions and used at 8–10 weeks
of age, following protocols (#9007082B and #1302003) approved by the Institutional Animal
Care and Use Committee at the University of Texas Medical Branch (UTMB) in Galveston,
TX. All mouse infection studies were performed in the ABSL3 facility in the Galveston National
Laboratory located at UTMB; tissue processing and analysis procedures were performed in the
BSL3 or BSL2 facilities. All procedures were approved by the Institutional Biosafety
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Committee, in accordance with Guidelines for Biosafety in Microbiological and Biomedical
Laboratories. UTMB operates to comply with the USDA Animal Welfare Act (Public Law 89–
544), the Health Research Extension Act of 1985 (Public Law 99–158), the Public Health Ser-
vice Policy on Humane Care and Use of Laboratory Animals, and the NAS Guide for the Care
and Use of Laboratory Animals (ISBN-13). UTMB is a registered Research Facility under the
Animal Welfare Act, and has a current assurance on file with the Office of Laboratory Animal
Welfare, in compliance with NIH Policy.

Bacterial cultures and stock propagation
The identity of OtK bacterium was confirmed by sequencing of the Orientia 47-kDa gene
(accession #L31934), prior to growth in Vero cells; oriential stock was prepared from heavily
(80–100%) infected Vero cell cultures, as previously described [37]. To produce high-titer bac-
terial stocks and to avoid loss of virulence through laboratory passage adaptation, we prepared
mouse lung-derived bacterial stocks by passages through B6 mice, as previously reported [31].
Briefly, B6 mice were inoculated i.v. with Vero cell-propagated OtK and were euthanized when
they were at the peak of illness. Lung tissues were homogenized; bacteria were isolated, ali-
quoted for titer/quality analyses, stored at -80°C in sucrose-phosphate-glutamate (SPG, 218
mM sucrose, 3.76 mM potassium phosphate monobasic, 7.1 mM potassium phosphate dibasic,
4.9 mM potassium glutamate) buffer, or utilized to inoculate a naïve group of animals for fur-
ther amplification. The animal passages were performed 3–5 times to create high-quality bacte-
rial stocks; the same lot of stock was used for all experiments described in this study.

Viability assay and bacterial load determination
Confluent monolayers of Vero cells in 6-well plates were inoculated with 200 μl of OtK stocks
(in serial 10-fold dilutions in triplicate). After 2 h of incubation at 34°C with 5% CO2, plates
were triple rinsed with warm phosphate-buffered saline (PBS) to remove bacteria which did
not adhere or invade the monolayer, and DNA was extracted for bacterial load analysis via
quantitative PCR (qPCR), as in our reports [31,32]. Briefly, the 47-kDa protein gene was ampli-
fied via specific primers OtsuF630 (50-AACTGATTTTATTCAAACTAATGCTGCT-30) and
OtsuR747 (50-TATGCCTGAGTAAGATACGTGAATGGAATT-30) (IDT, Coralville, IA).
Serial 10-fold dilutions of known concentrations of single 47-kDa gene-containing plasmid
were utilized to determine the copy number. DNA isolated from bead-homogenized tissue
samples were used to assess tissue bacterial loads. Sample were normalized with the mouse
GAPDH gene (F, 50-CAACTACATGGTCTACATGTTC-30; R, 50-CTCGCTCCTGGAAGA
TG-30, IDT). Data are presented as 47-kDa copy numbers per 105 or 106 copies of GAPDH for
tissues, or per μl of blood.

