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Properties of Isolated Gastric Enterochromaffin-like Cells

Ningxin Zeng and George Sachsa
Wadsworth Veterans Administration Hospital and UCLA, Los Angeles, California

The gastric enterochromaffin-like cell (ECL) has been studied in gastric fundic
glands by confocal microscopy and as a purified cell preparation by video imaging
of calcium signaling and measurements of histamine release. Regulation of gastric
acid secretion is largely due to alterations of histamine activation of the H2
receptor on the parietal cell and can be divided into central neural regulation,
with direct actions of neuronally released mediators and into peripheral regulation
by substances released from other endocrine cells. Gastric neuronal stimulation
of acid secretion by alteration of ECL cell function is probably mediated by
pituitary adenylate cyclase activating peptide (PACAP) receptors on the ECL
cell, which activate calcium signaling and histamine release. Peripheral stimula-
tion of acid secretion via the ECL cell is largely mediated by gastrin stimulation
of calcium signaling and histamine release. Gastric neuronal inhibition of ECL
cell function is probably mediated by galanin inhibition of calcium signaling,
and histamine release and peripheral inhibition of ECL cell function is mainly
due to somatostatin release from D cells.

INTRODUCTION

Acid secretion and its regulation has been a subject of intense investigation for most of
this century. Until about 10 years ago, most physicians believed devoutly that peptic ulcer dis-
ease was uniquely related to acid secretion. All therapies were, therefore, focussed on inhibition
of acid secretion. Early investigations, therefore, concentrated on regulation of acid secretion,
perhaps stimulated by Pavlov's seminal observations on the cephalic phase of acid secretion
in his trained Russian dogs in the last decade of the nineteenth century, perhaps inspired by
the perceived medical need to inhibit acid secretion as a part of a therapeutic regimen [1-3].

Stimulation of acid secretion was divided into a central or cephalic phase, as envisioned
by Pavlov, and a peripheral phase, as determined by injection of a putative regulator of acid
secretion. The central phase results from stimulation of vagal outflow from the central
nervous system and post-ganglionic release of neurotransmitters within the gastric epithelium,
the peripheral phase from exoctytotic events in gastric or intestinal endocrine cells. The
central post-ganglionic pathway must converge on either the gastric endocrine cells or the
parietal cell or both. Therefore, a definition of neurally mediated regulation is alteration in
secretion due to a direct effect of substances released from gastric nerves; peripheral regula-
tion derives from alteration in secretion due to substances released from endocrine cells [1, 4, 5].

At the turn of the century, Edkins discovered gastrin [6], Loewi discovered acetyl-
choline [7] and Dale histamine [8]. So by the 1920s, many of the peripheral secretagogues that
are cited today had been described although it was to take half a century for the idea of
gastrin to be accepted. Then, ironically, the gastrinologists discounted any role for histamine.
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Also, over the next half century, therapeutic inhibition of acid secretion rested largely
with the skilled hands of surgeons progressing from gastrectomy to highly selective vago-
tomy. Then, the synthesis of selective H2 receptor antagonists not only provided the first
effective and tolerated medication for acid inhibition but disproved the position taken by
most of the researchers working on gastrin [9]. Cimetidine established histamine as a
prominent player in regulation of acid secretion in the human stomach [9]. The source of
gastric histamine became a topic of dispute. Were mast cells indeed the answer? Or were
the enterochromaffin-like (ECL)b cells responsible? Was the ECL cell the sole source or
was there a mixed cell population giving rise to histamine?

Whereas stimulants of acid secretion that were discovered early in gastric physiology,
knowledge of the physiological inhibitors of acid secretion lagged behind. The molecules
turned out to be peptides with short plasma half lives, such as somatostatin. Improvements
in separation technology provided a list of possible peptide inhibitors. Still today, the
word "enterogastrone" hides a fundamental ignorance as to the substances involved in the
decrease of acid secretion during the intestinal phase of digestion. From laboratories expe-
rienced in peptide isolation and separation techniques, a number not only of peptide antagonists
but additional peptide agonists of gastric secretion was discovered [2, 10-18].

