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ABSTRACT: A limitation of traditional molecular dynamics
(MD) is that reaction rates are difficult to compute. This is due
to the rarity of observing transitions between metastable states
since high energy barriers trap the system in these states.
Recently the weighted ensemble (WE) family of methods have
emerged which can flexibly and efficiently sample conforma-
tional space without being trapped and allow calculation of
unbiased rates. However, while WE can sample correctly and
efficiently, a scalable implementation applicable to interesting
biomolecular systems is not available. We provide here a GPLv2
implementation called AWE-WQ of a WE algorithm using the
master/worker distributed computing WorkQueue (WQ) framework. AWE-WQ is scalable to thousands of nodes and supports
dynamic allocation of computer resources, heterogeneous resource usage (such as central processing units (CPU) and graphical
processing units (GPUs) concurrently), seamless heterogeneous cluster usage (i.e., campus grids and cloud providers), and
support for arbitrary MD codes such as GROMACS, while ensuring that all statistics are unbiased. We applied AWE-WQ to a 34
residue protein which simulated 1.5 ms over 8 months with peak aggregate performance of 1000 ns/h. Comparison was done
with a 200 μs simulation collected on a GPU over a similar timespan. The folding and unfolded rates were of comparable
accuracy.

■ INTRODUCTION

Proteins are complex molecules of fundamental importance in
biological processes. Numerical simulation using molecular
dynamics (MD) has proven to be a powerful tool to predict
many important properties such as the native state of the
protein or its free energy.1,2 In this paper, we will focus on
methods, based on MD, to calculate reaction rates, which are
defined as transition rate between metastable states or
conformations of the protein. As a byproduct of our analysis,
we will also calculate the main mechanisms of the reaction, i.e.,
the transition pathways. For example, a cartoon model of the
free energy for a biomolecule is shown in Figure 1. It illustrates
schematically how MD trajectories explore the conformational
space. The left region represents the reactant states (R), and
the right the product states (P). Trajectories spend most of
their time in R or P with infrequent transitions due to the
energy barrier that separates the two states.
In 1977 McCammon et al. applied MD to the bovine

pancreatic trypsin inhibitor (BPTI).3 While the system was
simple (vacuum with a crude force field), the simulation
nonetheless contributed to shifting the view of proteins as rigid
“brass models.” Since this initial simulation, MD has been used
to study a wide variety of topics, such as identification of
integral motions such as hinge bending modes,4 tRNA
flexibility,5 and the study of E. coli chaperone GroEL.6 The

application of MD to larger and more complicated molecules
impacts development of force-field parameters such as the
CHARMM7,8 and AMBER families,9 and solvent models
(generaly categorized as implicit10 or explicitly defined11−13).
Recently, MD has been used to study an HIV capsid14 and a
complete satellite tobacco mosaic virus,15 as well as screening
designed proteins.16
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Figure 1. Molecular dynamics sampling of a one-dimensional free-
energy surface between reactant (R) and product (P) states. By
periodically recording the molecular conformation, energy, and other
observables, various relevant properties of the protein can be
computed.
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MD simulation of protein is a notoriously difficult computa-
tional task. In fact, a large portion of the major supercomputers’
time is currently dedicated to this type of simulation. The main
difficulty is that the time scales of interest are typically in the
millisecond (10−3 s) while a typical time step in MD is on the
order of the femtosecond (10−15 s). Therefore, a brute force
simulation would require on the order of 1000 billion time
steps, which is impractical given the current hardware.
High-performance computing infrastructures allow develop-

ment of efficient parallel algorithms to speed up simula-
tions.17−19 Specialized hardware, such as MDGRAPE20,21 and
Anton,22,23 provide orders-of-magnitude speedup over tradi-
tional high-power computing (HPC) simulations. Similarly,
work with graphical processing units (GPUs) have shown the
that GPUs achieved greater performance over a single cntral
processing unit (CPU),24−27 allowing a single GPU to simulate
biological systems with comparable performance to a
cluster.27,28