Inoculation of animals
B6 mice were purchased at 7–9 weeks of age and allowed to acclimatize for 7 days prior to
experimental use. To select the experimental dose, mice were inoculated with OtK or PBS (a
sham control) in the dermis of the lateral ear with a range of doses [6 x 105 to 6 x 101 viable
organisms in 10–12 μl delivered via a 30G-needle and 25-μl Hamilton syringe (Hamilton Com-
pany, Reno, NV)]. Mice were monitored twice daily for 28 days for signs of illness. Clinical
signs of illness were consistently observed between 10–13 dpi with 103 to 105 viable organisms,
whereas animals that received lower doses (<103 total organisms) had delayed, sporadic onset
of clinical signs of illness that occurred between 14–16 dpi. A dose of 6x104 was selected for
subsequent experiments for the purposes of consistency of inoculation concentration and con-
sideration that the dose of natural transmission of O. tsutsugamushi, although currently
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unknown, would not likely be as great as 105 or higher organisms. Mice were inoculated as
described with 6x104 viable organisms or PBS and monitored for signs of illness daily (ruffled
fur, lethargy, erythema, temperature change, and weight loss) as in our previous studies
[31,32]. Body temperature and weight were monitored daily from 0–21 dpi, and then weekly
during the remaining period of study. During the 1st week of infection, a group of mice (n = 4)
was sacrificed daily for assessment of bacterial loads in blood and organs and for histology.
During the 2nd week of infection, mice were sacrificed every other day until 21 dpi and then
once weekly until 84 dpi.

Determination of viability of persistent bacteria
To determine if bacterial DNA detected in tissues represented viable organisms, we collected
tissues at 81–84 dpi from 4 mice (with IgG titers of 1:65,536) in the first experiment, and from
3 mice (with IgG titers of 1:32,768) in the second. Lung, kidney, and spleen/liver/lymph node
samples were placed in DMEM, homogenized by using a 7-ml glass Dounce homogenizer in
cold SPG buffer, and centrifuged at 700 x g for 10 min at 4°C. Supernatants were saved, while
pellets were subjected to another round of homogenization and centrifugation. Bacteria in
supernatants were harvested by centrifugation at 22,000 x g for 45 min at 4°C. Enriched bacte-
rial pellets were re-suspended and pooled in a total of 10 ml of SPG. Each naïve mouse was
inoculated via the i.p. route with a 250-μl aliquot (3–4 mice per tissue group). Mice were moni-
tored daily for signs of illness for 21 days.

Hematologic analysis
At the desired time points, blood samples (500 μl) were collected from each mouse into
K2EDTA-coated microtainer tubes (Becton Dickinson, Franklin Lakes, NJ). Blood cell counts
were measured by using a calibrated 950FS HemaVet apparatus (Drew Scientific, Waterbury,
CT). Blood samples were analyzed by using the FS-Pak reagent kit, for measuring white blood
cell count, differential leukocyte (%) count, hemoglobin, hematocrit, red blood cell count, red
cell distribution width, platelet count, and mean platelet volume, respectively.

Indirect immunofluorescence assay
Antigen-coated, acetone-permeabilized 12-well slides were equilibrated to room temperature
in PBS and then blocked in PBS containing 1% bovine serum albumin (BSA) and 0.01%
sodium azide for 10 min. Sera were diluted 2-fold starting at 1:64 and, if reactive, serially
diluted to final end point titers in a solution of PBS containing 1% BSA, 0.1% Tween 20, and
0.01% sodium azide. Dilutions of sera were added to antigen-coated wells and incubated at
37°C for 30 min in a humidified chamber. Slides were rinsed twice with PBS containing 0.1%
Tween-20 for 10 min. A secondary antibody, DyLight 488-conjugated anti-mouse IgG
(1:15,000, Jackson ImmunoResearch, West Grove, PA) was added and incubated for 30 min at
37°C in a humidified chamber. Slides were washed twice as before, with the final wash contain-
ing 1% Evans blue solution, mounted with DAPI fluoromount-G (SouthernBiotech, Birming-
ham, AL) and coverslipped. Slides were observed under a fluorescence microscope at 400X
magnification (Leica Microsystems, Buffalo Grove, IL).

Serum cytokine measurement
Blood was collected from mice at the time of euthanasia via cardiac puncture and sera were
stored at -20°C until use. Serum samples (100 μl) were used for cytokine measurement in a
Mouse Cytokine 23-Plex assay (Bio-Rad Laboratories, Hercules, CA), according to the
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manufacturer's instructions. Samples with cytokine concentrations below the detection limits
were assigned an averaged value between 0 and the lowest detectable levels in each assay; all
samples were retained in the data set.