Due to this effort, a long list of possible substances emerged as modifying acid secre-
tion. With the advent of molecular biology, it became possible to find the structure of the
receptors for these substances [19-22]. Then techniques such as in situ hybridization,
immuno-staining and RT/PCR ofRNA isolated from purified cells elucidated the location
of many receptors [22-24]. They are to date, almost without exception, present in more
than one cell type in the gastric mucosa. The physiological interactions of these are therefore
difficult to define in vivo. For example, an agonist able to release both stimulatory and
inhibitory factors from different endocrine cells would have an unpredictable effect follow-
ing injection. The physiological role of such an agonist may be determined by the location
of its release from peptidergic nerves or the presence of receptors of different selectivity
in activating and inhibitory endocrine cells. For this reason, there has been increasing
attention paid to less complicated models such as isolated gastric fundic glands or isolated
endocrine cells. In such preparations, it is easier to decide whether a stimulatory or
inhibitory action is exerted directly on the target cells, i.e., parietal cells, or whether an
effect is secondary to changes in function of a specific endocrine cell. In this review, we
shall focus on data derived from these in vitro models of regulation of gastric acid secretion
focusing on the role of the ECL cell in regulation of gastric acid secretion.

ECL CELL IN FUNDIC GLANDS

Functional isolated gastric glands were first produced from the rabbit [25]. Essential
to the success of this model was the ability to measure acid secretion. Since the secretory
canaliculus of the parietal cell, and the lumen of the isolated gland is essentially a closed
space, acid secretion was measured using the accumulation of the weak base, aminopyrine.
Its pKa of 4.0 allowed selective assessment of parietal cell acidity since other acidic
spaces have a pH greater than 4.0.

This model responded well to histamine and dbcAMP. There was also a response to
carbachol, but this was transient. The basis of the transient nature of this response still
remains unexplained. The response to gastrin was weaker than to either histamine or carba-
chol and was ablated either by H2 blockade by cimetidine or by the presence of diamine
oxidase in the medium [26-31]. These latter data were explained as showing that the parietal
cell response to gastrin was indirect, dependent on the release of histamine from enterochro-
maffin-like cells still present in the isolated gland. In vivo data measuring rat gastric acid
secretion also showed that whereas carbachol stimulation could be only partially affected
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by the presence of a H2 receptor antagonist, gastrin stimulation was completely blocked
[5, 32]. Similar data were also obtained for humans. The isolated rabbit gland data were,
therefore, pharmacologically equivalent to the in vivo data.

The isolation and sequencing of the gastrin receptor from a parietal cell library along
with binding studies proved the presence of a gastrin (CCK-B) receptor on the parietal cell
[33]. There was also in vivo evidence that there was potentiation between gastrin and car-
bachol or gastrin and histamine [32]. This cluster of data was naturally interpreted as evidence
for a functional gastrin receptor on the parietal cell capable of independent stimulation of
acid secretion. It had been shown that gastrin was able to elevate [Ca]in in isolated parietal
cell suspensions, proving the presence of a functional CCK-B receptor on the parietal cell
correlating with the sequencing and binding studies [26, 27]. How did those data jibe with the
histamine dependence of gastrin's effect as determined by H2 blockade in vivo and in vitro?

Interaction of gastrin with the ECL cell and stimulation of histamine release from that
cell type and stimulation of secretion by carbachol using different pathways could explain
the potentiation seen between gastrin and carbachol. The potentiation between histamine
and gastrin was more difficult to understand given that gastrin had to release histamine for
stimulation of gastric secretion. However, it was shown that effective stimulation of acid
secretion by gastrin (and carbachol) in isolated rat and pig parietal cells required the presence
of cAMP [27]. Since histamine elevates cAMP in the parietal cell (and to a minor extent
[Ca]in), gastrin's elevation of acid secretion might well depend on elevation of cAMP, par-
ticularly if cAMP-dependent protein kinase phosphorylated a critical protein in the stimula-
tory cascade deriving from gastrin's binding to the CCK-B receptor. Then, in the absence
of cAMP elevation, there would be no effect of gastrin on acid secretion. Superfusion of
isolated gastric glands with gastrin generated a calcium signal simultaneously in the ECL
cell (defined by histamine autofluorescence) and the parietal cell (defined by shape and
location). Cimetidine abolished the parietal cell effect, but this was restored by the addition
of dbcAMP. Even the calcium response in the parietal cell due to gastrin depended on eleva-
tion of cAMP either by histamine or by addition of dbcAMP. No such dependence was
observed for the calcium signal generated by gastrin in the ECL cell. It can, therefore, be
argued that cAMP elevation is essential for any effect of gastrin on the parietal cell.
Elevation of cAMP in the parietal cell is consequently permissive for the action of gastrin
on [Ca]in [27]. This fundic gastric gland model provided significant information on the
mechanism of action of gastrin, carbachol and histamine but has not been used further to
dissect out other ECL cell responses.

