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Previous studies have demonstrated that the brain has an intrinsic resistance to changes
in arousal state. This resistance is most easily measured at the population level in
the setting of general anesthesia and has been termed neural inertia. To date, no
study has attempted to determine neural inertia in individuals. We hypothesize that
individuals with markedly increased or decreased neural inertia might be at increased
risk for complications related to state transitions, from awareness under anesthesia,
to delayed emergence or confusion/impairment after emergence. Hence, an improved
theoretical and practical understanding of neural inertia may have the potential to
identify individuals at increased risk for these complications. This study was designed
to explicitly measure neural inertia in individuals and empirically test the stochastic model
of neural inertia using spectral analysis of the murine EEG. EEG was measured after
induction of and emergence from isoflurane administered near the EC50 dose for loss
of righting in genetically inbred mice on a timescale that minimizes pharmacokinetic
confounds. Neural inertia was assessed by employing classifiers constructed using linear
discriminant or supervised machine learning methods to determine if features of EEG
spectra reliably demonstrate path dependence at steady-state anesthesia. We also
report the existence of neural inertia at the individual level, as well as the population
level, and that neural inertia decreases over time, providing direct empirical evidence
supporting the predictions of the stochastic model of neural inertia.

Keywords: neural inertia, hysteresis, electroencephalography, machine learning, anesthesia, mice, isoflurane

INTRODUCTION

The factors determining whether an individual experiences complications during transitions
between the awake and anesthetized states, including awareness under general anesthesia,
delayed emergence, or delirium after anesthetic emergence, remain poorly understood. Individual
variations in the functional barrier impeding entrance into and exit from the anesthetized state, that
is defined as neural inertia, may contribute to risk for such complications (Warnaby et al., 2017).
First described by Friedman et al. and characterized on the population level in both mice and flies
(Friedman et al., 2010), electrophysiologic equivalents of neural inertia have also been described
in intact rats and in slice models of cortical activity as well (Voss et al., 2012; Flores et al., 2017).
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Neural inertia produces a path dependence between induction
into and emergence from the anesthetic state, which has been
variably observed in humans using behavioral, fMRI, and
EEG-derived methods (Warnaby et al., 2017; Kuizenga et al.,
2018; Lewis et al., 2018; Ferreira et al., 2020; Huang et al.,
2021). Neural inertia has been shown to be subject to genetic
control (Joiner et al., 2013), making it a promising avenue
for investigation into interindividual variation in anesthetic
response. Despite this potential for individual differences in
neural inertia contributing to variable anesthetic effects, many
of the investigations of neural inertia have focused on the
population level, leaving the question of interindividual variation
incompletely explored. In spite of large interindividual variability
relating to anesthetic sensitivity, the characterization of the
inertial component of the anesthetic state has been observed
to be conserved across individuals, uncoupled to species or
anesthetic, when described at the behavioral level (McKinstry-
Wu et al., 2019;Wasilczuk et al., 2020). One implication of neural
inertia is that the neural activity from which behavior is derived
displays hysteresis. As a consequence, drug concentration alone
is insufficient to predict the current state. Therefore, it is
critical to demonstrate and analyze neural inertia in the absence
of pharmacokinetic effects. Such confounders have been the
subject of some controversy (Colin et al., 2018; Proekt and Kelz,
2018, 2021; Sepúlveda et al., 2019; McKinstry-Wu et al., 2020);
however, an experimental model employing extended steady
state anesthesia may circumvent those complications. Near the
population isoflurane EC50 for hypnosis—0.6% (McKinstry-
Wu et al., 2019), we have observed that while individuals
fluctuate between the awake and anesthetized state, a population-
level behavioral steady state is reached within 2 h after
anesthetic onset (McKinstry-Wu et al., 2019). By approaching
the population EC50 either from a more anesthetized or
awake state, we present a novel method to evaluate neural
inertia that minimizes potential confounding effects of both
pharmacokinetics and drug-concentration specific effects, as
the only difference between induction and emergence will
be the history of the initial condition, rather than the final
drug concentration.