Histopathology and immunohistochemical (IHC) staining
All tissues were fixed in 10% neutral-buffered formalin and embedded in paraffin, and sec-
tions (5-μm thickness) were stained with hematoxylin and eosin or processed for antibody
(Ab) staining, as in our previous reports [32]. For IHC staining, all reagents were from Vec-
tor Laboratories (Burlingame, CA), unless specified. Briefly, slides were sequentially pro-
cessed for antigen retrieval, deparaffinization, and rehydration. Sections were blocked with
1X casein (for endogenous IgG), a BLOXALL blocking solution (for endogenous alkaline
phosphatase), an avidin and biotin blocking solution, and normal goat serum (for non-spe-
cific binding sites). Sections were incubated with rabbit anti-OtK Ab (1:12,000, produced in
our laboratory) at 4°C overnight, followed by incubation with biotinylated goat anti-rabbit
IgG (1:200) for 30 min. Signals were detected by incubation with alkaline phosphatase conju-
gate (1:200) and developed with an alkaline phosphatase substrate kit. Slides were counter-
stained with hematoxylin, dehydrated, mounted with VectaMount, and examined under an
Olympus BX53 microscope.

Analysis of histopathology in the lung, liver and spleen
All slides were examined and scored blindly by two pathologists (without knowledge of dpi or
bacterial loads), following the below criteria. For hepatic pathology scores, the diameters of
clusters of inflammatory infiltrates were measured, and the average lesion size and number of
lesions per 10 medium-power fields (100X) were determined for each time point. A liver
inflammatory index was calculated as: number of lesions per 10 medium-power fields multi-
plied by the mean diameter of mononuclear infiltrative clusters (μm). For pulmonary pathol-
ogy scores, all lung sections were examined sequentially (according to dpi) to obtain a general
assessment of the histopathology and establish grading parameters; grades 1–4 were scored
based on lesion spectra throughout the entire course of infection. Grade 1+: widening of alveo-
lar septa with scattered inflammatory cells in focal areas of pulmonary parenchyma, and focal
inflammatory cells around bronchovascular bundles. Grade 2+: grade 1 criteria plus multifocal
clusters of inflammatory infiltrates around bronchovascular bundles. Grade 3+: widening of
alveolar septa with diffuse inflammatory cell infiltrates present in the pulmonary parenchyma,
bronchovascular bundles, and focal areas of atelectasis. Grade 4+: grade 3 criteria plus exten-
sive areas of atelectasis. Splenic histopathology was assessed based on changes in the white
pulp, specifically expansion of the marginal zone and lymphoid activation in periarteriolar
lymphoid sheaths.

Statistical analysis
Data were presented as mean ± standard errors of the mean (SEM). Statistical significance of
differences between individual treatment and control groups was determined by using Stu-
dent’s t test. One-way ANOVA and Tukey’s post-test were used for multiple group compari-
sons. Statistically significant values are designated as �, p< 0.05; ��, p< 0.01; ���, p< 0.001,
respectively.
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Results

Clinical manifestations during acute and chronic stages of the infection
Following i.d. inoculation in the ear, we observed no eschar formation at the inoculation site
and no clinical signs of illness during the first 7 dpi, a finding similar to those in reported stud-
ies for i.d. inoculation in Swiss CD-1 outbred mice [35] and s.c. inoculation in BALB/c mice
[33]. Infected B6 mice had elevated body temperatures at 11 and 12 dpi (38.2–38.7°C), followed
by hypothermia from 14 to 21 dpi (Fig 1A), and recovered to normal body temperature by 28
dpi. Infected mice showed an up to 13% difference in weight change compared to that in
sham-inoculated controls (Fig 1B). Weight loss was most evident at 14–16 dpi, followed by
gradual recovery starting at 17 dpi. By 20 dpi, the body weight of infected mice had reached the
pre-infection level, but it remained much lower than that of sham-inoculated controls. To
assess infection outcomes, we examined circulating OtK-specific IgG titers by IFA, as well as
blood and tissue bacterial loads via PCR-based quantification of the OtK 47-kDa gene, from 1
until 84 dpi. Seroconversion was observed as early as 5 dpi (1:128 in 25% of mice), reached the
peak reciprocal endpoint titer of 1:65,536 by 13 dpi, and sustained high-titers (1:65,536) even
at 84 dpi (or 12 weeks) (S1 Fig). Our findings were consistent with, but extended from, previ-
ous reports in human cases [38,39].