ENDOCRINE CELLS

There are at least three endocrine cells that play a major role in regulation of acid or
pepsinogen secretion, the enterochromaffin-like cell, the gastrin or G cell and somatostatin
or D cell. The ECL cell is found mainly in the fundic region of the stomach, the G cell in
the antral gland and the D cell in both the antral and fundic region. The fundic and antral D
cells may differ in some of their receptor properties, given that the antral D cell communi-
cates with the antral gland lumen and is juxtaposed to the G cell and that the fundic D cell
does not communicate with the gland lumen and is in the vicinity of the ECL cell [34, 35].

We now have considerable knowledge of the major cell types of the gastric mucosa,
namely the parietal cell and the chief cell. Their function (acid and pepsinogen secretion)
is relatively easy to measure in vivo and in vitro, and functional assay therefore permits a
definition of the responsive elements in these cells. Purification of these secretory cells
starts out with 30 percent of the cell population. Purification of the major endocrine cells
of the mucosa is more troublesome, since each type represents not more than one percent
of the cell population. Identification of the cell that has been enriched or purified is also
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Figure 1. General methodology for purification of ECL cells and enrichment for ECL and
other endocrine.

more difficult since there are multiple ligands producing different end effects. Many of
these self-same ligands can also be released into the medium bathing a mixed endocrine
cell population generating secondary effects. In order to identify explicitly each receptor
present on a single cell type, various strategies can be used. Cells can be obtained at high
purity (over 90 percent), neutralizing antibodies against possible contaminating ligands
can be added to the suspension medium and superfusion used during video imaging of calcium
signaling in individual cells in a population. When this method is combined with immuno-
staining, it is possible to identify different endocrine cell types by their characteristic lig-
and responses [36]. The general methods we have applied to endocrine cell purification or

enrichment are shown in Figure 1.

Table 1. An abbreviated list of agonists or other agents that have been shown or postulated to
react with one or other of the cells of the gastric mucosa.

Cell Type
Receptor ECL G D Parietal Chief

CCK-A No No Yes No Yes
CCK-B Yes No Yes Yes No
PACAP Yes ? VIP ? Yes
M 1,3,5 Yes Yes No Yes Yes
M2,4 No No Yes No No
GRP No Yes Some ? ?
ST Yes Yes Yes Yes Yes
Ca ? Yes ? ? ?
Yl Yes ? ? ? ?
GAL Yes ? ? ? ?
Histamine H3/H1 No H3 H2 Species
CGRP No No Perhaps No No
Amino acids No Perhaps No No No
pH No Perhaps Perhaps No No

In some instances, where effects have been described only on incubation with mixed cell popula-
tions, a question remains as to the target of these agonists or antagonists. Boldface type indicates
clear significance of the receptor in target cell function. Where direct effects have not been shown,
but only release studies, a question mark is put in the table.
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Work to date measuring calcium signaling on five types of gastric epithelial cells in
a variety of preparations is summarized in Table 1. Evidently there is significant cross-talk
between the different cells of the gastric epithelium but the importance of histamine in
regulation of acid secretion places regulation of the ECL cell as the most important cell
controlling gastric acid secretion.

The large number of ligands that regulate secretory function of the gastric epithelium
speaks to the delicate adjustment of the rate of acid secretion that occurs in order to tailor
the response to meet the demand placed on the stomach by the quantity and quality of the
meal. We shall however discuss only the ECL cell here, since it is the only gastric
endocrine cell that we have available in high purity, making superfusion and histamine
release data alike in their interpretation.