Proekt and Hudson (2018) have proposed a model
that explains neural inertia as a consequence of random
movement on an energy landscape, resulting in stochastic
switching between awake and hypnotic states. This theoretical
basis for neural inertia builds upon their earlier finding
of spontaneous electrophysiologic switching state and the
subsequent characterization of a parallel phenomenon of
stochastic behavioral switching, both of which occur at
anesthetic steady state (Hudson et al., 2014; McKinstry-Wu
et al., 2019). The model describes anesthetic state switching as
analogous to the Brownian motion of a particle in a two-well
system, with the two wells being the awake and unconscious
states, respectively. The relative depths of the wells determine
how likely it is that the particle is in one or the other, and the
frequency of transitions is determined by the noise of the system.
Proekt and Hudson (2018) demonstrated mathematically,
the proposed system produces neural inertia consistent with
what has been previously observed (Joiner et al., 2013).

The model also has clinical implications regarding desired
(e.g., normal emergence) and undesired (e.g., intraoperative
awareness) anesthetic state transitions. If state switching is
stochastic, eliminating the rare instances of intraoperative
awareness may prove nigh impossible with current EEG-based
depth of anesthesia monitors. Similarly, delayed emergence
cannot be predicted or treated with existing monitoring
and pharmacologic tools. Importantly, Proekt and Hudson’s
model also suggests new possible targets for intervention
on those same problems. If the noise of the system can
be modulated, the likelihood of a state transition can be
altered, thereby better controlling when such transitions
occur. Pharmacologically modulating system noise in fact
appears to be an attainable goal, given evidence that different
anesthetic agents produce different degrees of system noise
(Wasilczuk et al., 2020). While Proekt and Hudson’s proposed
model significantly informs a possible basis for neural inertia
and suggests methods of system manipulation, it remains to
be experimentally verified. One testable prediction of this
model that remains to be explored is that with increased
noise of the system or in the limit of time, neural inertia will
dissipate.

Here, we examine whether individual neural inertia exists
using an inbred population of C57BL/6J mice and an
experimental model that examines spectral path dependence
at an anesthetic steady state. By establishing individual neural
inertia and its trend over time, we experimentally test the
prediction made by the model proposed by Proekt and Hudson
that neural inertia should collapse in the limit of time. Both
goals have the potential to expand our understanding of neural
inertia and open new avenues of investigation into individualized
anesthetic delivery.

METHODS

Animals
Studies were approved by the Institutional Animal Care and
Use Committee at the University of Pennsylvania and were
conducted in accordance with National Institutes of Health
guidelines. Inbred C57BL/6J male mice (Jackson Laboratories,
Bar Harbor, ME) aged 12–17 weeks were used for all studies
(n = 26, total).

Isoflurane Exposure for Brain Drug
Concentration Measurement
Individual animals received one of two isoflurane exposure
paradigms. Animals in the ‘‘wash-in arm’’ (induction) received
0.9% isoflurane in 100% oxygen in air-tight 200 ml cylindrical
chambers at 200 ml/min (n = 12). Animals in the ‘‘wash-
out arm’’ (emergence) received 30 min of 0.9% isoflurane in
100% oxygen, followed by 100% oxygen alone (n = 8) in
identical chambers. Mice were kept normothermic by having
chambers be partially submerged in a temperature-controlled
water bath (Sun et al., 2006). Isoflurane concentrations were
confirmed using a Riken FI-21 refractometer (AM Bickford,
NY). At the change in concentration to 0.9% (induction) or
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100% oxygen (emergence) and various time points after, mice
were rapidly sacrificed by cervical dislocation in order to obtain
pharmacokinetic wash in and wash out equilibration curves.
The mean time from the mouse being removed from the
anesthetic chamber to cervical dislocation was 4.6 ± 1.8 s
(mean ± std). The mean time from mouse being removed
from the anesthetic chamber to the brain being flash-frozen
in liquid nitrogen was 36.2 ± 5.3 s. The mean core trunk
temperature for mice at the time of brain harvesting was
36.9 ± 0.5◦C. Brains were subjected to same-day HPLC
analysis as described below to determine brain isoflurane
concentration.

Direct Quantification of Whole-Brain
Isoflurane Concentration
Preparation of Standards
Ten micromolar of isoflurane was prepared in methanol, and 5,
10, 15, 20, 25 µl of the isoflurane solution were injected into the
HPLC to prepare the calibration curve, respectively. Calibration
curves were constructed by plotting the height of the isoflurane
peak against the known amount of analytes and fitted using linear
regression analysis (Kelz et al., 2008).

Brain Sample Preparation
Frozen brain tissue was placed into 1 ml of mixture solution
(acetonitrile:H2O 2:1). After homogenizing, the suspensions
were centrifuged at 4◦C at 20,000 g for 20 min. Fifty microliter
of the resulting supernatant was injected into the HPLC.

