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ABSTRACT
Background: Although sugars and sugar derivatives are an impor-
tant class of metabolites involved in many physiologic processes,
there is limited knowledge on their occurrence and pattern in
biofluids.
Objective: Our aim was to obtain a comprehensive urinary
sugar profile of healthy participants and to demonstrate the wide
applicability and usefulness of this sugar profiling approach for
nutritional as well as clinical studies.
Design: In the cross-sectional KarMeN study, the 24-h urine samples
of 301 healthy participants on an unrestricted diet, assessed via a
24-h recall, were analyzed by a newly developed semitargeted gas
chromatography–mass spectrometry (GC-MS) profiling method that
enables the detection of known and unknown sugar compounds.
Statistical analyses were performed with respect to associations of
sex and diet with the urinary sugar profile.
Results: In total, 40 known and 15 unknown sugar compounds were
detected in human urine, ranging from mono- and disaccharides,
polyols, and sugar acids to currently unknown sugar-like compounds.
A number of rarely analyzed sugars were found in urine samples.
Maltose was found in statistically higher concentrations in the
urine of women compared with men and was also associated with
menopausal status. Further, a number of individual sugar compounds
associated with the consumption of specific foods, such as avocado,
or food groups, such as alcoholic beverages and dairy products,
were identified.
Conclusions: We here provide data on the complex nature of the
sugar profile in human urine, of which some compounds may
have the potential to serve as dietary markers or early disease
biomarkers. Thus, comprehensive urinary sugar profiling not only
has the potential to increase our knowledge of host sugar metabolism,
but can also reveal new dietary markers after consumption of
individual food items, and may lead to the identification of early
disease biomarkers in the future. The KarMeN study was registered
at drks.de as DRKS00004890. Am J Clin Nutr 2018;108:502–
516.

Keywords: urinary sugar profile, monosaccharide, disaccharide,
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INTRODUCTION

A variety of structurally different sugar compounds is present
in the human body and even more so in our diet. We use the terms
“sugar compounds or sugars” to refer to the following substance
classes: mono- and disaccharides, as well as derived compounds
thereof like polyols and sugar acids. Currently, sugar compounds
are usually analyzed in urine samples with a focus on individual
substance classes and, to date, most studies in this area have
been performed with only a very limited number of volunteers
(summarized in Supplemental Table 1). Combining the results
from these studies revealed a quite complex urinary sugar profile
consisting of many different sugar compounds. This is surprising
because most recent studies have investigated the role of sugar
compounds in human body fluids and focusedmainly on common
and well-known sugar compounds. Sugars and sugar derivatives
in urine reflect the sugar compounds consumed within the diet as
well as from endogenous sources. Of note is that absolute sugar
concentrations in urine are very low because numerous sugars are
efficiently reabsorbed in kidney tubular cells. Nevertheless, sugar
compounds in human urine appear to be suitable dietary markers
and, in the future, may even serve as early disease biomarkers,
but knowledge on all this is highly limited.

In a few studies, specific sugar compounds were described
as dietary markers for individual food items with examples
such as chiro- and scyllo-inositol for citrus fruit in serum (1),
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threonate and threitol for fruit and vegetables in serum (2, 3), and
some C4 and C5 sugar compounds for broccoli consumption in
urine (4). Other studies suggested that a combination of urinary
fructose and sucrose may reflect total sugar intake (5–7), which
is especially relevant in view of associations between sugar
intake and negative health outcomes such as an increased risk for
cardiovascular disease mortality (8, 9).

Because sugar compounds are involved in a variety of disease
pathways, urinary sugars could also serve as biomarkers in the
health-disease trajectory. Abnormal concentrations of urinary
sugar compounds have been described for conditions such as
diabetes mellitus (10–14), uremia (12, 15), invasive candidiasis
(16), enzyme deficiencies like galactosemia (17, 18), pentosuria
(19), or other inborn errors of metabolism (20–25). It thus seems
reasonable to state that “there is more than glucose to look at”
(26, 27).

With respect to the more commonly analyzed sugars, such
as fructose and sucrose, there is a need to understand which
factors determine their urinary excretion (28). Even less is
known about the origin, metabolism, and functions of polyols
(10, 23, 25). In a recent study, a new pathway for erythritol
production from glucose was described and erythritol excretion
was demonstrated to be associated with weight gain (29). This
study highlights our current limited knowledge on sugars and
sugar derivatives in the human body beyond glucose and fructose.
To bridge this knowledge gap especially from the physiologic and
pathophysiologic point of view, new analytical methods offering
comprehensive detection of a wide range of major and many
minor sugar compounds for nutritional and clinical research are
thus urgently needed.