Daily analyses of blood and tissue bacterial loads during the first 28 days of infection, as well
as weekly analyses until 84 dpi, revealed the following consistent features. The earliest peak of
bacterial burden occurred in the ear, the site of inoculation, at day 9 pi. At 1–7 dpi, bacterial
loads were low or undetectable in the blood, lungs, liver, spleen (Fig 2), and brain (S2 Fig). In
blood, bacteria were consistently detected at 9 dpi, followed by a peak mean bacteremia at 15
dpi (98.4 copies/μl blood). In the lungs, bacterial loads peaked at 13 dpi (143.2 copies/105

GAPDH copies) and remained detectable at 35 dpi. The liver, spleen, and brain bacterial loads
were lower, but were sustained longer. In the liver, bacterial loads peaked at 13 dpi (7.8 copies/
105 GAPDH copies) and remained detectable at 63 dpi. In the spleen and brain, bacterial loads
peaked at 13 dpi and remained detectable at 70 dpi. To confirm earlier reports of persistent
Orientia infection in humans and animal models [16,40,41], we selected the kidney as an addi-
tional organ to analyze during late infection. Bacteria were observed in the kidney from 70–77
dpi. The peaks of bacterial loads around 13–15 dpi corresponded with the time of occurrence
of the greatest reduction of body weight in the infected mice.

The prolonged presence of OtK DNA in the ear, dLN, blood, liver, spleen, and brain (63–84
dpi), as well as in the kidneys (70–84 dpi, S2 Fig), led us to investigate whether viable infectious
organisms were present. At 81–84 dpi, we prepared homogenates from the kidney, lung, and
spleen/liver/lymph nodes and used them respectively to inoculate naïve B6 mice via the i.p.
route (3–4 mice per group), the most sensitive method to detect low quantities of Orientia [31].
Our data from two independent experiments revealed that mice that were inoculated i.p. with
kidney homogenates had the highest mortality rates and tissue bacterial loads; 57.1% (4 out of
7) mice died between 12–15 dpi, with 2x104, 3.81x106, 4.54x106, and 1.25x107 Orientia 47-kDa
copies per mg of kidney of the inoculated mice, respectively. The remaining 3 mice inoculated
with kidney homogenates all showed clinical signs of illness on 11 to 15 dpi, but recovered.
Mice inoculated with lung homogenates had a lower mortality rate and tissue bacterial loads,
as 1 out of 3 tested mice (33%) died at 14 dpi, with 7.07x105 Orientia 47-kDa copies per mg of
lung of the inoculated mice. Mice inoculated with spleen/liver/lymph node homogenates
recovered from mild illness and were sacrificed around 21 dpi. Together, we concluded that
even though i.d.-inoculated mice had high titers of OtK-specific IgG (1:32,768 or 1:65,536),
they had infectious bacteria that persisted in the kidneys and other tissues, and, accordingly,
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these mice represent a model of observations of persistent infection in human scrub typhus
[16].

Hematological and histopathological analyses
To better understand the clinical features of this i.d. model, we performed hematological and
histopathological analyses. While white blood cell counts remained relatively normal between
1–13 dpi, infected mice had transient, but consistent, alterations in the platelet and red blood
cell counts and cell morphology. The thrombocytopenia was transient, but most severe at 13
dpi during the peak of endothelial infection, likely reflecting deposition of platelets in foci of

Fig 1. Pathophysiologic responses following infection withO. tsutsugamushi Karp strain. A) A mean increase in body temperature
was observed from 11–12 dpi, followed by hypothermia at 14 dpi.B) Weight loss was presented as the percentage of body weight change
compared with 0 dpi. Weight loss was evident from 13–16 dpi, followed by a gradual recovery beginning around 17 dpi.