Most approaches to date attempted to accelerate a single (or
a few) very long simulations. Due to the sequential nature of
MD simulations, this is clearly a challenging task, which limited
scalability. Force-calculations are a major bottleneck for MD. As
such, much work has gone into the development of fast and
efficient algorithms to dedicate large resources to long
simulations of molecules. For instance, NAMD and AMBER
were among the first to achieve scaling to hundreds of nodes
and microsecond-time scales using parallel implementa-
tions.29,30 Improvements to constraint algorithms,31,32 particle
interactions,33−35 and memory access patterns17,36 have
resulted in significant performance improvements over the
decades.
At the other end, a recent class of methods is attempting to

predict equilibrium properties, such as free energy, reaction rate
and reaction pathways, from a large number of short
trajectories. Since the trajectories are largely independent, this
approach is naturally scalable. In fact, in this paper, we will
demonstrate large-scale simulations using parallel computer
grids, showing that scalability and performance can be achieved
even on slow networks or when using geographically remote
compute nodes.
This class of approaches have been applied with great success

by several groups, using a method called the Markov state
model (MSM).37−40 This method partitions the conformational
space into cells or states. Then a stochastic transition matrix is
computed. The entry (i ,j) in the matrix stores the probability
of a trajectory to go from cell i to cell j after some lag time τ.
From the eigenvalues, eigenvectors, and other properties of the
matrix, we can extract all relevant time scales and kinetics of
interest.
This type of approach requires running a large number of

trajectories of length τ and as such is easily parallelizable. The
accuracy of this method is independent of the presence of
energy barriers or of the metastability of regions in conforma-
tional space. Instead it relies on efficient local sampling to
predict time scales that can be orders of magnitude longer than
the aggregate simulation time.
One limitation of MSM is that its accuracy depends on the

choice of τ. In fact, getting converged rates is very difficult. At
short lag times τ, a significant bias is present in the prediction,
that is even in the presence of infinite sampling the predicted
rate is incorrect. This can be addressed by increasing the lag
time but this has two limitations. First, this leads to an increase
in required simulation time. Second, this typically leads to a

larger variance. In practice, it is difficult to obtain converged
results with respect to the lag time and sampling size.
Once a MSM has been computed, one can obtain the

implicit time scales from the diagonalization of the stochastic
transition matrix. These implicit time scales are highly sensitive
to the time lag, or the time between samples used to construct
the transition matrix: at short time lags implicit time scales have
a bias that makes them appear much faster than they really are.
At large time lags the statistical error dominates, and it is hard
to find a compromise that balances these two errors.
In this paper, we considered a variant method, called the

weighted ensemble (WE) approach which has a higher
computational cost but convergence is more robust and easier
to monitor.41−43 WE also avoids the systematic biases found in
MSM.44 The WE method was introduced by Huber and Kim41

to address the problem of capturing infrequent reaction events
under Brownian dyanamics. Further studies have applied it to
simulated annealing (SI) obtaining higher success rate (order of
magnitude) for finding the global optimum as compared to
traditional SI,45 as well as in the investigation of super oxide
dismutase and monoclonal antibody NC6.8. Zuckerman et al.
have extended WE and describe several key properties:46 (i)
WE produces unbiased results for both Markovian and non-
Markovian dynamics, indicating that the method is much more
general than previously understood and (ii) the method
depends on the number of cells, which may be updated
dynamically, allowing the system to discover unknown cells
without loss of accuracy in the calculation of reaction rates.
Applications of WE to toy models and alanine dipeptid1e,42

coarse-grained models of adenylate cyclase,43 and the sodium
symport Mhp2 transporter protein47 have yielded promising
results.
In WE a large number of parallel walkers (MD trajectories)

are used. Later, we will explain in more details the algorithm,
but the basic process is to start a large number of trajectories
from regions in a partitioning of the free-energy surface. After a
small number of MD integration steps we consider the
population of walkers in each cell. Then, using a statistically
unbiased procedure, we are able to either remove walkers from
overpopulated cells or, on the contrary, repopulate cells that are
becoming depleted. This is done through an appropriate
subselection (killing walkers) or duplication process. This
ensures that when the simulation restarts the number of walkers
in each cell is the same, and is equal to some target number.
Then, we resume the simulation and integrate forward in time
each walker using MD. This process is repeated until the
quantities of interest, such as the reaction rates, which are
computed through an appropriate postprocessing procedure,
are converged.
This method avoids the slow time scales found in MD by

ensuring that all cells are equally populated. This means for
example that regions near the transition barrier between two
metastable regions are sampled as often as minimum free
energy basins. This method can be interpreted as a way of
enhancing the sampling of conformational space. We note that
its efficiency still depends on an appropriate choice of macro-
states or cells, although the fact that these cells form a simple
partition and can be constructed in a variety of ways (e.g., they
can be simple Voronoi cells) gives a lot of flexibility to the
method. Some of the advantages of WE is that it is easy to
setup, is inherently massively parallel and scalable, and is
unbiased. For example, unlike MSM, WE is guaranteed to
converge to the exact result with enough samples.