ECL CELL

The ECL cells produce and store histamine [37]. This biogenic amine is stored in
vesicles to give a total content of 2.8 to 4.3 pg/cell of histamine, which is a relatively low
amount compared to mast cells (12 to 20 pg/cell). As for other gastric endocrine cells, this is
a small, about 10 um diameter, cell found at mostly towards the base of the fundic gastric
gland. It contains acidic vacuoles with an eccentric electron dense spot [38]. Renewed
interest in this cell was generated by the finding that high doses of omeprazole resulted in
ECL cell hyperplasia and carcinoid formation in rats [39-41].

There are various means of identifying this cell type. Under fluorescence microscopy,
the vacuoles accumulate acridine orange due to their acidity, resulting in a red fluorescence
characteristic of acid spaces. The cells express histidine decarboxylase required for histamine
biosynthesis [42]. Because they contain vacuoles rather than granules (such as G and D
cells), they are somewhat less dense and can be purified almost to homogeneity from a gas-
tric epithelial cell suspension. A combination of elutriation (to select a small cell population)
and Nykodenz gradient centrifugation produces an ECL enriched population (about 70
percent). Forty-eight hour culture in growth medium results in a cell population containing
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Figure 2. The various receptors of the gastric ECL cell shown to affect calcium signaling
and/or histamine release.
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about 90 percent ECL cells. A large number of receptors present on the ECL cell have been
identified directly, by video imaging of calcium signaling, by PCR of an ECL cell cDNA
library or RT/PCR of RNA isolated from ECL cells and also by measurements of histamine
release from an approximately 90 percent pure population of these cells [43, 44]. Several
recent reviews are available [34, 45, 46]. These receptors are summarized in Figure 2.

STIMULATION OF ECL CELLS

Peripheral
The major stimulatory ligand for histamine release from these cells is gastrin.

Addition of gastrin to a perfusate results in a characteristic biphasic increase in intracel-
lular calcium for stimulation by pituitary adenylate cyclase activating peptide (PACAP).
The initial spike is due to release of calcium from intracellular stores, the steady state due
to entry of calcium from the medium.

Essentially all ECL cells respond to gastrin with a similar elevation of [Ca2+]i The
EC50 for gastrin for both the calcium signal and histamine release is about 10-10 M. The
elevation of steady state calcium is essential for release of histamine and is due to activation
of receptor operated calcium channels (ROCC) by gastrin.

The ECL cell also has voltage-dependent calcium channels (VDCC). The depolarization
of the ECL cell by the addition of 40 mM K+ or 20 mM tetraethyl amine, results in a calcium
signal that is inhibited by calcium channel blockers such as nifedepine or o-conotoxin at
appropriately low concentrations. The addition of the L channel activator, Bay K8644 also
results in a biphasic elevation of intracellular calcium. This shows the presence of not only
receptor operated calcium channels but also of depolarization activated or voltage depen-
dent calcium channels in the ECL cell, channels similar to those found in other neuroen-
docrine cells [47].

These VDCCs could be activated during exocytosis due to electrical changes following
fusion of the histamine containing vacuole with the plasma membrane of this cell. The
histamine containing vacuole membrane has a V-type ATPase that is an electrogenic proton
pump. Acidification by this pump depends on the presence of a chloride conductance that
allows electrogenic proton pumping. Accumulation of histamine is driven by a histamine-
proton counter-transport mechanism as found in other amine transporting vacuoles [48].
Whole cell patch clamp experiments have shown that the ECL cell has a resting voltage
of about -50 mV and a low membrane conductance. Depolarization was found to activate
K+ channels that were Ba2+ inhibited. Stimulation of histamine release by gastrin resulted
in activation of a chloride current, presumably due to fusion of the vacuole membrane
with the plasma membrane [48]. The model of exocytosis that ensues from these data suggests
that the chloride current derives from insertion of the Cl- channel present in the histamine
containing vacuole. The depolarization that would result from this could be counteracted
by the depolarization activated K+ channels but could also activate VDCCs. Hence, the
steady-state elevation of cell calcium by gastrin could be due to activation of both ROCC
and VDCC pathways