doi:10.1371/journal.pntd.0004884.g001
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endothelial injury (S3 Fig). The transient increases in mean platelet volume (at 13 dpi) corre-
sponded to the period of the bone marrow response for the release of immature platelets. Simi-
larly, the increased red cell distribution width on 21 dpi, and from then to the end of the study,

Fig 2. Bacterial loads following infection withO. tsutsugamushiKarp strain (OtK). A) Quantification of the OtK 47-kDa gene in the ear, draining
lymph nodes (dLN), or B) in blood, lung, liver, spleen, and brain tissues. All data are presented as 47-kDa gene copies per 105 or 106 GAPDH for
tissues, or per μl of blood. Representative data from one of two independent experiments are shown.

doi:10.1371/journal.pntd.0004884.g002
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may reflect the release of newly formed erythrocytes from the bone marrow in response to the
development of anemia on 9 dpi.

Examination of the liver in infected animals showed foci of mononuclear inflammatory
cells at 7 dpi, and a higher inflammatory index was statistically significant starting on 9 dpi
(p< 0.01, Fig 3). The diameter and number of lesions in the liver peaked between 11 and 13
dpi (p< 0.01), which coincided with the highest bacterial loads in the liver (Fig 2). After day
13, the number of lesions in the liver decreased and then plateaued, but the inflammatory
index remained elevated until 56 dpi, during which time the pathologic foci increased in size
and then evolved from discrete clusters to confluent patches of mononuclear cellular infiltrates
as the disease progressed. Lesions in the spleen progressed similarly, as characterized by
marked expansion of the marginal zone and lymphoid expansion in peri-arteriolar lymphoid
sheaths, which were present even at 84 dpi. Representative images of the kidney and spleen

Fig 3. Histopathologic changes in mouse liver after infection withO. tsutsugamushi. A) Liver sections collected at 9 dpi, showed scattered
intraparenchymal clusters of mononuclear inflammatory cells located randomly in the hepatic lobules (100X).B) Mediummagnification shows
lymphohistiocytic clusters between hepatic cords, (200X).C) Liver inflammatory index (inflammatory cluster per 10 medium-power fields x diameter of
cluster, μm). Scores of infected groups were compared with sham controls, and statistically significant differences were observed from 9–56 dpi, respectively.
*, p < 0.05, **, p < 0.01, *** p < 0.001.

doi:10.1371/journal.pntd.0004884.g003
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revealed persistent multifocal interstitial inflammatory infiltrates (S4 Fig). Examination of
brain sections during the infection revealed no overt pathological lesions.

Lungs are the most important and severely affected organ in OtK infection following i.v. inocu-
lation [31,32]. Because i.d.-inoculated mice had the highest bacterial loads in the lungs, other than
the inoculation site (Fig 2), we examined the location of oriential antigens in the lungs by OtK-
specific IHC. At 12 dpi, the lungs contained oriential antigens in endothelial cells lining septal
capillaries (Fig 4). Analysis of lung histopathology revealed substantial inter-animal variations in
pathology scores during the course of infection, with most animals scoring between grades 2 and
3. The most severe pathology (grade 4) occurred at the late stage of disease (at 21 dpi) (Fig 5A–
5D). Histological lesions in the lungs did not show resolution even at 84 dpi (Fig 5E).

Serum and lung cytokine and chemokine production during acute
infection
We have previously reported that following i.v. inoculation of a lethal dose of OtK in B6mice, the
development of strong type 1 immune responses, with no IL-4/IL-13 production, contributes to

Fig 4. Location ofO. tsutsugamushi Karp strain antigens in the lungs at 12 days following i.d. inoculation. Low-power sections of the lungs revealed
the presence ofOrientia antigens (red) in alveolar septa (A) and an interstitial capillary (B) (100X, bars = 100 μm). High power magnification (400X) revealed
the presence ofOrientia in septal (C) and interstitial capillaries (D); bars = 20 μm.