Journal of Chemical Information and Modeling Article

dx.doi.org/10.1021/ci500321g | J. Chem. Inf. Model. 2014, 54, 3033−30433034



Notwithstanding these properties, AWE, like MSM and other
related methods, remains computationally expensive due to the
large number of walkers that need to be run. This paper will
present a software infrastructure we developed to facilitate
running such calculations with accelerated convergence. This is
achieved by an appropriate selection of the initial conditions as
described in43,44 hence the method is known as accelerated
weighted ensemble (AWE), an extension of WE where the
initial weights have been approximated to the steady state
weights to accelerate the convergence. We compute them from
a transition matrix obtained from the simulation, based on cells
as they come from clustering, perhaps using MSMBuilder.
AWE also uses a simpler and more accurate method for
resampling and generating new walker populations through
splitting and merging of walkers.44

AWE allows one to eliminate the bias introduced in MSM by
generating the statistically exact distribution of walkers inside
each cell. MSM uses the equilibrium distribution for the walkers
in each cell, which causes a bias. Instead, AWE uses an out-of-
equilibrium distribution corresponding to walkers flowing from
reactants to product states (e.g., folding/unfolding) and vice
versa, thereby producing exact statistics.44

We focused on the following main goals when designing the
software:

1. Allow using any MD code in a black-box manner,
without having to make intrusive changes inside the
code. This is important since many MD codes are
available and people are often required to use a particular
MD code because of some special required capability.
For instance, the following MD codes are usable with our
framework: AMBER,48 CHARMM,49 GROMACS,17,50

LAMMPS,51 NAMD,18 MDynaMix,52 Orac,53,54 GRO-
MOS,55 Tinker,56 Desmond,57 DL_POLY.58

2. Dynamically scale to available resources as they are
added and removed as availability or funding allows and
robustly handle resource failure. Details are discussed
later, but the main idea is to support, for example,
starting AWE using a dedicated cluster locally then
adding cloud infrustructure such as Amazon EC2.

3. Use a scripting language for quick prototyping,
interactive simulations, and user-friendly codes. We
based our software on Python for this purpose. The
use of this simple scripting interface also means that it is
not difficult to reuse our framework for other methods
that require running a large number of short trajectories
with some appropriate postprocessing, e.g., MSM and
other related methods.

In this paper, we present a distributed computing
implementation of AWE, based on WorkQueue (WQ), that
is capable of using computing resources with different
architectural properties (e.g., GPU, CPU), as well as different
job execution semantics such as dedicated (HPC grid) or cycle-
scavenging (Condor) resources. At peak performance, for our
validation, AWE-WQ simulated an aggregate 1.5 ms, with a
peak performance of 1000 ns/h, showing that a large amount of
resources can be efficiently managed by the system.
Similar software packages include the Copernicus framework

developed by Pronk et al.,59 Adaptive Markov State Models
(adaptive MSMs) by Bowman et al.,60 and the Weighted
Ensemble Simulation Toolkit with Parallelization and Analysis
(WESTPA) developed by Zwier et al.61 Copernicus is a
framework for running ensemble molecular dynamics that

allows multiple resources to be used, supports multiple project
types, and adaptive sampling. Adaptive MSMs iteratively build
MSM models to determine the contribution of each state to the
slowest kinetic process. Based on this information further
simulations are run from states based proportionally to their
contribution to the uncertainty. WESTPA is a software
framework for running WE simulations. Currently under
development by Lillian Chong and Dan Zuckermann, WEST-
PA has been used to study several systems, such as molecular
association62 and the sodium symporter Mhp1.47

The fault-tolerance model, intelligent task scheduling, and
caching distinguish AWE-WQ. These features allow the
program to dynamically handle resource addition and removal,
automatically handle worker failures, recover from machine
failures, support clusters of heterogeneous computers, and
minimize data transfer.
We first describe the algorithm, design challenges, and

implementation in the Design and Implementation section and
provide a brief overview of usage. Second, in the Results
section, we demonstrate that AWE-WQ meets the criteria
described in the Design and Implementation section as well as
provide a validation of the implementation on a nontrivial
protein. Finally, we provide public access to the software and
the data sets used for the results as well as describe the current
limitations and future directions in Availability and Future
Directions section.

■ DESIGN AND IMPLEMENTATION

Accelerated Weighted Ensemble Algorithm. The WE
approach proceeds as follows and illustrated in Figure 2.

1. Partition state-space into C cells.
2. Determine W number of simulations (walkers) to

maintain in each cell.
3. Parallel step (walk): run the N = W × C short

simulations, assign each of the N final conformations to
a cell.