HPLC Conditions
The HPLC system consisted of gold 126 solvent modules
(Beckman Coulter), a RID-10A differential refractometric
detector (Shimadzu, Kyoto, Japan), an analytical C18 column
(Zorbax 300SB-C18 250 mm × 4.6 mm I.D., 5 µm particle size;
Agilent Technologies), and a one-channel recorder (Klipp and
Zonen BD 40, Rotterdam, The Netherlands). The mobile phase,
a mixture of acetonitrile, isopropanol, 0.02 M phosphate buffer,
pH = 4.6 (340:150:510, v/v) was eluted at 1.0 ml/min.

Accuracy and Precisions
Chromatographic peaks for isoflurane were identified by
retention times from the standard solution. Isoflurane was
assayed by measuring the chromatographic height (mAu), and
the amount determined from the standard calibration curve that
was prepared daily. Drug-free brain samples were used in the
generation of calibration, negative control, and quality control.

Isoflurane Wash-In and Wash-Out Curves
Curve fitting and goodness-of-fit calculations were performed
using Prism 9.2 (Graphpad Software Inc., San Diego, CA).
Kinetics were modeled using exponential functions, wash-in
with exponential plateau, while wash-out was modeled using
exponential one-phase decay.

Chronic EEG Implantation
Mice (n = 6) were chronically implanted with 25 lead EEG and
four EMG, as described previously (Wasilczuk et al., 2016). In
brief, mice underwent anesthetic induction with 2.5% isoflurane
in 100% oxygen and were maintained on 1.5% isoflurane for

the surgery. After confirming nonresponsiveness to a toe pinch,
mice were placed on a stereotaxic frame (Kopf Model 902,
Kopf Instruments, Tujunga, CA), eye ointment applied, and core
temperature was maintained at 37 ± 0.5◦C using a closed-loop
servo-controlled heating pad (CWE Inc, Ardmore PA). A total
of 26 epidural EEG leads were implanted (25 plus ground lead),
across both halves of the skull at 1.00 mm and 2.30 mm lateral
to the midline. Implanted leads were spaced 3.30 mm anterior
to 4.50 mm posterior to Bregma in 1.30 mm increments. For
the more lateral leads, contacts were arrayed from 2.00 mm
anterior to Bregma to 4.50mmposterior to Bregmawith 1.30mm
between contacts. Additionally, two EMG leads were implanted
in the dorsal neckmuscles, and two EMG leads in the upper back.
The headpiece was secured to the skull using dental cement (A.M.
Systems, Carolsburg WA). All mice were allowed to recover for
a minimum of 2 weeks prior to drug exposure and EEG/EMG
recordings.

Isoflurane Exposure for EEG Acquisition
Upon surgical recovery, mice were habituated to being tethered
to the headstage amplifier within the recording area for an
hour a day for three consecutive days. On recording days, mice
were attached to headstage amplifiers, connected to the EEG
acquisition system (described below), and placed inside 8 L
gas-tight cylindrical recording chambers. Gas flow through the
chambers was set at 8 L/min. The chambers were maintained
at 37◦C via partial submersion in a circulating water bath,
keeping mice normothermic under the anesthetic exposure.
Each EEG-implanted mouse received two separate isoflurane
exposures, separated by at least 7 days. In the induction
paradigm, mice received a 100% oxygen exposure for 30 min
followed by 0.6% isofluranein 100% oxygen for 240 min. In
the emergence paradigm, mice received a 30-min 100% oxygen
baseline, 60 min of 0.6% isoflurane, 30 min of 1.2% isoflurane,
and finally 0.6% isoflurane for 240 min (Figure 1).

EEG Acquisition and Preprocessing
All EEG was recorded using an acquisition system constructed
according to open source designs available from Open-Ephys
(Siegle et al., 2017), 32-channel headstage amplifiers (RHD 2132,
Intan Technologies, Los Angeles, CA), and the Open-Ephys
GUI software v2.01. Recordings were imported into Matlab
2021b (Mathworks, Natick MA) for post-processing. Figure 2
shows a summary of signal preprocessing. All signals were
low-pass filtered and downsampled to 250 Hz from their original
acquisition rate of 1 kHz using the Matlab decimate function.
EEG was bandpass filtered between 1 and 120 Hz using a
6th order zero-phase Butterworth filter prior to additional
processing. Impedance measurements were taken prior to
recordings and leads with an impedance measurement greater
than 30 kΩ were excluded from the analysis. Channels were
further manually inspected, and channels with excessive artifact
or baseline wander were excluded from further analysis. To
identify artifacts, the standard deviation (σ) of the signal
voltage from each channel was taken, excluding time periods