doi:10.1371/journal.pntd.0004884.g004
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Fig 5. Histopathologic changes in mouse lung after infection withO. tsutsugamushi. Lung tissues collected between 9 and 11 dpi were
stained with H&E and scored from grades 1 to 4. A) Grade 1: widening of alveolar septa and scattered inflammatory cells.B) Grade 2: Diffuse
widening of alveolar septal walls and mononuclear inflammatory cells around bronchovascular bundles (inset).C) Grade 3: Marked diffuse interstitial
pneumonitis with mononuclear inflammatory cells and focal areas of alveolar collapse.D) Grade 4: Marked diffuse interstitial pneumonitis with
mononuclear inflammatory cells and large areas of alveolar collapse. All images were taken at 40X, and insets were taken at 200X magnification. E)
Histopathology scores of infected lungs were compared with uninfected controls and presented asWhiskers 5–95% percentile. *, p < 0.05, **,
p < 0.01.

doi:10.1371/journal.pntd.0004884.g005
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mouse mortality [32]. To define the immune responses in i.d.-inoculated mice, we measured cyto-
kine profiles in the sera and lung homogenates by a BioPlex assay. Serum cytokine analyses
revealed two distinct patterns (Fig 6). The early (9 dpi) production of a set of cytokines and che-
mokines (MCP-1/CCL2, MIP-1α/CCL3, and IL-10) during the incubation period was followed
by the production of pro-inflammatory markers (IL-6, IL-12p40, IFN-γ, G-CSF, RANTES/CCL5,
and KC/CXCL11) at 11–13 dpi, correlating with the onset of fever. The production of other cyto-
kines (IL-1α/β, IL-2, TNF-α, GM-CSF, MIP-1β/CCL4, eotaxin/CCL11, IL-9, and IL-13) around
15–19 dpi, correlated with disease progression. At 21–28 dpi, serummarkers had returned to
basal levels, except for IL-12p40 and RANTES/CCL5. At several time points between 35–77 dpi,
relatively low, but statistically significant, elevations of MIP-1α/CCL3, IL-1α/β, TNF-α, IL-2,
IL-12p40, and IL-13 were detected, implying sustained immune responses.

Lung homogenates had similar cytokine and chemokine profiles as the sera (Fig 7). The
transient elevations of MCP-1/CCL2, MIP-1β/CCL4, IFN-γ, TNF-α, G-CSF, and KC/CXCL11
at 13 and/or 21 dpi were followed by increased concentrations of IL-1α/β, IL-2, IL-12p40,
RANTES/CCL5, MIP-1α/CCL3, IL-13, and GM-CSF at 21 and/or 28 dpi. Of note, IL-9 levels
in lung samples were significantly reduced compared with those from sham controls, which
was in sharp contrast to the IL-9 production pattern in sera.

Discussion
Scrub typhus, an endemic disease in the Asia-Pacific region, is an important acute febrile illness
in the tropics [42]. Development of an animal model that mimics the human histopathology
and bacterial distribution is an important step toward understanding disease pathogenesis and
immunity, as well as developing preclinical evaluation and interventions to prevent the infec-
tion and ameliorate its severity. Mouse models available to study scrub typhus have employed
mostly the i.p. inoculation route, which results in infection that does not resemble the human
disease clinically, target organs and cells, and histopathology. Our group recently developed an
i.v. inoculation model of OtK infection, resulting in hematogenously disseminated endothelial
infection mimicking human disease [31]. This new model has permitted us to examine how
endothelial stress and dysfunction [31,32], or alarmin molecules such as IL-33 [43], contribute
to oriential pathogenesis.

Since natural infections are initiated via mite feeding on the dermis of the skin, we sought to
develop an i.d. inoculation model of scrub typhus using OtK. In this report, we have shown
that following a 10-day incubation period, i.d.-inoculated mice developed a systemic infection
with body temperature changes, weight loss, and bacterial dissemination via the blood to other
major organs (Figs 1 and 2). While the clinical features of OtK-infected mice closely mimic the
course of infection observed in human scrub typhus [44,45], the duration of fever and hemato-
logical abnormality appeared to be much shorter or milder in these mice as compared to
human cases [46]. Interestingly, these mice developed a persistent infection with histologic
lesions and infectious bacteria up to 84 dpi. To the best of our knowledge, this is the first report
of a murine i.d. model for acute and persistent infection, which will be of great value for future
immunologically or vaccine-based studies.