Here, we present a semitargeted gas chromatography–mass
spectrometry (GC-MS) profiling method for the detection of>50
known and unknown sugar compounds in human urine and its
application to 24-h urine samples derived from the observational
KarMeN (KarlsruheMetabolomics and Nutrition) study with 301
healthy participants (30).

METHODS

Study design and subjects

The cross-sectional KarMeN study was performed at the Max
Rubner-Institut in Karlsruhe, Germany, between 2011 and 2013.
Details on the study design and examination procedures were
previously described by Bub et al. (30). Briefly, a total of 312
healthy participants aged between 18 and 80 y, who gave their
written informed consent and were willing and able to perform all
examinations, were recruited. Participants were excluded if they
had a history of prevalent or chronic disease, were smokers, or
took any medication, hormones, or dietary supplements. Women
who were pregnant or breastfeeding were also excluded. Eleven
participants who completed the study had to be excluded for
other reasons, such as diseases requiring treatment, cardiac
complications, voluntary dropout, cancer history, and acute cold
with medication (30). Thus, a total of 301 participants remained
for statistical analysis, 172 of whom were men and 129 were
women. The local ethics committee approved the study and it
was in accordance with the 1964 Helsinki declaration and its later
amendments. The study was registered at the German Clinical
Study Register (DRKS00004890) and has the WHO universal
trial number U1111-1141-7051.

Participants were asked for a 24-h urine collection. Throughout
the collection, bottles were kept in cool bags with cooling units.
At the study center, the volume of the received 24-h urine samples
was recorded, 2× 14 mLwere centrifuged at 1850× g at 4°C for
10 min and then separated into aliquots. Samples were initially
frozen at −20°C for 1 d and then cryopreserved at −196°C until
analysis. A quality control (QC) sample was prepared by pooling
24-h urine samples from KarMeN participants. Osmolality was
assessed via freezing-point depression of 24-h urine samples
with the use of a micro-osmometer (Advanced Miro-Osmometer
model 3MO, Advanced Instruments, Norwood, MA).

For the day of the 24-h urine sample collection, trained study
personnel assessed the food consumption of each participant (in
grams per day) in a personal interview through the use of a 24-
h dietary recall with the software EPIC-Soft (developed by the
International Agency for Research on Cancer (IARC) in Lyon)
(31, 32), now renamed as GloboDiet. The amount of different
foods consumed per day was assessed with the use of a picture
booklet providing photographs of portion sizes for various foods
as well as household measures and standard portions. For further
analysis, the reported foods were summarized into food group
variables (see Supplemental Table 2). Additionally, based on the
GermanNutrient Database “Bundeslebensmittelschlüssel” (BLS,
version 3.02) (33), the total energy intake (in kcal per day) and
intake of nutrients were calculated.

Semitargeted GC-MS sugar profiling

A Shimadzu GCMS QP2010 Ultra instrument was used
in Scan-/SIM (selected ion monitoring)-mode to achieve high
selectivity and sufficient sensitivity while at the same time being
able to detect a priori unknown sugar compounds. Additionally,
some abundant nonsugar compounds could be analyzed via this
method. Table 1 and Supplemental Table 3 list all compounds
that were detectable via this method, including the target and
reference ions used for integration. The structural similarity of
sugar compounds enables the usage of only a few selected masses
for selective relative quantitation in the urine matrix (see Supple-
mental Table 3 and Supplemental Figure 1). Analytical details
regarding chemicals, sample preparation, instrument, method,
and data processing parameters were described by Rist et al. (34).
Briefly, 24-h urine samples were diluted according to osmolality
(60 mosmol/kg), 40 µL were evaporated and then derivatized
via a 2-step procedure with 15 µL methoxylaminhydrochloride
solution (20 mg/mL in pyridine; 30 min, 70°C, 1000 rpm)
and 50 µL N-methyl-N-(trimethylsilyl)trifluoroacetamide + 1%
trimethylchlorosilane reagent (1 h, 75°C) before analysis. To
remove slight drift and offset effects, the raw signal intensities
were corrected through the use of QC sample-based local linear
regression functions (35).

Statistics

For all statistical analyses, the software JMP (version 13, SAS
Institute Inc., Cary, NC, 1989–2007) was used.

Association of the urinary sugar profile with sex

A matrix with all known and unknown sugar compounds and
the information on sex and age of the KarMeN participants
was used to build a decision tree with the CART (classification
and regression tree) algorithm. This approach was used to
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uncover associations between the urinary sugar profile and sex.
Advantages of the CART algorithm are its ability to cope with
missing (not detected) values and its ability to handle categoric
and numeric values in parallel. Not detected values (usually
the results of signals below detection limits) were treated by
the algorithm as a separate level of the variable. Concerning
differences in the sugar profiles between men and women, the
focus in this work was primarily on sugar compounds that
were detected in <75% of the KarMeN participants, and thus,
are potentially more sex-specific (in a qualitative sense). Age
was included as an additional continuous variable after the first
split, thus allowing the observation of associations between age
and sugar compounds. Splitting was only allowed when -log10
(P values) (calculated by JMP) were significant after Bonferroni
correction, meaning a -log10 (P value) >3.1206.

