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Abstract: The aim of this study was to investigate the effects of bergamot polysaccharide (BP) and
Laoxianghuang polysaccharides (LPs, fermented bergamot) on the microbiome and metabolome
during the in vitro fermentation of gut microbiota from patients with hyperlipidemia. Results
indicated that both BP and LPs were able to increase the production of acetic acid, propionic acid,
and butyric acid. However, only LPs could decrease the content of isobutyric acid and isovaleric acid,
which are detrimental to gut health. A 16S rRNA analysis showed that both BP and LPs could reduce
the proportion of Fusobacterium, whereas they increased the Bacteroides content in hyperlipidemia.
Untargeted UPLC-MS/MS metabolomic profiling found six bio-markers that were significantly
changed after BP and LPs intervention, and four of the down-regulated metabolites were long-chain
fatty acids associated with vascular diseases. These findings provide new evidence that BP and LPs
have the potential to regulate imbalances in the gut microbiota in patients with hyperlipidemia and
ameliorate its metabolic abnormalities.

Keywords: polysaccharide; hyperlipidemic; gut microbiota; SCFAs; metabolomics

1. Introduction

Hyperlipidemia is a common metabolic syndrome that is characterized by abnormal
blood lipids, manifested by elevated levels of total cholesterol, triglyceride, and low-density
lipoprotein cholesterol and a decreasing level of high-density lipoprotein cholesterol [1].
It can induce atherosclerosis, which is a major risk factor for cardiovascular and cere-
brovascular diseases, such as coronary heart disease, stroke, and myocardial infarction [2].
Hyperlipidemia is also related to the occurrence and development of obesity-related chronic
diseases, such as diabetes, hypertension, and fatty liver [3]. Studies have also demonstrated
the critical role of the gut microbiota in the development of obesity-related diseases [4].
Although lipid-lowering chemical drugs such as niacins, fibrates, and statins have been
widely used in the regulation of the gut microbiota and the treatment of hyperlipidemia,
these drugs also have limitations and may have side-effects, including myalgia and decreas-
ing renal function [5,6]. As a result, multifunctional natural plants have received extensive
interest as alternative therapies to cure hyperlipidemia due to their safe properties. Specif-
ically, the anti-hyperlipidemia activity of Chinese herbal medicines and medicine food
homologous plants have attracted widespread attention [7,8].
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Bergamot (Citrus medica L. var. sarcodactylis Swingle), belonging to the Rutaceae family,
has a long history of cultivation and medicinal use in China [9]. It contains various bioactive
substances (bergamot oil, polysaccharides, hesperidin, alkaloids, and coumarins, etc.) and
can exert various biological activities, such as anti-oxidation and anti-tumor properties,
regulating blood lipids, lowering blood pressure, and immune regulation [10–13]. For
example, a previous study indicated that a new bergamot polysaccharide exhibited free-
radical-scavenging properties and immunoregulatory activity [9]. Another study showed
that bergamot oligosaccharide exhibited the potential to be used as an effective source
of prebiotics, increasing the populations of probiotics [11]. Laoxianghuang is a kind
of traditional fermented bergamot in China which is produced through complex steps,
including cooking, salting, washing, drying, and sealing and fermentation [14]. It is
generally applied in traditional Chinese medicine due to its beneficial effects in regulating
gut function, promoting digestion, and relieving coughs [15]. Although bergamot and
Laoxianghuang have been studied for several years, few studies have reported the potential
of polysaccharides derived from bergamot and/or Laoxianghuang in the regulation of gut
microbiota or for hyperlipidemia treatment.

Polysaccharides are macromolecules consisting of more than 10 monosaccharides
units through glycosidic bonds, which are widely present in algae, plants, microorgan-
isms, and animals [10]. In recent years, more and more studies on the separation and
identification of bioactive polysaccharides from natural sources have been reported [16],
indicating that polysaccharides can exhibit multiple biological functions, including anti-
hyperlipidemic activity [17]. For instance, Pleurotus ostreatus polysaccharides ameliorate
dyslipidemia through the regulation of lipid metabolism, including the metabolism of glyc-
erophospholipids, fatty acids, prenol lipids, and sphingolipids [18]. Holothuria leucospilota
polysaccharides elevate the level of short-chain fatty acids to regulate lipid metabolism and
subsequently relieve hyperlipidemia [19]. Auricularia auricula polysaccharides have been
reported to improve the intestinal microbial environment by enriching SCFA (short-chain
fatty acids)-producing bacteria, leading to the up-regulation of SCFAs and subsequently
resulting in the relief of liver damage and hyperlipidemia in rats [20]. However, to date, few
studies on the structure and biological properties of bergamot and Laoxianghuang-derived
polysaccharides have been reported.