4. Synchronization barrier (resample): once all the N
simulations are assigned, merge and split the walkers to
maintain W walkers in each cell and update the
associated weights.

5. Go to step 3 unless weights converged.

The splitting and merging technique17 used in AWE
generally works as follows. Given a population of walkers

Figure 2. Illustration of WE algorithm. Each region represents a cell
on the energy surface, the circles the walking simulations, the colors
the association with the reactant (R) or product (P) regions.
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with weights wi, we first calculate a mean weight Wm = Σi(wi/
ntargetwalkers), where ntargetwalkers is the desired number of
walkers that we are trying to achieve. Then, if a walker has a
weight greater than Wm, it is split into an integer number of
walkers of weight Wm, with a remainder that is reinserted into
the list of walkers to process. Walkers that have a weight less
thanWm are merged in a statistically exact way to create walkers
with a weight greater or equal to Wm. By repeating this process
of splitting and merging walkers, we are able to generate a
population of walkers with weights exactly equal to Wm, in a
statistically exact manner. This is different from the procedure
in the work of Huber and Kim41 that generates walkers with
weights between Wm/2 and 2Wm but not exactly equal to the
target weight Wm.
The choice of method for defining cells is orthogonal to WE.

As long as a cell definition exists, in cells.dat currently, AWE-
WQ is able to use it. This allows one to define cells arbitrarily
to examine the effect of a cell definition method. We based the
cells on the MSM construction in order to accelerate the
convergence of cell weights. As explained previously, the main
reason to use WE is to remove the bias present in MSM models
due to the lag time and the (incorrect) distribution of walkers
inside each cell.
Upon reaching steady-state the weight of each cell converges

to its probability, allowing this procedure to calculate free
energy. The resampling procedure allows even low-probability
cells to be accurately sampled.
Calculation of transition rates requires a further modification:

Define two sets of states, R and P, associated with the reactant
and product regions (Figure 2). Each walker is assigned a color,
such as blue for R and red for P, corresponding to the
previously visited region. At each step in the simulation
whenever a blue walker enters P, its color changes to red, and
vice versa. The rate from R to P is then directly obtained by
computing the flux of blue particles that change color, and
similarly for the P to R rate. If extended to multiple colors and
sets multiple kinetic rates can be determined. In practical terms,
the R and P regions may correspond to the unfolded and
folding regions and the fluxes to the folding and unfolding rates.
By providing an initial approximation of the free energy the
convergence to steady state can be accelerated.
From an implementation standpoint, the method requires

the following three steps (as illustrated in Figure 3): (1) Most

of the work is done in parallel as a large number of independent
short MD trajectories. (2) The parallel barrier: wait for all MD
steps to complete then collect walker assignments and final
positions, split and merge walkers, and update weights. (3) Go
to step 1 if needed.

Usage. In order to use AWE-WQ one must define the cells
from which to run the walkers. The general protocol, illustrated
in Figure 4, is as follows: (1) sample the search space, (2)
determine cell definitions, (3) prepare input files, (4) run
AWE-WQ, (5) monitor progress.

Sampling. First some sampling must be done to explore
state space. This can be accomplished with programs such as
GROMACS, CHARMM, AMBER, NAMD, or using infra-
structure such as Folding@home. For this instance, sampling of
alanine dipeptide has been run previously, which can be
extracted:

Determine Cell Definitions. To start, we have collected
MD data and stored them in the XTC directory. The directory
structure is XTC/RUN#/frame0.xtc, where # is the
trajectory number. The sampling data is imported into
MSMBuilder using the ConvertDataToHDF.py command,
paramterized with a PDB file containing the system coordinates
and the path to the MD data:

The next step defines the cells. Conformations are clustered
with a hybrid k-centers/k-medoids algorithm using the RMSD
between atoms as the distance metric. The AtomIndices.dat
defines the atoms to consider when computing the distance
between conformations. Using a subset (such as all non-
hydrogens) prevents too fine a granularity from overfitting the
data. Finally, we will cluster the data into 100 groups.

By inspecting the implied time scales (not shown) we build a
Markov state model at lagtime 10.

AWE-WQ Input Preparation. Extract a given number of
conformations from each of the cells defined above
(SaveStructures.py) and import the cell definitions from
MSMBuilder format to AWE-WQ format (awe-import-gens)
and setup the initial files for the AWE-WQ run (awe-prepare).
Regions of metastable states need to then be determined, which
are ultimately given as a list of the cells belonging to each
region (e.g., “folded” and “unfolded”) and scripts are given to
do so using RMSD to a reference structure (awe-calc-gens-
rmsd, awe-define-regions). We plan to maintain 10 simulations
in the cells, so we need to extract conformations from the states
using MSMBuilder.