1www.open-ephys.org
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FIGURE 1 | Experimental setup and isoflurane exposure paradigm. Tethered mouse in open (A) and sealed (B) cylindrical recording chambers in water bath. (C)
The induction (left) and emergence (right) isoflurane exposure paradigms.The purple line represents isoflurane concentration over time. Green bars represent time
periods used for induction classifier training, the blue bar is the time period used for emergence classifier training, the red bar is the time period of induction on which
classifiers were tested, and the magenta bar is the time period of emergence on which classifiers were tested (See “Classifier Construction and Analysis” section in
Methods).

where the signal exceeded ±700 µV and during periods
of exceptionally high EMG tone where the signal could be
contaminated with EMG artifact (see below). Any period from
the entire channel where the signal exceeded the calculated 6σ
was labeled as artifactual, and that channel-period was excluded
from further analysis. Channels were mean re-referenced
once artifact detection excluded erroneous signals from the
recordings.

EMG Processing and High EMG/Movement
Classification
EMG activity and movement as defined by 3-axis accelerometry
have been shown to be strongly correlated in mice, leading to
the use of EMG activity as an artifact rejection routine for our
EEG preprocessing (Wasilczuk et al., 2018). The single EMG
lead most free of cardiac and other visible artifacts was chosen
for analysis for each subject. EMG was low-pass filtered and

downsampled to 250 Hz using the Matlab decimate function,
and high-pass filtered at 15 Hz using a 6th order zero-phase
Butterworth filter. The root mean squared (RMS) value for 1 s
non-overlapping periods was calculated, and a histogram of the
cumulative density function estimate for the log RMS value was
plotted. On the resulting sigmoid plot, RMS EMG values greater
than where the slope of the cumulative density function estimate
curve drops below 1 were considered ‘‘high’’ EMG tone, and a
potential source of movement artifact in EEG (see above and
Figure 2).

Spectral Analysis and Dimensionality
Reduction
Signals from the secondary motor cortex (M2; 2.0 mm anterior
and 1.0 mm lateral to Bregma) and primary visual cortex
(V1; 4.5 mm posterior and 2.30 mm lateral to Bregma) were
used for all subsequently described analyses. Spectral power
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FIGURE 2 | EEG and EMG signal preprocessing. Workflow from acquisition to artifact rejection was used for all data in this study. EEG, electroencephalogram;
EMG, Electromyography.

estimation was computed over 4 s non-overlapping windows
using previously published code (Hudson et al., 2014). For
dimensionality reduction, spectral power in each individual for
the M2 and V1 channels was concatenated to a 482-dimensional

vector (241 independent frequency estimates per channel) for
each spectral window (Figure 3). The spectrum for each channel
was expressed as differences from themean spectrum determined
over the entirety of the induction, emergence, and induction arm
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FIGURE 3 | EEG analysis process summary.

of the emergence recordings. The resulting matrix was subjected
to principal component analysis (PCA). The first 50 principal
components (PCs), representing >70% of the variance for each
animal, were used for linear and nonlinear classifier construction
and analysis.

Classifier Construction and Analysis
Training sets were compiled using the first 50 PCs of spectral
data from M2 and V1 for each individual mouse. Training sets
consisted of equal amounts of 260 randomly-sampled windows
from minutes 10–30 of the emergence arm and from minutes
10–30 for the induction arms of both exposures that each
mouse received (Figure 1C). Testing sets were composed of
the same features for minutes 30–130 after the start of the
final 0.6% isoflurane administration for both the induction
and emergence arms. Two-hundred and fifty classifiers were
constructed through linear discriminant analysis (LDA) for each
animal using the fitclinear Matlab function. Using the same
training data, 250 support vector machine (SVM) classifiers were
also generated using the fitcsvm Matlab function. For training
on population-level data, training sets were generated from
1,300 spectral windows from minutes 10–30 for the emergence
arms and from min 10–30 for the induction arms equally drawn
from the five mice other than the mouse for which the classifier
was tested on (e.g., data from mice 1, 3, 4, 5, and 6 were used to
train the classifier for mouse 2). The accuracy of each classifier

was calculated as

ClassifierAccuracy =
1
2

(
IC
IT
+

EC
ET

)
where IC is the number of correct induction labels, IT is the total
number of induction timepoints, EC is the number of correct
emergence labels, and ET is the total number of emergence
timepoints. A summary of the analysis process is shown in
Figure 3.