Consequently, in this study, BP and LPs were used as an intervention for the in vitro
fermentation of feces derived from the general population and patients with hyperlipi-
demia. Changes in bacterial community structure, SCFAs, and non-targeted metabolites
during fermentation were assessed using 16S rRNA, GC-MS, and UPLC-MS/MS, respec-
tively, aiming to explore the effect of BP and LPs on regulating the gut microbiome and
metabolome in hyperlipidemia.

2. Materials and Methods
2.1. Reagents and Materials

Fresh bergamot fruits and Laoxianghuang were purchased from the local market in
Chaozhou, China. Standards of monosaccharide were purchased from Shanghai Yuanye
Bio-Technology Co., Ltd. (Shanghai, China). Standards of dextran were purchased from
Sigma-Aldrich Chemical Co., Ltd. (St. Louis, MO, USA). Standards of SCFAs (formic
acid, acetic acid, propionic acid, butyric acid, valeric acid, isobutyric acid, and isovaleric
acid) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai,
China). Ethyl acetate of HPLC grade was supplied by Chengdu Kelong chemical Co., Ltd.
(Sichuan, China), and methanol of HPLC grade was supplied by Tianjin shield special
chemical Co., Ltd. (Tianjin, China). Other reagents were of analytical grade.

2.2. Extraction of Polysaccharides

Fresh bergamot slices were dried at 40 ◦C then crushed into a powder. The bergamot
powder was added into pure water at a ratio of 1:10 (w/v) and extracted at 80 ◦C for 5 h [21].
The supernatant was concentrated by vacuum rotary evaporation at 60 ◦C and then mixed
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with 95% ethanol to an ethanol concentration of 80%. The mixture was placed at 4 ◦C
for 24 h before centrifugation at 8000× g rpm for 15 min. In order to remove protein, the
sediment was mixed with 4% trichloroacetic acid (w/v) and placed at 4 ◦C for 10 h. The
supernatant was collected and dialyzed in dialysis bags for 2 days at 4 ◦C to remove the
residual trichloroacetic acid. Then, the solution was lyophilized to obtain BP.

LPs was extracted in a similar way. In brief, 10 g of Laoxianghuang was added to 100 mL
pure water and then homogenized before being extracted at 80 ◦C for 5 h. The following
steps were performed according to the BP, as mentioned previously. Laoxianghuang fer-
mented for 1, 3, and 5 years was named mono-Laoxianghuang, tri-Laoxianghuang, and penta-
Laoxianghuang. The polysaccharides derived from mono-Laoxianghuang, tri-Laoxianghuang,
and penta-Laoxianghuang were denoted as MLP, TLP, and PLP, respectively.

2.3. Monosaccharide Composition

The polysaccharides were hydrolyzed with trifluoroacetic acid and then derivatized
by 1-phenyl-3-methyl-5-pyrazolone (PMP) [22]. The free PMP was removed by chloroform.
The composition of monosaccharides in polysaccharides was determined by a HPLC
instrument equipped with a Xbridge C18 column (15 cm × 0.2 mm × 0.25 µm; Waters Co.,
Milford, MA, USA). PBS buffer (0.02 mol/L, pH = 6.7) and acetonitrile mixture solution
(83:17, v/v) were used as the mobile phase. Samples (10 mg/mL, 20 uL) were injected
and eluted at 30 ◦C under a flow rate of 1 mL/min for 60 min. The detector collects
the response value at a wavelength of 245 nm. Quantification was achieved by plotting
a calibration curve with standards for D-Mannuronic acid (Man-A), D-Mannose (Man),
L-Rhamnose (Rha), D-Glucuronic acid (Glc-A), D-Galacturonic acid (Gal-A), D-Glucose
(Glc), D-Galactose (Gal), D-Arabinose (Ara), and L-Fucose (Fuc).

2.4. Determination of Molecular Weight

An Agilent-1260 high-performance liquid chromatograph system (Agilent Tech., Cali-
fornia, CA, USA) equipped with TSK-G2500PWXL and TSK-G5000PWXL (15 cm × 0.2 mm
× 0.25 µm; TOSOH Bioscience, Tokyo, Japan) columns was utilized to determine the
molecular weight of polysaccharides [23]. Ultra-pure water was used as a mobile phase
at a constant flow rate of 0.5 mL/min. The injection volume was 20 µL and the column
incubator was maintained at 30 ◦C. Dextran of different molecular weights (1, 5, 12, 25, 50,
80, 150, 270, 410, and 670 kDa) was applied as standards.