The pathway for gastrin stimulation of parietal cell acid secretion is via CCK-B recep-
tor activation on the ECL cell with release of histamine and activation of the H2 receptor
on the parietal cell. This is consistent with the ablation of acid secretion due to pentagastrin
stimulation that is found with H2 receptor antagonists [27, 32]. It also explains the loss of
gastrin responsiveness when the ECL cell is unable to synthesize histamine due to the
addition of the histidine decarboxylase inhibitor, 5-a-fluoromethyl histamine [49].
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Central Stimulation
Carbachol also results in a biphasic increase of intracellular calcium perhaps due to

activation of a M, or a M3 receptor. mRNA for both has been found by RT/PCR, and
blockade by pirenzepine indicates a functional M1 receptor [23, 24]. However, in the ECL
cell population, only about 10 to 20 percent of the cells respond [36]. The parietal cell also
has a M3 receptor [24], and from these data much of the vagal cholinergic response is due
to direct activation of the parietal cell. Cimetidine was relatively ineffective in inhibition
of carbachol-induced acid secretion, consistent with the distribution of these activating
muscarinic receptors in ECL and parietal cells.

PACAP is the most recent peptide found of the secretin/glucagon/VIP family [50]. It
is found in nerve fibers and is clearly a neurotransmitter. The PACAP receptor appears to
be linked to both cAMP and calcium elevation in a variety of cells. Forskolin activates
adenylate cyclase and is able to stimulate histamine release from ECL cells [43]. PACAP
is an effective and potent stimulant of elevation of intracellular calcium and of histamine
release from the in vitro ECL cell preparation. The EC50 for PACAP is about 10-9 M and
is about 1,000-fold less than for VIP.

The dose response to PACAP for the calcium signal is similar to the dose response for
histamine release, which also illustrates that most of the ECL cells are PACAP responsive [51].

A surprising finding is that the injection of PACAP does not stimulate basal acid
secretion and even inhibits gastrin stimulated acid secretion. To explain this finding, it is
likely that the effect of PACAP on the fundic D cell is dominant when PACAP is present
in the gastric circulation. PACAP has been shown to release somatostatin from D cells in
vitro [51] and injection of a neutralizing somatostatin antibody results in stimulation of
gastric acid when PACAP is injected [52]. Thus, the effect of PACAP on the ECL cell
found in vitro in the absence of D cell stimulation corresponds to the effects of PACAP in
vivo, provided that the effects of D cell stimulation are prevented. The effectiveness of
PACAP as an in vitro stimulant of ECL cell function indicates that it is likely to be the
central stimulant of the ECL cell.

Epinephrine also stimulates histamine release from ECL cells, as does the stimulant
of adenylate cyclase, forskolin. Previously obtained in vivo data suggest that this stimula-
tion may be mediated by activation of a 83 adrenergic receptor, but it is unclear as to the
physiological significance of this pathway of stimulation of histamine release [46].

There is, therefore, evidence for four activating receptors in the ECL cell population
isolated from rat gastric mucosa. The CCK-B and PACAP receptors are likely to be dom-
inant in positive regulation of ECL function and, therefore, histamine dependent acid
secretion, as shown in Figure 2. Much of cholinergic mediation of acid secretion is due to
direct effects of acetylcholine on the parietal cell.

INHIBITION OF ECL CELLS

The setting of the rate of acid secretion to a specific level requires not only stimula-
tion of the ECL cell but also inhibition. Various inhibitors of ECL cell calcium signaling
and histamine release have been described. A partial list includes somatostatin, PYY,
galanin and even histamine. Two second messenger systems have been identified in ECL
cells. All of the activating receptors we have studied appear to have the ability to release
intracellular calcium and activate ROCC. In addition, depolarization of the cell with either
high K+ or by Bay K8644 also increases intracellular calcium levels. The action of
inhibitors of ECL cell function also is exerted against calcium signaling by this cell.
Inhibitors of ECL cell function apparently must inhibit calcium signaling.
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Peripheral