Quantification and Statistical Analysis
Data were analyzed using MATLAB 2021b using the Statistics
and Machine Learning Toolbox and the Signal Processing
Toolbox and Prism 9.2. All data were tested for normality, and
non-parametric statistical tests wereused where data were found
to be non-normal. A p-value < 0.05 was considered statistically
significant for all comparisons. Indications of significance are as
follows: ∗ p <0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001; ∗∗∗∗ p < 0.0001.

RESULTS

Isoflurane Brain Concentration Steady
State
In order to determine an estimated time course for isoflurane
anesthetic steady-state in the brain, individual mice received a
wash-in or wash-out exposure of 0.9% isoflurane for varying
lengths of time, and whole brain anesthetic concentration
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was determined using HPLC. With gas delivery to the
sealed chambers at 1 volume turnover every minute, brain
concentrations rapidly reach steady state equilibration in the
wash-in (induction) and wash-out (emergence) paradigm in
under 12 min (Figure 4). Since this pharmacokinetic estimate
was performed at the population level, in order to go far beyond
any possibility variation by any individual, we chose to perform
subsequent analyses on data acquired more than twice as far out,
30 min after concentration changes and later.

Differences in Mean EEG Spectra and
Dynamic Spectra Between Induction and
Emergence
Mice chronically implanted with EEG and EMG each underwent
two exposure paradigms, separated by at least a week. Analysis
of EEG began at least 30 min after the switch to the final
0.6% isoflurane concentrations. Given that brain isoflurane
levels reached steady-state within 12 min (Figure 4), we
minimized potential pharmacokinetic confounding by limiting
our analysis to a 100-min window that started 30 min into
the final concentration step (minutes 30–130). For each animal,
at the two common leads (over M2 and V1), there were
significant differences between mean spectra after induction and
emergence (Figure 5A). Such averaging across the population,
however, masks the substantial variation seen among individuals
(Figure 5B). Nevertheless, examined either way there is a
significant spectral difference in the period from 30 to 130 min
after concentration change to 0.6% between a history of moving
from a lower versus a higher concentration. EEG at anesthetic
steady state is not static (Hudson et al., 2014; Shortal et al.,
2019), however, and just as averaging across the population
masks spectral differences among individuals, taking the mean
spectrum eliminates the not inconsiderable dynamics present in
the signal (Figure 6). The dynamic discrete fluctuations evident
in the spectrogram are not unlike the behavioral fluctuations
seen at hypnotic EC50, and like those fluctuations, averaging
them over time can obscure potentially important information
(McKinstry-Wu et al., 2019; Wasilczuk et al., 2020).

Differentiability of Induction and
Emergence EEG Spectra: Neural Inertia in
Individuals
An accurate quantification of the difference between induction
and emergence in the EEG spectra must be able to account for
interindividual spectral variation as well as spectral dynamics.
Towards this, we employed linear discriminant analysis (LDA)
as well as a supervised machine-learning algorithm, support
vector machine (SVM), to develop classifiers on the first
50 principal components of the concatenated channel-frequency
power spectrum from our two common channels (over M2 and
V1). Together, these first 50 principal components account for
70–78% of the variance of the original data for each animal, while
reducing the dimensions of the data by nearly a factor of 10.
Classifiers (250 per animal) were trained on data from randomly
selected times from 10–30 min after the concentration switch to
0.6% isoflurane. In order to account for any potential differences

FIGURE 4 | Brain isoflurane concentration reaches steady state in 8–12 min.
Mice starting at 100% O2 and exposed to 0.9% isoflurane (top) reach steady
state by 8 min, while mice exposed to 0.9% isoflurane for 30 min, followed by
100% O2 (bottom) reach undetectable levels of isoflurane in the brain by
12 min after the start of O2 administration. R2 values for exponential fits were
0.784 for wash-in and 0.974 for washout.

between recordings in the same animal, induction training data
were drawn equally from both the induction paradigm as well as
the first 0.6% step of the emergence paradigm (the induction arm
of the emergence paradigm recording).