2.5. In Vitro Fermentation

This study was approved by the Guangxi University Ethics Committee (approval
no.: GXU-2021144), and the volunteers signed informed consent forms. The fecal samples
were taken from 4 volunteers with hyperlipidemia and 4 healthy people (two males and
two females aged from 20 to 40). About 5 g of each fecal sample was quickly placed in a
centrifuge tube containing liquid paraffin and normal saline. The tubes were then packed
in sealed bags and preserved at −80 ◦C before being used within three days.

The fundamental anaerobic culture medium (FAM) was prepared as described be-
fore, with slight modifications [24]. The FAM was composed of 1.6 mmol K2HPO4,
7.5 mmol NaCl, 1.3 mmol KH2PO4, 0.4 mmol CaCl2, 3.4 mmol (NH4)2SO4, 0.7 mmol
MgSO4, 4.0 mmol L-cysteine, 2.8 mmol L-ascorbic acids, 37.7 mmol Na2CO3, 1 g nutrient
agar, 1 g beef extract, and 1 g peptone in 1 L water. The pH of the FAM was controlled at
7.5–8.0.

Before fermentation, the fecal samples were fully mixed, followed by centrifugation
at 500× g rpm for 3 min. Under anaerobic conditions, the bacterial liquid under the
liquid paraffin was inserted into different anaerobic culture mediums with 10% inoculum.
According to the differences in feces and mediums, we created six groups: The feces
of the healthy population were inoculated in FAM as a normal control group (NC); the
feces of hyperlipidemic people were inoculated in FAM as a hyperlipidemia control group
(HC); the feces of hyperlipidemic people were inoculated in FAMs with 0.5% of different
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polysaccharides (BP, MLP, TLP, and PLP). In each group, a total of 3 parallel tubes was
used. All tubes were placed on the tube rack and cultured anaerobically under continuous
shaking at 37 ◦C for 48 h. Samples were taken every 12 h and repeated three times at each
point (0 h, 12 h, 24 h, 36 h, and 48 h) for the detection of short-chain fatty acids, microbial
structure, and metabolites.

2.6. Short-Chain Fatty Acids (SCFAs) Analysis

For each tube, 500 µL of sample was mixed with 5 µL of formic acid standard before
being stored at −20 ◦C for more than 2 h. After that, the mixture was centrifuged at
15,000× g rpm for 2 min after thawing. Then, 400 µL of supernatant was taken and
extracted using 400 µL of ethyl acetate for 2 min, followed by centrifugation at 8000× g rpm
for 10 min. A total of 300 µL of supernatant was taken and mingled with 3 µL of 4-methyl
valeric acid (5.85 mg/mL). The ethyl acetate phase was obtained and filtered by a nylon
filter (0.22 µm).

The pretreated samples were analyzed using the GC-MS system equipped with GC
(Agilent 7890B mag Agilent Technologies, Santa Clara, CA, USA) and highly inert MSD
(Agilent 5977A mag Agilent Technologies, Santa Clara, CA, USA) [25]. The separation
was carried out on a TG-WAXMS column (60 m × 0.25 mm × 0.25 µm, Thermo Science,
Waltham, MA, USA). The injector was kept at 250 ◦C and the flow rate of helium was
1 mL/min. The temperature program started at 90 ◦C and rose to 150 ◦C at the rate of
15 ◦C/min, then to 170 ◦C at the rate of 5 ◦C/min, and finally to 250 ◦C at the rate of
20 ◦C/min, before holding for 2 min. The injection volume was 1 µL and all samples were
analyzed with a split ratio of 1:1.

2.7. Metabolomics Analysis

A total of 500 µL of sample was mixed with 3000 µL of methanol (HPLC grade) and
vortexed for 1 min. The mixture was centrifuged at 13,000× g rpm for 10 min and filtered
using a 0.22 µm filter before analysis [26,27]. UPLC-MS/MS analysis was conducted using
a Q Exactive Plus system (Thermo-fisher Scientific, MA, USA) equipped with a Hypersil
GOLD C18 column (100 × 2.1 mm, 1.9 µm, Thermo-fisher Scientific).

The mobile phase was composed of 0.1% formic acid aqueous solution (A) and ace-
tonitrile (B). The fractions were eluted at a flow rate of 0.30 mL/min using the following
conditions: 5% of solvent B for 2 min, which was linearly increased from 5 to 95% within
14 min, then 5% of solvent B for 2 min. MS analysis was conducted using an electrospray
ionization (ESI) source at 3.0 kV operated in both positive and negative mode. The mass
spectra were collected from 100 to 1000 m/z under a resolution of 70,000 FWHM. The target
of Automatic Gain Control (AGC) was 3 × 106 within 100 ms. For dd-MS2, the mass spectra
were recorded at a resolution of 17500 FWHM, with a AGC value of 1 × 105 within 50 ms.
Fragment ions were generated in HCD collision cells using stepped normalized collision
energy (NCE 10, 25, and 45%). The results obtained were analyzed using the Compound
Discoverer software (Thermo Scientific, MA, USA).