Somatostatin inhibits ECL cell function by binding at an SST subtype 2 receptor [52].
PCR of a cDNA library based on ECL cell mRNA showed that only the SSTR type 2 was
significantly enriched in ECL cDNA. Single cell video imaging of highly purified ECL
cells in culture demonstrated that only the SSTR type 2 selective agonist, DC 32-87,
inhibited the gastrin-induced calcium entry at concentrations reported to be selective for
this subtype (10-"IM). Type 3 and type 4 selective agonists, DC 25-12 and DC 32-92, and
also somatostatin SS-14 required 100 to 1000 times higher concentrations, namely 10-8
M. Similar results were obtained when the effects of selective agonists on gastrin-induced
histamine release were studied [52]. The SSTR type 2 analog inhibited the gastrin-stimulated
histamine release with an IC50 of 2 x 10-12 M. Somatostatin SS-14 and the type 3 and 4
analogs showed IC50 values of 1-5 x 10-9 M. The effect of somatostatin was abolished by
pre-incubation with pertussis toxin (PTX) showing that the SST 2 receptor in these cells
was coupled to Gi or GO'

The proximity of the fundic D cell to the ECL cell suggests that the somatostatin
involved in ECL cell inhibition is released from the fundic, not the antral, D cell. Thus,
regulation of the fundic D cell is intimately involved in the peripheral regulation of ECL
cell function. Somatostatin is so far the most effective inhibitory ligand of ECL cell cal-
cium signaling and histamine release. It is the major candidate for the peripheral inhibitor
of histamine release and, therefore, acid secretion. Agonists of fundic D cells, therefore,
play an important role in the regulation of the ECL cell.

The peptide PYY is found in duodenal extracts and has a variety of inhibitory actions.
Gastrin stimulated histamine release was partially inhibited by PYY with an IC50 of 2 x
10-9M. Inhibition of histamine release and of calcium entry by PYY and [Pro34]-PYY and
no effect of PYY [3-36] identifies the inhibitory receptor as being a Y, receptor subtype.
RT-PCR of ECL cell RNA showed that the receptor was the non-truncated Y1 isoform.
The inhibitory action of PYY and related peptides on gastrin stimulated histamine release
and calcium signaling was also abolished by pre-treatment with PTX at 200 ng/ml.
Additive but not synergistic inhibitory effects of PYY and somatostatin on gastrin-stimulated
histamine release were observed. It is not clear, however, whether this concentration of
PYY is found in the vicinity of the ECL cell in vivo [53, 54].

Evidence from the intact stomach, and from isolated glands has shown that there is
an H3 histamine receptor subtype present with inhibitory pharmacological actions [43,
46]. In vivo studies previously suggested that histamine secretion and especially histamine
synthesis is under a feedback control of histamine. In the purified ECL cell preparation,
the H3 agonist, R-oc-methylhistamine is able to inhibit gastrin-stimulated histamine
release. The H3-antagonist, thioperamide, is able to activate histamine release. These data
suggest that there is a feedback loop to prevent excessive release of histamine by activation
of the H3 receptor on the ECL cell. There is additional evidence for an H1 receptor on this
cell type, but this would result in auto-activation of this rather toxic transmitter [45].

Central Neural

Galanin is a 29-amino acid neuropeptide initially identified in the porcine intestine
and now known to be widely distributed in peripheral and central neurons. In the periphery,
galanin colocalizes with other neuropeptides (VIP, NPY) in nerve cell bodies and fibers
of the myenteric plexus and submucosal plexus close to the mucosal epithelium mucosa
[57]. A recent study also showed that a galanin receptor (GALRI) was highly expressed
in human gastric mucosal biopsies indicating that a target for galanin was present in the
fundic mucosa [58]. A second galanin receptor has also been cloned (GALR2) [59]. The
former appears inhibitory, the latter was shown to elevate cell calcium when transfected
into cultured cells [60].

240



Zeng and Sachs: Properties of isolated ECL cells

nalanMin Inhibits Bcth Ca
FRele~ase and rnMtry

(;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~;

I~~~~~~~~~~nMIVIasti GanMCjarnIn tIn

4 -nli Gal 4m 3

j~~~~~~rlinVGastrin

0 kt,._ x

6 V atin1nS asr InIIGsr

4~~~~~nV a

Figure 3. The effect of galanin on basal and gastrin stimulated calcium signaling in the ECL cell.
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Figure 4. Dose response curve showing partial inhibition of histamine release by galanin and
its N terminal fragment.
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Figure 5. Nested RT/PCR showing the presence of a gal 1 receptor in the rat ECL cell.
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Figure 6. A model of neuronal and peripheral regulation of gastric acid secretion by the major
receptors of the ECL cell.
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Table 2. A comparison of the properties of the various inhibitory ligands identified thus far in
perfusion studies of the isolated rat ECL cell.