A linear classifier identifies an axis of maximum distinction
between two data sets and will effectively account for
interindividual differences. SVM can construct nonlinear binary
classification on similar datasets. If the induction and emergence
spectra were sufficiently distinct (high accuracy, Figure 7A),
a classifier would have a significantly greater than a chance
probability of determining if the spectrum in question was drawn
from an induction or emergence exposure paradigm. Hence,
successful classification of an EEG spectrum attributable to either
induction or emergence would be proof of path dependence
that defines neural inertia. If neural inertia is not present or
has collapsed, there should be little difference between the
induction and emergence EEG spectral signals. In this latter
case, we would expect the classifier to do a poor job (chance
or equivalent) of distinguishing channel-spectra of the induction
exposure from channel-spectra of the emergence exposure (low
accuracy, Figure 7B). While shuffled training data produced
classifiers that were no better than chance (95% confidence
intervals of the median overlap 0.5), both the linear and SVM
classifiers accurately assigned the real spectral data significantly
greater than chance (p < 0.0001) in all mice. This is concrete
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FIGURE 5 | Individual differences in induction and emergence evident in mean spectrum. Mean spectra across animals at M2 and V1 (A) demonstrate significant
differences between induction and emergence. The mean spectra, however, mask the notable variation of spectra, and various differences between induction and
emergence spectra, that occur in individual animals (B). Lines represent the mean spectrum and shaded areas indicate the 99.979% confidence interval of the
mean, corresponding to a p < 0.05 with Bonferroni correction for the multiple comparisons corresponding to each frequency. M2: Blue, V1: Red, Induction: Lighter
Shade, Emergence: Darker Shade.

FIGURE 6 | The EEG spectra at steady state is dynamic. An example spectrogram from M2 of mouse 1 during induction (top) and emergence (bottom) exposures
that illustrate the dynamic nature of the spectra at steady state, and how taking a mean spectrum erases potentially critical information from the signal.

evidence that all mice displayed significant levels of neural
inertia over the 100 min beginning 30 min after the start of the
final 0.6% isoflurane step (Figures 8A,B). We were not able to
detect any differences between LDA and SVM classifier accuracy
(p > 0.05, Friedman test). Both methods of classification showed
similar and significant differences betweenmice in neural inertia,
suggesting that such interindividual differences may be robust

(Figures 8C,D). Population based classification, using training
data from five mice to classify the sixth, was not as effective
as individualized training. Nevertheless, it demonstrated neural
inertia in five of six of themice (Figure 9). Thus, while population
data proved an effective means of detecting neural inertia in
most cases, individualized methods were able to detect spectral
differences where population-level methods could not.
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FIGURE 7 | Linear classifier accuracy determines maximum separability of two signals. Two examples of linear classifiers demonstrating how classifier differentiation
can vary in effectiveness at separating two signals. Examples using linear classifier models and resulting scores generated from (A) the first 2,000 s of induction (blue)
and emergence (red) from mouse 2 (higher accuracy/effectiveness,) and (B) the final 2,000 s of induction (blue) and emergence (red) from mouse 1 (low/chance
accuracy/effectiveness).

Change in Neural Inertia Over Time
If the model proposed by Proekt and Hudson (2018), describing
induction and emergence in terms of Brownian Motion over
a two-well energy landscape, is fundamentally correct, then it
follows that the degree of neural inertia, i.e., the linear classifier
accuracy, should decrease to chance (50%). To examine this
trend over time, we evaluated the mean classifier accuracy over
the first 20 min of our analysis (minutes 30–50 after beginning
0.6% isoflurane) and compared that to the last 20 min (minutes
110–130 after beginning 0.6% isoflurane). We found a significant
decrease in the accuracy of the classifier between the two periods
(Figure 10A, p < 0.0001), consistent perhaps with a decrease
in neural inertia. Individually, five of six of the mice showed a
significant decrease in classifier performance over the examined
period, with the outlier showing a significant increase over the
same period (Figure 10B, p < 0.0001). These differences are
not artifacts of the model, as shuffled training data shows no
change over the same period (Supplementary Figure 1). Taken
together, this evidence for neural inertia decreasing over time
provides confirmatory experimental support for the Proekt-
Hudson stochastic model of neural inertia (Proekt and Hudson,
2018).

DISCUSSION

Using a novel approach at steady-state population EC50 for
isoflurane, we show that differences in EEG spectra solely
dependent on a history of awake or deeply anesthetized states,
consistent with neural inertia, not only occur but are present
on a timescale unrelated to potential confounding effects of
pharmacokinetics. Moreover, evidence for neural inertia can be
seen at the individual level. Finally, we demonstrate that classifier
efficacy decreases over time, consistent with a decrease in neural
inertia, providing the first experimental evidence in support of

the stochastic model of neural inertia proposed by Proekt and
Hudson.