2.8. 16S rRNA Amplicon Sequencing of Microbiota

Microbial DNA was extracted using the HiPure Soil DNA Kit (Magen, Guangzhou,
China) according to the manufacturer’s protocols. The 16S rDNA target region of the
ribosomal RNA gene was amplified by polymerase chain reaction (PCR) using 341F (CC-
TACGGGNGGCWGCAG) and 806R (GGACTACHVGGGTATCTAAT) as primers [28]. PCR
reactions were performed in triplicate.

Raw data containing adapter or low-quality readings will affect subsequent assembly
and analysis. Hence, FASTP (version 0.18.0, HaploX, Shenzhen, China) [29] and FLASH
(version 1.2.11, the Center for Computational Biology at Johns Hopkins University, MD,
USA) [30] were used to combine the paired-end clean readings with the original label,
with a minimum overlap of 10 BP and a mismatch error rate of 2%. The noise sequence
of the original tag was filtered under specific filtering conditions to obtain high-quality
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clean tags [31]. The UPARSE (version 9.2.64) pipeline was applied to cluster clean tags
into operational taxonomic units (OTUs) with a similarity ≥ 97% [32]. All chimeric tags
were removed by the UCHIME algorithm, and effective tags were obtained for further
analysis. In each cluster, the tag sequence with the highest abundance was selected as the
representative sequence.

2.9. Statistical Analysis

The data were expressed as mean ± standard deviation (n = 3) of repeated analyses.
Analysis of variance (ANOVA) was performed and statistical analyses was performed using
software including R statistical package, XCMS Online, Metaboanalyst 5.0, and Omicsmart.

3. Results and Discussion
3.1. Structural Characterization

The biological activities of polysaccharides are closely related to their structural char-
acteristics, such as monosaccharide composition and molecular weight [33]. The monosac-
charide compositions of BP and LPs are listed in Table 1. As can be seen, BP was composed
mainly of Man, Rha, and Gal-A. However, significant differences were observed in LPs,
which consisted of Gal-A, Gal, Rha, Fuc, and Glc-A. Compared with BP, LPs had more
complex monosaccharide compositions. This is similar to the finding of a previous study in
that with the extension of the storage period of Chenpi, the number of types of monosac-
charides increased in the polysaccharide [34]. The content of Man and Rha in BP was
much higher than that in the LPs, whereas the monosaccharide compositions present in
the LPs were typical for pectic polysaccharides, which mainly consisted of Rha, Gal, and
Gal-A [35]. Moreover, the contents of monosaccharides of LP groups (MLP, TLP, and PLP)
were different from each other, which may be associated with the long-term action of
various external materials and microorganisms during fermentation.

Table 1. Monosaccharide composition of BP and LPs.

Monosaccharide
Composition/% Man-A Man Rha Glc-A Gal-A Glc Gal Ara Fuc

BP - 63.62 24.16 - 10.62 - 1.60 - -
MLP 0.93 1.53 5.39 4.91 47.16 - 28.59 3.18 8.31
TLP 0.05 3.64 10.04 2.66 42.49 5.71 30.57 1.04 3.00
PLP 0.66 2.00 4.96 5.47 56.34 1.41 14.40 1.35 13.41

HPLC analysis revealed that the molecular weight (MW) of BP (2.0 × 107 Da) was
higher than that of MLP (6.9 × 106 Da), TLP (4.7 × 106 Da), and PLP (5.6 × 106 Da).
However, minor differences were found among the LPs, indicating that fermentation
time may not be an important factor affecting the molecular weight distribution of LPs
(Figure S1).