Our bacteriologic and histopathological analyses have revealed several important features of
the i.d. infection model of O. tsutsugamushi (Figs 2–5). First, this inoculation route led to the
establishment of infection with similar target cell tropism as scrub typhus, namely endothelial
cells lining the microvasculature and macrophages, as in our previous report of the i.v. inocula-
tion route and our study of human scrub typhus cases [2,31]. Secondly, while the lungs were
the major target organ for the infection, containing 10-fold more Orientia 47-kDa gene copies
than the liver, spleen, and brain samples, we observed considerable differences in lesion
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distribution and magnitude of inflammatory infiltrates. Bacteremia was sustained through 15
dpi, after the peak of parenchymal bacteria at 13 dpi, leading us to hypothesize that the delayed
peak observed in the blood may be due to the release of Orientia from infected tissues. This is
suggested by the observation that by 15 dpi parenchymal tissue bacterial loads decreased,
which coincided with a bacterial load increase in the circulating blood. However, given that
bacteremia kinetics mirror parenchymal tissue bacterial loads at the acute stage of the disease,
further analysis with perfused organs would be informative. Thirdly, the histologic pattern of
lung lesions was that of acute interstitial pneumonitis, which resembles the histopathology in
human scrub typhus patients and in experimentally infected, non-human primates
[4,22,23,47]. Histological lesions in the mouse lungs had not resolved completely even at 77–84
dpi, by which time most cytokines and chemokines had returned to their basal levels. Finally,
the liver inflammatory index is a reliable scoring system for comparative studies, especially
during the acute stages of infection. Detection of Orientia DNA in the liver, spleen and brain at

Fig 6. Serum cytokine levels during infection withO. tsutsugamushi. Serum samples were collected from sham controls (n = 3) and
infected mice (n = 4) for measuring the indicated cytokines by using a BioPlex assay. Data (pg/ml) are presented asWhiskers 5–95%
percentile. Infected samples were compared with sham controls. *, p < 0.05, **, p < 0.01, *** p < 0.001.

doi:10.1371/journal.pntd.0004884.g006

Fig 7. Lung cytokine levels during infection withO. tsutsugamushi. Lung samples were collected from sham controls (n = 3) and infected mice (n = 4) for
measuring the indicated cytokines by using a BioPlex assay. Data (pg/ml) are presented asWhiskers 5–95% percentile. Infected samples were compared
with sham controls. *, p < 0.05, **, p < 0.01.

doi:10.1371/journal.pntd.0004884.g007
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63–70 dpi poses the question as to the cell type(s) persistently infected in these organs and the
long-term impact of persistent infection. Such information will be important to understand the
potential complications of persistent Orientia infection in humans [16,48].

We detected a panel of Th1- and Th2-promoting, pro-inflammatory cytokines and chemo-
kines in serum samples and lung homogenates (Figs 6 and 7). Classical type 1 cytokines and
chemokines (e.g., IL-2, IL-12, IFN-γ, TNF-α, MCP-1/CCL2, MIP-1α/CCL3, and RANTES/
CCL5) were predominantly induced around the peak of bacterial infection, and then decreased
as bacterial replication was controlled at 28 dpi. Type 1 immune responses regulate migration
of neutrophils, monocytes/macrophages, and T cells from the bloodstream across the vascular
endothelium, as well as their effector function for bacterial control. These cytokine/chemokine
patterns resemble the observations in infected humans [49,50,51] and in i.d.-inoculated non-
human primates [25].