While the extent of neural inertia seen in individuals may
indeed correlate to a larger barrier to state transitions, there
are assumptions that must be made for that conclusion to
be valid. One such assumption is that the amount of noise
across recordings is constant. Differential amounts of noise
directly would impact the resolving power of spectral window
classification as a function of the initial state, and noise can be
introduced in a variety of ways into a recording. We mitigated
this possibility, however, through the examination of impedance
measurements of EEG and EMG leads across recordings, and
meticulous preprocessing of the EEG. Similarly, neural inertia
as computed here relies on classification techniques that could
result in different conclusions based on the underlying structure
of the input data. This seems less likely given that both linear
and nonlinear machine learning methods reliably distinguished
spectral windows between induction and emergence paradigms.
The robustness of both classifiers suggests that neural inertia
exists, and this conclusion is strengthened by the lack of
significant differences in accuracy by classifier choice. The
suggestion of variability in individual neural inertia, indicated
by persistent interindividual differences between classifiers, begs
the question of the relationship between neural inertia and
another measure of behavioral anesthetic response we previously
described, resistance to state transition (RST; Wasilczuk et al.,
2020). The intuitive nature of the relationship between RST and
neural inertia and the one explicitly predicted by the stochastic
model of neural inertia, is that neural inertia is directly predicted
from RST. Such a relationship is further supported by behavioral
evidence of increased neural inertia with agents that produce
a higher RST, such as with halothane. We do not purport to
measure an EEG equivalent of RST here, which would require
discretizing the EEG signal into two or more states reproducibly
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FIGURE 8 | Neural inertia is present in individuals. Individuals show significant neural inertia over the 100 min beginning 30 min after the final 0.6% isoflurane step,
as measured by linear classifier accuracy indicating quantifiable distinctions in spectra based on whether the mouse was previously awake or deeply anesthetized.
Points represent the mean accuracy over the measured period for a given classifier. Both linear classifiers (A) and support vector machine generated classifiers (B)
correctly were able to distinguish induction vs. emergence based on spectral distinctions at a level greater than chance and significantly (p < 0.0001) more than
classifiers using shuffled training data (randomly shuffled data indicated with “R”.) Relative classifier accuracy and differences between individuals were largely
conserved across approaches (C and D, p = 0.4896, Friedman test), suggesting interindividual variability in neural inertia. All comparisons made using Kruskal-Wallis
test. ns, not significant, ***p < 0.01, ****p < 0.001.

across animals, but instead are examining a continuous variable
measuring a net difference between two signals that are
analogous to the path dependence observed between population-
level induction and emergence curves, neural inertia.RST has
only beenmeasured at the behavioral steady state, whereas we are
measuring neural inertia during a period of only pharmacologic
steady state, where behavior may still be changing during this
time.Furthermore, RST will still exist even after neural inertia
collapses due to the persistence of the dynamics of the system,
emphasizing that neural inertia is a consequence of a system
with RST.

The direct relationship between RST and neural
inertiapredicted by the stochastic model makes the discrepancy
between the relatively low amount of inter individual variability
seen in RST and the high variability of neural inertia we observe
here all the more surprising (Wasilczuk et al., 2020), particularly

as it occurs all within the same ostensibly homogenous
population of C57BL/6J mice. One potential explanation for the
difference in variability between righting-reflex-based RST and
EEG-derived neural inertia is the qualitative difference between
the two measures. Righting reflex measurements produce binary
outcomesin response to stimuli, while cortical activity measured
by EEG is nonlinear, non-binary, and a passive measure. Recent
reports have attempted to correlate behavioral measures with
EEG measures of anesthetic assessment, in both mice and
humans, and have found that behavioral measures unreliably
correlate to measures of EEG with respect to anesthetic state
transitions (Haberham et al., 1999; MacIver and Bland, 2014;
Shortal et al., 2019; Gao and Calderon, 2020). Future studies
using the methods here in conjunction with other volatile
anesthetics producing differing RSTs could serve to better
explore the exact relationship between RST and neural inertia.
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FIGURE 9 | Classifying by population spectra detects individual neural inertia less efficiently than individualized classification. Training linear classifiers on population
data resulted in classifier accuracy greater than chance (p < 0.0001, Kruskal-Wallis) and thus evidence for neural inertia in five of the six mice, rather than detecting
neural inertia in all mice 6 with individualized training sets. ****p < 0.001.