3.2. SCFAs Production in the Vitro Fermentation

SCFAs are important metabolites that play a vital role in human health [36]. Figure 1
shows the content of SCFAs during the in vitro fermentation of the gut microbiota as
affected by different polysaccharides. As can be seen, the SCFAs were mainly composed of
acetic acid, propionic acid, butyric acid, isobutyric acid, and isovaleric acid, among which
acetic acid, propionic acid, and butyric acid were the most abundant, whereas isovaleric
acid was the least. Overall, the content of SCFAs increased along with the fermentation
time in a time-dependent manner. Compared with the NC group, the HC group exhibited a
significantly lower production of SCFAs; however, the groups treated with polysaccharides
showed higher levels of production. After 48 h of fermentation, the BP group produced
the most SCFAs, followed by the MLP, TLP, and PLP groups (Figure 1). These results
suggested that hyperlipidemia may inhibit the production of SCFAs in the gut, while the
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intervention with BP and LPs tended to stimulate SCFA production, especially for BP.
Many studies have indicated that SCFAs, especially acetic acid, propionic acid, and butyric
acid, can exert multiple bioactive functions and protect host health through promoting
weight loss, glycemic control, and anti-hyperlipidemia [37,38]. However, branch chain fatty
acids, including isobutyric acid and isovaleric acid, have been shown to alter the cellular
morphology of the gut and be detrimental to gut health [39,40]. In the present study, acetic
acid, propionic acid, and butyric acid were the major SCFAs in all groups. Furthermore,
the levels of isobutyric acid and isovaleric acid were very low, especially in the LP groups.
In this regard, BP and LPs can reverse the change in SCFAs caused by hyperlipidemia. This
result is in accordance with that of previous studies, in which Holothuria Leucospilota
polysaccharide was found to improve the levels of SCFAs to affect lipid metabolism and
then alleviate hyperlipidemia [19]. In addition, the content of acetic acid and propionic acid
had the same trend as that for the total SCFAs in the different groups (Figure S2), indicating
the promising response of these fatty acids to fermentation. However, minor changes in
the content of SCFAs in the MLP, TLP, and PLP groups were observed, indicating that
fermentation time had little effect on the production of SCFAs during fermentation. The
results obtained suggested the potential of BP and LPs to up-regulate the production of
SCFAs in patients with hyperlipidemia, which is beneficial for the health of the organism.
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Figure 1. The levels of SCFAs in different groups and time during in vitro culture. NC: the feces of
the healthy population were inoculated in FAM; HC: the feces of the hyperlipidemic people were
inoculated in FAM; BP, MLP, TLP, PLP: the feces of the hyperlipidemic people were inoculated in
FAMs with 0.5% of BP, MLP, TLP, and PLP. All experiments were repeated in triplicate (n = 3).

3.3. Changes of Gut Microbiota

Bacteria is a main factor that influences fermentation and related metabolites [41]. In
this study, the gut microbiota was analyzed after 48 h of fermentation according to our
previous study [24]. To identify the species of bacteria in the different groups, the relative
abundance of bacteria in different groups was compared at the genus level. As shown
in Figure 2A, Escherichia-Shigella was dominant in all groups, followed by Bacteroides,
except for the HC group. Significant changes in the HC group were observed as compared
with the NC group, mainly including a decreased abundance of Bacteroides and an in-
creased content of Fusobaterrium and Phascolarctobaterium species. With the treatments
of BP and LPs, the abundance of Bacteroides and Faecalibacterium increased compared
with that of the HC group, accompanied by the decrease in Fusobacterium and Phasco-
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larctobacterium species (Figure 2A), which was inconsistent with the literature [20,42].
Moreover, Bacteroides has been reported to contain bile salt hydrolases that metabolize
conjugated bile acids to unconjugated bile acids and thus act through the bile acid sig-
naling pathway [43]. Additionally, Fusobacterium promotes inflammatory responses and
colorectal carcinogenesis via its FadA adhesin [44]. Nevertheless, the MLP, TLP, and PLP
groups exhibited similar structures of their bacterial community without any marked
difference. These results indicated that the gut microbiota of people with hyperlipidemia
will have significant differences compared with those of healthy individuals, and that treat-
ment with BP and LPs may partially rectify the changes in the gut microbiota associated
with hyperlipidemia.
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Figure 2. Microbial changes in different groups after 48 h of fermentation in vitro. (A) The relative
abundance of the main taxa at the genus level. The beta diversity obtained using the (B) PCA analysis.
(C) Shannon index demonstrated the alpha diversity. Differences from the HC group were assessed
using Student’s t test and are denoted as follows: * p < 0.05, ** p < 0.01. NC: the feces of the healthy
population were inoculated in FAM; HC: the feces of the hyperlipidemic people were inoculated in
FAM; BP, MLP, TLP, PLP: the feces of the hyperlipidemic people were inoculated in FAMs with 0.5%
of BP, MLP, TLP, and PLP. All experiments were repeated in triplicate (n = 3).
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A principal component analysis (PCA) was conducted to compare the operational
taxonomic units (OTU) structure and community diversity of the gut microbiota in the five
groups (Figure 2B). The results exhibited three statistical clusters among the NC and HC
groups and the other four groups treated with BP and LPs, suggesting that hyperlipidemia
and further intervention by polysaccharides resulted in differences in the gut microbiota
during fermentation. In the PCA model, the plot explained 64.37 and 22.4% of variables
by PC1 and PC2, respectively, indicating that the profiles were credible. Furthermore, the
BP, MLP, TLP, and PLP groups showed a trend that was close to that of the NC group at
the PC1 level. These results illustrated a visible difference in gut flora between the healthy
population and the patients with hyperlipidemia, showing that the intervention with BP
and LPs could reverse the changes in the gut microbiota of the hyperlipidemia group to
bring them in line with the healthy population.