After CART analysis, the nonparametric Wilcoxon test was
generally used to test for significant differences between men
and women for the 2 most important metabolites as well
as to distinguish between the maltose excretion of pre- and
postmenopausal women.

Association of the urinary sugar profile with diet

To assess associations of diet with the human urinary sugar
profile, an exploratory correlation analysis was performed with
the use of the variables derived from the 24-h dietary recall
(food and nutrient intake) with detected urinary sugar compounds
(listed in Supplemental Tables 2 and 3, respectively). In a
first step (selection of interesting correlations), Spearman rank
correlation coefficients were determined by the pairwise method
(threshold ρ < −0.30 or ρ > 0.30) and evaluated in conjunction
with scatter plots. In a second step, participants were divided
into groups based on consumption of certain food items for
promising correlations. A Wilcoxon test was performed to
ascertain significance for these groups. If <100 participants
consumed a particular food or nutrient, an equally large group of
nonconsumers was randomly selected. If >100 participants were
consumers, tertiles were built and a Wilcoxon test for the first
against the third tertile performed.

Sugar screening in plant materials from fruit and vegetables

To assess the plausibility and specificity of some of the
potential dietary markers for food consumption, a screening of
sugar compounds in a range of fruit and vegetable varieties was
performed with the use of the same GC-MS profiling as for the
urine samples. The aimwas to screen asmany fruit and vegetables
as possible, but not to perform a comprehensive evaluation. Thus,
only 1 pooled sample for each fruit and vegetable variety was
measured.

Sample preparation for fruit and vegetables

Fruit and vegetables were bought from regional producers
directly, weekly markets, or supermarkets. Overall, a total of
75 fruit and vegetable varieties (see Table 2) were purchased
and, if possible, they were seasonally and regionally produced.
The edible plant material of 5–20 fruits or vegetables (depending
on fruit or vegetable size) was pooled into 1 sample, frozen in

liquid nitrogen, and then coarsely ground and freeze dried for
≥3 d. The dried material was ground to a fine powder with a ball
mill (Retsch MM400, Haan, Germany) for 20–60 s (depending
on the consistence of the plant material) at 30 Hz and then
stored at −80°C until analysis. For each sample, 20 ± 0.1 mg
of freeze-dried powder was weighed out and then after addition
of 20 µL of internal standard solution (pinitol and phenyl-β-
glucopyranoside in water, each 2 mmol/L) extracted twice with
750 µLmethanol for 10 min at 35°C and 1400 rpm. The collected
supernatant was mixed and then centrifuged for 5 min at 4°C and
16,100 × g. After which, 20 µL of supernatant was evaporated
and then derivatized with the use of the same 2-step procedure
as for the urine samples, except that 40 µL of methoxyl-
aminhydrochloride solution in pyridine (25 mg/mL) and 96
µL of N-methyl-N-(trimethylsilyl)trifluoroacetamide + 1%
trimethylchlorosilane were used.

Semitargeted GCMS sugar profiling and data processing

The method for the measurement of the fruit and vegetable
samples was the same as for the urine samples, except that
the Rxi-5Sil-MS column was slightly shorter (54 m + 4 m
precolumn), and as a result, time frames for SIM had to be
adjusted (34). Each day, 30 fruit and vegetable samples, six
24-h urine QC samples, and a solvent blank were prepared and
analyzed. Data processing was performed in the same way as for
the 24-h urine samples (34).

RESULTS

Analytical performance of the semitargeted GC-MS sugar
profiling method

Our newly developed and validated semitargeted GC-MS
sugar profiling method (see Supplemental Tables 3 and 4
and Supplemental Figures 1 and 2) enables the sensitive
detection and relative quantification of 55 major and minor sugar
compounds (see Figure 1 and Table 1) encompassing mono- and
disaccharides, polyols, sugar acids, and as yet not identified sugar
compounds (see Supplemental Figure 1).

The assignment of the analyzed known and unknown sugar
compounds into the different substance classes is shown in
Figure 1. If desired, some amino and organic acids can also be
analyzed with the method described here and this leads to a total
number of 68 integrated analytes (see Table 1 and Supplemental
Table 3). All sugar compounds detected via the semitargeted
GC-MS method and their signal intensity ranges are listed in
Figure 2.