In this i.d. model, three immune modulatory cytokines were of particular interest to us.
First, IL-10 was one of the earliest cytokines, detected as early as 9 dpi in the blood, and one of
the few cytokines with sustained and significant production for 8 days. While IL-10 may con-
tribute to minimizing host tissue damage, it will be important to further examine whether IL-
10 also contributed to bacterial persistence in multiple organs in our model. Additional studies
with mice deficient in IL-10 or its receptor will provide new insight into the roles of IL-10 and
its relevance to Orientia persistency. Secondly, IL-13 was detected in both blood and lungs,
implying the development of Th1/Th2-balanced immune responses in the i.d.-inoculated mice.
This finding is particularly exciting because IL-13 and IL-4 proteins or transcripts were unde-
tectable, or were lower than the sham controls, in our previous studies with i.v.-inoculated
mice [32]. Given that only two reports mentioned low IL-4 levels in serum samples of scrub
typhus patients [49,50], our data presented here provide new insights into Th2 cytokines in
inflamed tissues. Finally, the marked reduction of IL-9 in the lung at 9 dpi, but elevation of IL-
9 in the blood at 15–17 dpi, is intriguing. IL-9 is a pleiotropic cytokine that has documented
effects on lymphocytes, mast cells, and resident lung cells. IL-9 is mostly produced by a special
subset of CD4+ T lymphocytes, known as Th9 cells, that can modulate host immune responses
by producing IL-9 and IL-10 [52]. In T cells, the most efficient priming of IL-9 production
occurs in response to a combination of TGF-β and IL-4 [52]. Other IL-9-promoting factors
include IL-2, IL-1β, IL-6, and IL-10 (which were detected in the blood and lung samples), type
1 IFN, and IL-21. Although IL-9 is involved in inflammatory responses due to allergy or classi-
cal Th2 responses [53,54], its role in bacterial infections remains unclear. Regardless of the
source or the role of IL-9, our data indicate that i.d. inoculation triggers Th1/Th2-balanced
immune responses in the early stage of O. tsutsugamushi infection.

In summary, we have presented the first report of an inbred murine i.d. inoculation model
that leads to systemic O. tsutsugamushi infection. The clinical signs during the acute stage as
well as the histopathologic and immunologic changes resemble most features of human scrub
typhus. The significance of this study is the establishment of a model employing the natural
route of infection and the occurrence of bacterial persistence. A chronic or persistent infection
model for O. tsutsugamushi infection on the B6 background will be of great value for mechanis-
tic studies for immune regulation because of the availability of knockout mouse strains on this
genetic background. Using this model, we anticipate that future research efforts may be
directed at examining early events in infected skin and skin-draining lymph nodes as this
model mimics transmission by mite bite [34,35]. The focus of future studies by our laboratory
utilizing this model includes examining homologous and/or heterologous protection via the
cutaneous challenge and exploring vaccines to prevent acute and persistent infections. This
study offers a greatly improved i.d. murine model for Orientia infection and will allow detailed
studies of immune regulation and infection control.
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Supporting Information
S1 Fig. Seroconversion following infection with O. tsutsugamushi. Reciprocal IgG endpoint
titers of serum from sham control mice (n = 3) and infected mice (n = 4) was measured by indi-
rect IFA. The bars represent means for the given groups.
(TIFF)

S2 Fig. Bacterial loads in the brain and kidneys following infection with O. tsutsugamushi.
Quantification of the Orientia p47 gene in the brain and kidneys by qPCR. Data are presented
as 47-kDa gene copies/105 GAPDH for tissues.
(TIFF)

S3 Fig. Erythrocyte and thrombocyte responses following infection with O. tsutsugamushi.
Hematologic parameters of whole blood from sham control mice (n = 3) and infected mice
(n = 4) were measured using a 950FS HemaVet apparatus. Data are presented with values for
individual animals, plotted and mean and standard deviation for each time-point. Dotted lines
represent mean values for the sham control mice. PLT, platelet count; RBC, red blood cell
count; HGB, hemoglobin; HCT, hematocrit; MPV, mean platelet volume; and RDW, red cell
distribution width.
(TIFF)

S4 Fig. Histopathologic changes in mouse kidney and spleen after infection with O. tsutsu-
gamushi. A) Section of the renal cortex collected at 77 dpi, showing a cluster of inflamma-
tory cells in the interstitium (100X). B) A high-power image revealed a collection of
macrophages and occasional apoptotic bodies (400X). C) Spleen section collected at 9 dpi,
showing hyperplasia of periarteriolar lymphoid sheaths and expansion of the marginal zone
(100X). D) A high-power view of the central area of the lymphoid follicle in C, showing
numerous activated lymphocytes, immunoblasts and scattered apoptotic bodies (400X).
(TIFF)
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