Diversity of the gut microbiota is another key factor that is related to gut health and
lipid metabolism. The Shannon index is an important parameter used for estimating species
diversity [45]. In this study, the Shannon index was used to estimate the bacteria diversity
difference among the six groups. As shown in Figure 2C, the Shannon index of the NC,
BP, MLP, TLP, and PLP groups was significantly higher compared with that of the HC
group, indicating the suppression of bacteria diversity by hyperlipidemia. Previous studies
have demonstrated that more diverse bacteria flora tend to exist in the healthy population,
whereas low bacterial diversity is more likely to be found in patients with dyslipidemia [45].
Hence, treatment with BP and LPs could reverse the diversity of gut bacteria, which is
inhibited by hyperlipidemia, and exert beneficial effects on regulating dyslipidemia.

To identify the specific bacterial phylotypes that responded differently to the six
groups, LEfSe analysis was applied with 4 used as a threshold value for the LDA score
(Figure S3). The LDA score indicated that Bacteroidetes (Bacteroides) were the most
differentially abundant bacteria in the TLP and PLP groups. Previous studies have shown
that Bacteroidetes could use thousands of enzyme combinations to break down glycans
and produce SCFAs [46,47]. In the BP and MLP groups, Faecalibacterium and Megamonas
were the most abundant, respectively (LDA score > 4), and they could produce butyric acid
and acetic acid, which are beneficial to health [48,49]. The results shown above illuminated
the possible reason for the high content of SCFAs seen in the BP and LJP groups.

Different bacteria have different effects on the human body. To further investigate the
effect of BP and LPs on the regulation of fecal microbiota in the hyperlipidemic population,
we filtrated special bacteria according to the following principle: the contents of these were
low/high in the HC group compared with the NC group, while they increased/decreased
after the intervention with BP and/or LPs. In this regard, four widely studied species of
bacteria (Parabacteroides, Bifidobacterium, Flavonifractor, and Odoribacter) were chosen
for further analysis. As shown in Figure 3, significantly lower contents of all four species
were observed in HC group as compared with the NC group, indicating the suppression of
these bacteria by hyperlipidemia. However, intervention with BP or LPs could up-regulate
their level to varying degrees. For example, BP significantly increased the contents of
Bifidobacterium and Odoribacter, which produce short-chain fatty acids and regulate the
immune response to maintain colonic health, prevent hypertension, and regulate blood
glucose [50,51]. MLP and TLP could markedly enhance the level of Parabacteroides, which
plays a positive role in dozens of diseases, such as inflammation and obesity [52]. The
treatment with PLP resulted in a very high level of Flavonifractor, which is a butyric acid-
producing bacteria that plays a beneficial role in health to some extent [53]. The above
results demonstrate that the growth of certain bacteria which have potential health benefits
was inhibited in the hyperlipidemia group, while the intervention with BP or LPs tended
to reverse this inhibition. Moreover, BPs and LPs had different target bacteria, which is
probably due to the diverse structures of BPs and LPs. The bacteria used different degrees
of polysaccharides, which caused different levels of growth of bacteria.
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in vitro. Differences in the HC group were assessed using Student’s t test and are denoted as follows:
* p < 0.05, ** p < 0.01. NC: the feces of the healthy population were inoculated in FAM; HC: the feces
of hyperlipidemic people were inoculated in FAM; BP, MLP, TLP, PLP: the feces of hyperlipidemic
people were inoculated in FAMs with 0.5% of BP, MLP, TLP, and PLP. All experiments were repeated
in triplicate (n = 3).

3.4. Analysis of Metabonomics

To understand the beneficial effects of polysaccharides from the perspective of
metabolism, untargeted metabolomics was used to analyze the fecal metabolome. PCA
profiles provided an overall view of the metabolic differences among the different groups
(Figure S4). The profiles of subjects in the MLP, TLP, and PLP groups were extremely similar,
indicating that their metabolite profiles were similar. As for the NC, HC, and BP groups, the
PCA plots showed obvious differences. It can be seen that the metabolites of individuals
with hyperlipidemia are obviously different from those of the healthy population, and the
intervention with BP and LPs altered the flora metabolism of the hyperlipidemia group.