In order to run AWE-WQ we must then import the cell
definitions which were written by MSMBuilder to Gens.lh5.

Figure 3. AWE-WQ flowchart of the major steps. On startup molecule
conformations are loaded into the walker datastructures. Each walker
is then, in parallel, executed and assigned to a cell. The join waits for
all walkers to finish, before the resample procedure is applied. If the
system has converged then the program halts, others walkers are rerun.
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In order to compute the fluxes we need specify regions of
metastable states. AWE-WQ provides some commands to assist
with this process: awe-calc-gens-rmsd and awe-
define-regions. We use awe-calc-gens-rmsd to
compute the RMSD of each cell to some reference
conformation such as the native state.

By plotting the distribution of values we can classify
conformations with RMSD ≤ 2.3 Å as folded and those with
RMSD ≥ 2.5 Å as unfolded. The two output files folded.dat and
unfolded.dat now contain the integer indices of the states
belonging to these regions.

We can now prepare for AWE-WQ by checking depend-
encies and populating the directory with other necessary files by
running awe-prepare.
Running AWE-WQ. There are two components to consider

when running AWE-WQ: the master process and the resources.
The master is the driver of the algorithm, managing task

definitions, scheduling, processing, and the resampling
procedure. In order to run the walkers, resources must be
allocated.

Master. Start the AWE-WQ process on a machine. This
process loads the initial conformations (walkers) for each cell,
and is in charge of scheduling each task, processing the result,
and the resampling procedure. This runs AWE-WQ maintain-
ing 10 walkers in 100 cells, whose definition is provided in
cells.dat with initial weights in Data/Popula-
tions.dat. The coordinates for the walkers are found in
the Walkers directory. The metastable regions are provided in
folded.dat and unfolded.dat as a list of cell id
numbers belonging to each region. Finally, we give a name to
the master (“awe-wq”) to that workers can easily locate the
host and port.

Workers. Resources can be allocated either directly using
work_queue_worker or managed automatically using
work_queue_pool. Using work_queue_worker also
allows the worker to operate as a “Foreman”, enabling the
hierarchical distribution of tasks. The work_queue_pool

Figure 4. Diagram of the workflow to run AWE-WQ with associated programs and descriptions. First a sampling must be run with some MD
software such as GROMACS, CHARMM, AMBER, etc. Next, define the cells using some clustering procedure. In this case, the MSMBuilder
package provides some infrastructure. Prepare the input to AWE-WQ by converting the files and defining metastable states. Run AWE-WQ by
starting the master process and allocating workers with various resources. Finally, continuously monitor the status and progress of AWE-WQ.
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program maintains workers for the master based on need and is
in charge of submission to various backends such as the local
machine, Condor, SGE, PBS, etc. Since the master has started
we can start some workers locally.

Monitoring AWE Progress. Use work_queue_sta-
tus to get the current resources runtime status (number of
workers, number of tasks waiting/completed, etc.). By using
awe-plot-wq-stats the plot of the resource usage over
the runtime of the program can be obtained.
Additionally, the current status of the master, such as workers

busy and tasks complete can be viewed using the work_-
queue_status command.

The awe-flux command allows the convergence of the
calculated flux to be monitored. Once convergence within a
determined threshold is obtained the program may be halted.
Additionally, other analyses are appropriate. For instance, the

energy surface for alanine dipeptide can be visualized as a
function of its dihedral angles. As such, we can plot, as shown in
Figure 5, the cell coordinates and the initial estimation of the
weights as well as computed weights after several iterations of
AWE-WQ.
Design and Implementation. Since the AWE method

follows a pattern of fan-out followed by fan-in we implement
using a master/worker paradigm. AWE-WQ is designed to (1)
support off-the-shelf MD backend software, (2) dynamically
scale according to resource availability, (3) support heteroge-
neous runtime environments, and (4) be robust in the face of
system failure. Application of AWE to a nontrivial biological
system may have on the order of 10 000 simulations per
iteration. On one CPU, if each walker requires 30 min to
simulate, 7 months would be required to run a single iteration
of AWE. Since walkers are short, assuming 30 min per walker, 7
months would be required to run 10 000 walkers for each AWE
iteration using a single processor. With 1000 CPUs, the
expected time drops to 5 h, assuming uniform performance.
Additionally, the synchronization barrier allows straggling
workers to slow down the entire application. Since we expect
to need hundreds of iterations to converge, the challenge is to
implement AWE such that it scales to 1000+ processors and
can be sustained for months with no major slowdown due to
stragglers.