How other volatile agents affect individual neural inertia
and inertial variability remains unknown. Whether relative
neural inertia is conserved across anesthetic agents is similarly
unknown. An investigation of neural inertia using different
volatile anesthetic agents would have the added benefit of testing
the other prediction of the model of neural inertia proposed by
(Proekt and Hudson, 2018). While our data suggest that neural
inertia decreases as time progresses, the stochastic model also
predicts that neural inertia should collapse with increasing noise
of the system. We previously estimated different amounts of
noise driving behavioral state transitions dependent on volatile
agent (Wasilczuk et al., 2020). According to the stochastic
model of neural inertia, an individual’s level of neural inertia
with isoflurane should be lower than that same individual’s
neural inertia with halothane, which produces a lower level of
system noise than isoflurane. This leads to a testable prediction,
in the context of the analyses described, that neural inertia
(i.e., classifier discrimination accuracy between induction and
emergence spectral windows) would be greater in the same
mouse when exposed to halothane than when exposed to
isoflurane.

While there was a decrease in neural inertia across the
population over the 100-min period examined, the degree of
decrease was not consistent across individuals, which could be

due to a number of factors. If there were significant inherent
variability between recordings in the same animal, the classifier
would discriminate between the two signals based on those
differences rather than differences stemming from an induction
or emergence exposure. Inherent recording differences such as
those would not decrease over time, blunting or eliminating
any decrease in neural inertia. We attempted to control for
such inherent variability between EEG recordings by both mean
re-referencing and training our classifiers on induction exposure
data from two separate recording days. Another possibility is
that neural inertia could rapidly collapse in some individuals, as
the Proekt-Hudson model does not predict anything about the
time scale on which neural inertia collapses, other than that the
collapse should be independent of pharmacokinetic confounders
(Proekt and Hudson, 2018). While we based our upper estimate
of the time scale of neural inertia collapse on when we see a
behaviorally-derived steady state (McKinstry-Wu et al., 2019;
Wasilczuk et al., 2020), this may also not be a safe assumption,
and neural inertia could collapse on a timescale longer than
several hours. The time course of collapse may additionally vary
by species, and may have a role in the variable detection of neural
inertia in human studies to date (Warnaby et al., 2017; Colin
et al., 2018; Kuizenga et al., 2018; Ferreira et al., 2020; Huang
et al., 2021).
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FIGURE 10 | Population and individual neural inertia decrease over time. Neural inertia as measured by mean classifier accuracy was compared over the first
20 and final 20 min of the 100 min beginning 30 min after the final 0.6% isoflurane step. Across animals (A), neural inertia showed a significant decrease over the
measured period (values from individuals shown by color). By individual (B), five of six animals showed a significant decrease in neural inertia, while the outlier (mouse
5) had an increase in neural inertia over the same period (Wilcoxon matched-pairs signed rank test and two-way ANOVA with Šídák’s multiple comparisons test,
respectively). ****p < 0.001.

It is important that we acknowledge we use a measure of
net neural activity, EEG spectra, to define neural inertia rather
than a behavioral measure, which is how neural inertia was first
defined. While true that all behavior is ultimately derived as a
consequence of neural activity, measures of net neural activity
and arousal behavior can and have been shown to diverge (Pal
et al., 2020). Future studies can and should focus on examining
behavioral correlates to the phenomena described here. Ideally,
such studies will include both measures of EEG as well as
behavior, so that we might better understand the relationship
between spontaneous measures of neural activity and arousal
behavior.

The degree of individual variation in the classifier
performance was surprising and unexpectedly paralleled our
earlier finding of significant individual variability in anesthetic
sensitivity visible at population EC50 (McKinstry-Wu et al.,
2019). These two previously unrecognized features of variability
in individual anesthetic responsiveness suggest possible sources
of risk for disorders of anesthetic transition. An individual with
a low anesthetic sensitivity and low neural inertia might be
predisposed to awareness under general anesthesia, while one
with high sensitivity and high inertia could be predisposed to
delayed emergence. Such possibilities suggest the need to explore
human correlates of spectrally evident individual inertia at steady
state. The steady state anesthetic model employed here could
be modified and adapted for use in human studies, which may
avoid some of the controversies surrounding pharmacokinetic
confounds of measuring neural inertia (Colin et al., 2018; Proekt
and Kelz, 2018, 2021; Sepúlveda et al., 2019; McKinstry-Wu
et al., 2020).
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