By filtering with a specific range of fold change values and p values (fold change of
<0.5 or >2 and p value < 0.05), collections of metabolites with significant responses to the
different mediums were obtained (Figure S5). Compared with the NC group, a total of
91 metabolites were significantly down-regulated and 79 metabolites were up-regulated in
the HC group. The intervention with BP and LJPs regulated the production of metabolites
to varying degrees. Among the significantly changed metabolites, six core metabolites were
chosen for further analysis according to the same principle of the filtering of special bacteria
(Figure 4). Compared with the NC group, significantly lower contents of 4,7-Dihydro-
5-(4-methyl-3-pentenyl)-1,2,3-trithiepin and N-Acetyl-L-glutamate 5-semialdehyde and
higher contents of DL-2-hydroxy stearic acid, 2Z-octadecenoic acid, 3R-hydroxy-eicosanoic
acid, and 2-hydroxyhexadecanoic acid were observed in the HC group. Among these
metabolites, N-Acetyl-L-glutamate 5-semialdehyde is a type of glutamate that can reduce
oxidative stress and protect the intestinal function [54]. However, DL-2-hydroxy stearic
acid, 2Z-octadecenoic acid, 3R-hydroxy-eicosanoic acid, and 2-hydroxyhexadecanoic acid
are long-chain fatty acids (LCFAs) which have been reported to exert harmful effects,
including accelerating the formation of fatty liver and obesity [55,56]. In this regard,
hyperlipidemia tended to suppress the production of beneficial metabolites but, conversely,
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promoted the generation of harmful metabolites. Interestingly, the treatment with BP and
LPs reversed the trends in metabolite production influenced by hyperlipidemia, regulating
the metabolism of hyperlipidemic flora towards health.
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were repeated triply (n = 3).

The results of the differential metabolic pathways analysis of the NC and HC groups
at 48 h are shown in Figure 5. Tyrosine metabolism, tryptophan metabolism, and steroid
hormone biosynthesis showed significant differences among the two groups (p < 0.05).
Additionally, these were the main metabolic pathways that distinguishes individuals with
hyperlipidemia from healthy people and might be related to the formation of hyperlipemia.
After treatment with polysaccharides, the three metabolic pathways showed almost no dif-
ference compared with that of the NC group (Table 2). That means that the differences in the
metabolic pathways caused by hyperlipidemia could be reversed through the intervention
with polysaccharides.

Table 2. Significant differences analysis of three metabolic pathways between the NC group and the
other five groups.

p Value Tyrosine
Metabolism

Tryptophan
Metabolism

Steroid Hormone
Biosynthesis

HC 0.0002 0.0213 0.0328
BP 0.0108 0.1390 0.5402

MLP 0.0179 0.0220 0.9998
TLP 0.0922 0.2837 0.9953
PLP 0.1719 0.2156 0.9852
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3.5. Correlation Analysis among SCFAs, Differential Metabolites, and Gut Microbiota

Figure 6 showed the correlation among intestinal microbiota, SCFAs, and special
metabolites. Parabacteroides, Fusobacterium, Phascolarctobacterium, Ruminococcus_
torques_group, Ruminococcaceae_UCG.003, and Cloacibacillus showed a negative correla-
tion with acetic acid, propionic acid, and butyric acid, while showing a positive correlation
with isobutyric acid, isovalerate acid, and valerate acid. Bacteroides, Faecalibacterium, Sub-
doligranulum, Enterococcus, Klebsiella, and Prevotella_9 were found to have an obvious
active effect on the production of acetic acid, propionic acid, and butyric acid, whereas they
had an adverse effect on the production of isobutyric acid, isovalerate acid, and valerate
acid. Thereof, Faecalibacterium had the strongest correlation with the production of acetic
acid, propionic acid, and butyric acid, and its content was the highest in the six groups,
which could explain the reason for the high rate of accumulation of SCFAs after 48 h of
fermentation in the BP group.

Foods 2022, 11, x FOR PEER REVIEW 12 of 16 
 

 

Table 2. Significant differences analysis of three metabolic pathways between the NC group and the 
other five groups. 

p Value 
Tyrosine Metabo-

lism Tryptophan Metabolism 
Steroid Hormone Biosyn-

thesis 
HC 0.0002 0.0213 0.0328 
BP 0.0108 0.1390 0.5402 

MLP 0.0179 0.0220 0.9998 
TLP 0.0922 0.2837 0.9953 
PLP 0.1719 0.2156 0.9852 

3.5. Correlation Analysis among SCFAs, Differential Metabolites, and Gut Microbiota 
Figure 6 showed the correlation among intestinal microbiota, SCFAs, and special me-

tabolites. Parabacteroides, Fusobacterium, Phascolarctobacterium, Ruminococcus_tor-
ques_group, Ruminococcaceae_UCG.003, and Cloacibacillus showed a negative correla-
tion with acetic acid, propionic acid, and butyric acid, while showing a positive correlation 
with isobutyric acid, isovalerate acid, and valerate acid. Bacteroides, Faecalibacterium, 
Subdoligranulum, Enterococcus, Klebsiella, and Prevotella_9 were found to have an ob-
vious active effect on the production of acetic acid, propionic acid, and butyric acid, 
whereas they had an adverse effect on the production of isobutyric acid, isovalerate acid, 
and valerate acid. Thereof, Faecalibacterium had the strongest correlation with the pro-
duction of acetic acid, propionic acid, and butyric acid, and its content was the highest in 
the six groups, which could explain the reason for the high rate of accumulation of SCFAs 
after 48 h of fermentation in the BP group.  