Support of à la Carte MD Software. Rather than
reimplement the core MD algorithms which are present in
multiple software packages (i.e., GROMACS, AMBER,
CHARMM, etc.) we decided to provide flexibility of MD
backend. This flexibility presented several challenges by
imposing a requirement of specifying the steps needed to run
the backend, the transfer of files, the execution environment,
and the interaction with the other steps of the procedure. The
approach taken in the following: a walker is described as a task
which consists of a program to run and the input and output
files. Once specified, this task is scheduled to run on an
available worker, which is a process that accepts any input files,
executes the task’s command, and returns the results upon
request.
We used GROMACS 4.5 for the MD backend. The awe-

prepare script sets up files and scripts in the local directory
necessary to run awe-wq. One of these scripts, execute-
task.sh, executes the commands on the worker. In order to
use a different MD backend execute-task.sh needs to
define how to run the MD, and awe-wq needs to specify the
files to send to the worker.

Dynamically Using Available Resources. Our solution
to the worker fault-tolerance problem implies the elasticity
the ability to dynamically scale to available resourcesof the
program. If a task fails during execution, it is rescheduled to run
on the next available worker. As resources are added or
removed, tasks are started or reschedule, respectively. This
allows a project to be started with the campus cluster, then EC2
machines run until budget exhaustion, then continued with
only the cluster. Managing the resource pools are the
interactions between the master, the Catalog Server (CS),
and WorkQueue Pool (WQP) processes. The CS allows
workers to dynamically determine the location of the master by
mapping a project name (e.g., awe-wq) to a hostname and
port (e.g., fah.crc.nd.edu:1024). The master registers
this information when started, which allows it to be restarted in
the event of machine failure without requiring the resources to
be reallocated. In addition, the CS store information about the
current resource requirements of a master, such as the number
of tasks waiting to be scheduled. A WQP can thus use this
information to automatically start workers based on the
runtime needs. This is further enabled by the asynchronous
model, which treats tasks as independent, arbitrarily executable
entities. This would not have been possible using an MPI-based
implementation.

Heterogeneous Runtime Environments. Additionally,
AWE-WQ can use heterogeneous resources, allowing systems
with different properties and (potentially) operational seman-
tics to be used. For instance, this supports using GPU-based as

Figure 5. Cell weights before and after running AWE-WQ.
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well as CPU-based MD backend codes. This is accomplished by
extending the task abstraction to dynamically resolve file
location upon worker connection rather than statically. For
example, an input file can be specified for a task as
binaries/$OS/$ARCH/mdrun. When a worker con-
nects to the master it reports the operating system and
architecture of the remote node in the $OS and $ARCH
variables, which may then be expanded to send binaries/
Linux/i686/mdrun and binaries/Darwin/
x86_64/mdrun to to workers running on a 32-bit Linux
and 64-bit Mac OS machine, respectively. Finally, these
variables can be overridden by the user to provide additional
granularity.
Fault-tolerance. AWE-WQ is implemented with the

assumption that machine failures are not only possible but in
fact common, which is the opposite of the paradigm underlying
MPI infrastructures. As such two broad categories of failures
need to be accounted for: failure of the worker or master
processes. In the first case, worker failure are handled
transparently and tasks rescheduled to the next available
worker.
Failure of the master node would normally result in the

termination with an inability to resume. This is overcome by
using a transactional logging mechanism: a combination of
persistent and volatile logs. Each result from a walker is added
to a log and after each AWE iteration the state of the system is
checkpointed to disk and the log cleared. If the process fails,
then the state is initialized from the checkpoint and the log
used to replay and missed results from that iteration. This way
only uncompleted walkers need to be restarted.
Intelligent Scheduling. Several components of task

scheduling affect the scalability. The first is knowledge of a
worker’s past task execution times. This allows tasks to be
scheduled preferentially to the most performant machines. The
second involves task replication to remove the effect of
straggling workers. By monitoring the state of the workers
either busy or idle (wi)and the number of tasks waiting to be
assigned a worker, task replication can be engaged when wi > 0.
Once a task returns, all its replicates are canceled, results are
accepted in a first-come-first-serve fashion. By combining
replication with preferential scheduling, workers are continu-
ously used and slow workers allowed to contribute results until
the fast machines are available, which then run the replicated
tasks.
Event Model. The inner loop of AWE-WQ is an event-loop