Inhibitors of ECL cells
Gal PYY SS His3

R subtype Gal 1 Y1 SSTR2 H3
Ca/release Yes No Yes Yes
Ca/entry Yes Yes Yes Yes
Histamine/basal Yes No Yes ?
Histamine/stimulated Partial Partial Complete Complete
PTX sensitive Partial Complete Complete ?

Among its many actions, galanin has been shown to influence gastric acid output
[61]. A direct action on antral G cell has been suggested because galanin was found to
inhibit bombesin-stimulated gastric acid secretion in rats and dogs [62, 63]. Galanin inhibited
basal and GRP-stimulated gastrin release in isolated stomach preparations as well as gastrin
release from in vitro isolated rat G cells in primary culture [64]. Since it inhibits penta-
gastrin-stimulated and basal acid secretion [60] and an abundance of galanin immuno-
reactive nerve endings are found in fundic mucosa [57], galanin must act downstream of
the G cell perhaps directly on fundic ECL cells. No effect of galanin on somatostatin
release was found in vivo and in vitro, hence, somatostatin is not involved in the inhibitory
action of galanin [65, 66]. Because galanin had no inhibitory effect on bethanechol or his-
tamine-stimulated gastric acid secretion, a direct inhibitory action of galanin on parietal
cell is also unlikely. Morphologically, gastric mucosal nerve terminals containing galanin
are found adjacent to ECL cells in gastric fundic mucosa [57].

The peptide was found to inhibit gastrin stimulated calcium signals in the ECL cell as
shown in Figure 3. Here 10 nM galanin reversibly blocked gastrin effects on ECL cell [Ca2+]i.

The peptide also partially (60 percent) inhibits histamine release from the ECL cell
with an EC50 of 1 x 10-10M as shown in Figure 4.

The partial antagonist activity of galanin is due to a rapid desensitization of the
galanin receptor.

Two galanin receptors have been cloned. They can be distinguished by the use of
chimeric peptides containing the N-terminal sequence of galanin in combination with
other peptide sequences. Nested RT/PCR shows the presence of a gal 1 receptor subtype
as demonstrated in Figure 5. The actions of galantide, C7 and M40, with the first acting
as an antagonist and the latter two as partial agonists, suggest that the ECL cell gal 1
receptor has properties similar to the pancreatic galanin receptor.

Pretreatment with PTX greatly reduced the inhibitory action of galanin on basal and
stimulated histamine release as well as the inhibition of Ca2+ influx [561.

There are, therefore, a variety of inhibitory factors that influence calcium signaling
and histamine release from the ECL cell, of varying potencies and efficacies. The follow-
ing table summarizes their effects on calcium signaling and histamine release.

From this, and the relative efficacy of galanin and somatostatin, it is likely that
somatostatin is the major down regulator of ECL cell function that is locally released. The
function of PYY as a component of enterogastrone is endocrine and the affinity of the Y1
receptor on the ECL cell for PYY is low compared to the affinity of the SST 2 receptor for
somatostatin. Under in vitro conditions, it is difficult, perhaps, to achieve histamine concen-
trations sufficient to inhibit calcium signaling and histamine release. The role of the H3
receptor is, therefore, still unclear. Galanin and galanin 1 receptor are present in the stomach.
Galanin is, therefore, the only candidate identified thus far for central regulation of ECL
cell function.
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The role of the ECL cell in regulation of gastric acid secretion is, therefore, becom-
ing better understood as isolated cell and gland models have become available. In sum-
mary, a model of the ECL cell as describing central and peripheral regulation of parietal
cell acid secretion is shown in Figure 6. Here only the major regulatory receptors are
shown, where function has been demonstrated in all isolated ECL cells with correspond-
ing in vivo data.
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