 
Figure 6. Correlation among gut microbiota, SCFAs, and differential metabolites (the color of dots 
signifies different categories, where the orange dot represents the microbiota, the green dot repre-
sents SCFAs, and the yellow dot represents metabolites). 

Moreover, it was worth noting that 4,7-Dihydro-5-(4-methyl-3-pentenyl)-1,2,3-trith-
iepin showed a strong positive correlation with Bacteroides and Prevotella_9 and showed 
a negative correlation with Ruminococcaceae_UCG.003 and Cloacibacillus. N-Acetyl-L-
glutamate 5-semialdehyde exhibited a strong positive association with Parabacteroides. 

Figure 6. Correlation among gut microbiota, SCFAs, and differential metabolites (the color of dots
signifies different categories, where the orange dot represents the microbiota, the green dot represents
SCFAs, and the yellow dot represents metabolites).



Foods 2022, 11, 2039 12 of 15

Moreover, it was worth noting that 4,7-Dihydro-5-(4-methyl-3-pentenyl)-1,2,3-trithiepin
showed a strong positive correlation with Bacteroides and Prevotella_9 and showed a nega-
tive correlation with Ruminococcaceae_UCG.003 and Cloacibacillus. N-Acetyl-L-glutamate
5-semialdehyde exhibited a strong positive association with Parabacteroides. Astonishingly,
Parabacteroides demonstrated a powerful negative correlation with four LCFAs, and it might
be a bacterium that deserves our attention in subsequent research.

4. Conclusions

In summary, the gut microbiota and its metabolites were significantly different in the
healthy individuals and those with hyperlipidemia after 48 h of fermentation in vitro, and
the treatment with BPs and LPs for hyperlipidemia could change the gut microbiota and
metabolites. The content of SCFAs was lower in the hyperlipidemia group compared with
the healthy group and showed a significant improvement after BP and LP intervention.
Specially, only LPs could decrease the content of isobutyric acid and isovaleric acid, which
are detrimental to gut health.

The PCA analysis of the structure of the bacterial community indicated the presence
of remarkable differences between healthy individuals and those with hyperlipidemia. BPs
and LPs affected the bacterial community of the group with hyperlipidemia and brought
it closer to that of the healthy group. The metabolomics analysis demonstrated that the
metabolites filtered from the healthy individuals and those with hyperlipidemia were
extremely different. The levels of 4,7-Dihydro-5-(4-methyl-3-pentenyl)-1,2,3-trithiepin and
N-Acetyl-L-glutamate 5-semialdehyde were lower in the hyperlipidemia group than in the
healthy group. Four kinds of LCFAs, DL-2-hydroxy stearic acid, 2Z-octadecenoic acid, 3R-
hydroxy-eicosanoic acid, and 2-hydroxyhexadecanoic acid, were found in significantly high
quantities in the hyperlipidemia group. The levels of six core metabolites were altered and
tended to improve health during the intervention with BP and LPs. Correlation analysis
revealed that Faecalibacterium might be the reason for the high levels of SCFAs seen in
the BP and LPs groups, and Parabacteroides could downgrade the production of LCFAs.
Thus, a comprehensive analysis of colony structure and metabolomics showed that BP
and LPs may affect the production of SCFAs and metabolites by changing the structure of
the gut microbiota, leading to an improvement in intestinal health for the hyperlipidemia
group. However, the specific mechanism by which lipids are regulated by BP and LPs is
still unclear and needs to be verified by subsequent animal experiments.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/foods11142039/s1, Figure S1: Peak time diagram of BP and LPs.
Figure S2: The levels of acetic, propionic acid, and butyric acid in different mediums and at different
times during in vitro fermentation. Figure S3: Characterization of microbiomes in six groups by LEfSe
analysis and LDA. (A) Taxonomic representation of statistically and biologically consistent differences
in six groups. (B) Histogram shows the LDA scores (log10) identified for the size of differentiation
between different groups with a threshold value of 4. Figure S4: Analysis of PCA differences in
metabolomics after fermentation until 48 h. Figure S5. Volcano plot enabling the visualization of
differential metabolites between different groups. (A) HC vs. NC. (B) BP vs. HC. (C) MLP vs. HC.
(D) TLP vs. HC. (E) PLP vs. HC.
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