with asynchronous task execution. Each iteration begins by
translating the internal data model of the walkers into task,
which are submitted to the WQ scheduler. While tasks are
executing, the program is idle until a result is returned. Each
result creates an event that must be handled, either by
translation or resubmission. Handlers are lightweight: read the
final coordinates and cell assignment into the data models.
Since task executions are asynchronous and results are
processed serially, the event model enforces load balancing by
spreading out the calls to the event handlers.
Caching Allows Scaling. Increasing scalability is further

accomplished by minimizing the communication overhead and
maximizing the parallel work. Ideally, the master process will
spend most of its time waiting. By categorizing files as those
common to all tasks (common) or specific to the current one
(unique), the common files can be cached on the workers. Since
we expect the number of walkers to be larger than resource
availability the caching mechanism shifts overhead to depend

on resources rather than problem size. For instance, using a
GROMACS backend each task requires 34 MB in input files,
binaries, and miscellaneous files.
In the case of the WW domain simulation, each task required

34 MB of GROMACS-related files as overhead and 100 KB of
task specific data. Assuming 10 000 tasks/iteration and 500
iterations, the total amount of data transferred is 34 (MB/task)
× 10 000 (tasks/iteration) × 500 iterations × 2−20 (TB/MB) =
162 TB. By caching input files, data transferred depends only
on the number of new workers seen, rather than total number
of tasks, which may be orders of magnitude greater. In this case,
assuming 1000 workers are connected the total data transferred
becomes 34 MB × 1000 × 2−10 (GB/MB) = 33 GB.

■ RESULTS
We have run AWE-WQ for several months where 3.5 million
tasks have executed over 600 compute years in a heterogeneous
environment simulating over 1.5 ms of time. In this section we
describe the application the AWE algorithm to a nontrivial
biological system.

Heterogeneous Resource Usage. Available resources
consisted of the following: Notre Dame HPC grid with 6000
cores shared among campus users; Notre Dame Condor pool
with variable (usually around 1200) cores and flocking
capabilities with Purdue University and the University of
Wisconsin−Madison; Stanford University’s Institute for
Computational and Mathematical Engineering (ICME) cluster
with 200 CPUs and 100 NVIDIA GPUs, and cloud virtual
machines via Amazon EC2 and Microsoft Azure.
Figure 6 displays the distribution of task execution times.

The multimodal distribution reflects the differences of

performance within each pool. The GPU cluster executes
tasks within minutes, while the ND HPC grid and EC2
machines are the best performant CPU-based pools. The range
of performance of Condor machines is unsurprising and
illustrative of the cycle-scavenging nature of the platform. The
Azure machines were the least performant resources, partly due
to the necessity of running the tasks via Cygwin.

Elasticity and Scalability. Figure 7 demonstrates the fault-
tolerance elasticity and scalability of the application as an
expanded view of the number of busy resources over the

Figure 6. Distribution of task execution times indicate several peaks
associated with the different underlying resources being used.
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runtimethe inset shows the entire run. Unexpected failures of
the master (months 4, 6) initiated development and integration
of features, bug fixes, and monitoring capabilities. Due to power
outages and infrastructure upgrades the master process
restarted multiple times. In spite of these failures over 250
iterations were completed without data loss due to the
transactional logging mechanism. The periodically persisting
state additionally allowed us to integrate new features, such as
task replication, and bug fixes over the course of the project’s
execution.
Focusing on the region between days 865 and 900 shows a

steady decrease in the number of busy resources until a new
pool of workers became available and AWE-WQ automatically
started using them. It must be emphasized as well that minimal
human input was needed to take advantage of the additional
resources: due to the use of the Catalog Server all that was
required was to start a WQ Pool process for the additional
resources.
The periodic dips, every 5 days in the first half and every ≈20

h for the second, correspond to the global synchronization
barrier, each period requiring 12 000 tasks to complete. By
scheduling the tasks based on resource availability and
progression through the AWE algorithm, resources are fully
utilized and the long tail effect from straggling workers is
eliminated. Due to the use of the caching mechanism
communication overhead is reduced: while the entire task
payload (common and unique files) is 34 MB it is only for the
first task a worker executes that his is transferred. Each
subsequent task only requires 100 KB of data to be transferred
(both in- and outbound traffic).
WW Domain Protein. The WW Domain is a 34 residue

protein domain with two conserved tryptophan (W) residues
and comprised of two antiparallel β-sheets as shown in Figure
8. We studied a mutant which is known to fold in 13 μs.63

Simulation parameters were the Amber96 force field with
generalized Born implicit solvent, a viscosity parameter (γ) of 1
ps−1, temperature of 395 K (close to the optimal folding
temperature64), saving conformations every 1 ns. The
simulation was run for 200 μs during which multiple folding
and unfolding events were observed. The conformations
sampled by the simulation were then clustered using the α

and β carbons using a cutoff of 3 Å. In order to reduce the time
spent sampling the unfolded space we established that
conformations with an RMSD to the folded structure less
than 3 and 6 Å, and greater as folded, intermediate, and
unfolded, respectively. Using these definitions the number of
unfolded states was reduced, for a total of 601 cells. The AWE-
WQ parameters were thus 601 cells, 20 walkers per cell, and
walker length of 500 ps using the same MD parameters as the
source data. GROMACS 4.5 was used for the MD backend.

WW Results. Over the course of many months AWE-WQ
completed 345 iterations, with an aggregate 2.3 ms of time
simulated using 3.6 million tasks, and a peak performance of
1000 ns/h. Analysis indicates that the AWE-WQ results
converge within acceptable error tolerance. Table 1 displays

the forward and backward rate estimations computed using
AWE-WQ and the 200 μs simulation. The AWE estimation lies
within the confidence intervalwith smaller statistical error
than the brute force simulation.
Figure 9 illustrates that forward and backward fluxes took 30

iterations to converge to the confidence interval built from
brute force simulation and are stabilized within the interval
afterward. The resampling procedure of AWE introduces no
bias in the estimation of transition rates while exhibiting smaller
statistical error, showing an improvement over the brute force
method.
Transitions among the states are examined with a time lag of

τ = Δt = 0.5 ns. Three significant pathways from extended to
folded state are extracted from the network and shown in
Figure 10. Starting from an unfolded conformation, two
pathways involve multiple helical intermediate structures before
β-sheet formation occurs via rearrangement. The third pathway
occurs as a rapid collapse before the formation of Loop 2. Loop
1 is then able to form, after which the molecule undergoes
further refinement to arrive at the native state.

■ CONCLUSIONS
AWE-WQ meets our criteria: allowing the use of off-the-shelf
components for MD backends, pooling of heterogeneous
resources, scalability to over 1000 workers, and ability to cope
with failures of both worker and master processes. The WW
domain was used to validate AWE-WQ by applying the method
to a long MD simulation in which multiple folding events are
observed. The forward and backward reaction rates computed

Figure 7. Expanded view of the entire run (inset) demonstrating
elasticity, scalability, and fault-tolerance. In the inset, long gaps (such
as the sudden failures at month 4 and 6) in activity indicate times
when major development was done on the code (features added, bugs
fixed). Despite the troubles experienced by the master node, calcuation
of the results resumed once the code was deployed. Plotting the
number of busy workers over many days shows the ability of the
software to adapt to a changing environment. The periodic dips
indicate the global synchronization barrier, each requiring 12 000 tasks
to complete. A large increase after day 885 occurred when many nodes
were suddenly available and were automatically incorporated.

Figure 8.WW domain forming three antiparallel β-sheets separated by
two flexible loop regions.

Table 1. Forward and Backward Reaction Rates As
Computed from AWE-WQ and the Brute-Force Simulation

method forward (μs−1) backward (μs−1)

AWE-WQ 1.5 ± 0.3 2.5 ± 0.5
brute-force 1.8 ± 1.0 2.0 ± 0.9
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by AWE-WQ are within the range and have smaller error, of the
rates calculated from the reference simulation.

■ AVAILABILITY AND FUTURE DIRECTIONS

Availability. AWE-WQ is available under the GPLv2
license. Documentation and data sets are available online.65

The source repository for AWE-WQ can be found online on
Github.66 Build dependencies for AWE-WQ include a Python
interpreter, the GROMACS xtc library,67 and the GNU
Scientific Library.68

Future Directions. We are working on improvements to
the AWE and WorkQueue components of AWE-WQ.
The current version requires initial sampling for cell

definition. These cell are static for the AWE-WQ run. Thus,
AWE-WQ is limited by the sampling techniques applied and is
unable to discover new regions of state-space. Furthermore, a
uniform partitioning scheme is used, which potentially leads to
overrepresentation of uninteresting regions (such as unfolded
protein). Reducing the number states for computational
efficiency risks reduction in granularity in the regions that

benefit the most (e.g., transition regions) and reduces accuracy.
Goals for future versions of AWE-WQ are planned to allow for
cell discovery and improved cell partitioning methods.
With regards to infrastructure, the next challenges to

overcome are the continuous usage of 5000 and 10 000
workers. Recent development to the WorkQueue infrustructure
have demonstrated that using a hierarchical topology can
reduce communication overhead on the master by 96%.69

Additionally, support for other MD backend software, as well as
explicit solvent models, is under development.
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