Our method is also characterized by very good long-term
repeatability and intermediate precision (see Supplemental
Table 4 and Supplemental Figure 2) as proven by measurement
series comprising overall 456 runs (312 study samples plus
144 QC samples). Thus, the method is suitable for long-term
measurement series of human biofluids in large study cohorts.

Sugar profiling in participants of the KarMeN study

Sugar profile of human urine and biological variability

To determine metabolite-specific differences in the interindi-
vidual, i.e., biological variability, the CVs of the measured
sugar compounds across all 301 KarMeN participants were
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TABLE 2
Summary of a sugar screening in 75 fruit and vegetable varieties1

Psicose Mannoheptulose2 Perseitol2 Mannitol3 Galactose Threitol Xylose Polyol U02

Eggplant — 5 — tr Middle — Low tr
Avocado — 100 100 tr tr — tr tr
Leaf spinach tr 13 — tr Low — tr tr
Cauliflower — 1 — tr High — Middle tr
Common bean tr 6 — <0.1 Low — Low Low
Broccoli — 5 — tr Low — Low Low
Iceberg lettuce — 3 — <0.1 Low — Low Low
Peas tr 2 — <0.1 Low — tr Low
Lamb’s lettuce Low 27 — tr Middle — Low High
Cucumber — 4 — <0.1 Middle — tr Low
Carrot — 29 — 2.6 Low — tr Low
Potato — 5 — <0.1 Low — — —
Garlic — — — tr tr — — tr
Kohlrabi — tr — tr Low — tr tr
Garden lettuce — 11 — tr Low — Low Middle
Red cabbage — tr — — Middle — tr tr
Pointed cabbage — tr — — Low — tr tr
White cabbage — tr — — Low — tr tr
Pumpkin — tr — <0.1 Middle tr tr Low
Leek — tr — — Low — tr tr
Striped lentil — — — tr tr — — tr
Black lentil — — — tr tr — — —
Lentil, “Perla” — — — tr tr — — —
Corn — — — tr Low tr tr —
Green bell pepper — 6 — <0.1 High — Low tr
Red bell pepper — 7 — <0.1 High — Low tr
Hot pepper — 22 — <0.1 High — Low tr
Button mushroom — 1 <1 100 tr — — tr
Shiitake — — <1 77.4 tr tr — —
Small radish — 2 — <0.1 Low — Low tr
Radish — — — tr Low — tr tr
Beetroot — — — — Middle — tr tr
Pointed pepper — 12 — <0.1 Middle — tr —
Soy — — — <0.1 Low — tr tr
Green asparagus — — — <0.1 Low — Low tr
White asparagus — — — <0.1 Low — Low tr
Grape tomato — 6 — <0.1 Low — Low —
Tomato, “Matina” — 11 — <0.1 High — Low tr
Tomato, “Resi” — 7 — <0.1 High — tr tr
Zucchini — — — <0.1 High — Low Low
Onion — tr — tr Low — tr —
Pineapple — — — — Middle — tr —
Apple — 6 — 0.1 Low — High tr
Apricot — 4 — <0.1 Low — Low tr
Banana — — — tr Low — — —
Pear — 5 — <0.1 Low tr Low tr
Blackberry — 4 — <0.1 Low — Low —
Clementine — — — tr Low — Low —
Strawberry, “Asia” — 4 — — Low — High tr
Strawberry, “Elsanta” — 2 — tr Low — High tr
Pomegranate — 7 — 18.1 Low tr tr tr
Grapefruit — tr — tr Low — tr —
Blueberry — 10 — tr Low — Low —
Raspberry — 4 — tr Low — Middle —
Honeydew melon — tr — <0.1 High tr tr Low
Red currants — 6 — tr Low — Low —
Black currants — 14 — <0.1 Low — Low —
Sour cherry — 7 — <0.1 Low tr Low tr
Sweet cherry — 1 — <0.1 Low — Low tr
Kiwi fruit — 5 — <0.1 Middle — tr —
Mango — 4 — tr Low — tr —
Small yellow plums — 6 — <0.1 Low — Low —

(Continued)
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TABLE 2 (Continued)

Psicose Mannoheptulose2 Perseitol2 Mannitol3 Galactose Threitol Xylose Polyol U02

Nectarine — 4 — <0.1 Low — Low —
Orange — tr — — Low — Low —
Papaya — tr — <0.1 Low tr Low tr
Passion fruit — 2 — tr Low tr tr —
Yellow peach — 5 — <0.1 Low — Middle tr
White peach — 4 — <0.1 Low — Low tr
Physalis — 7 — <0.1 Low — tr —
Gooseberry — 3 — — Low — Low —
Red table grapes — 4 — — Low — tr tr
White table grapes — 5 — — Low tr tr tr
Lemon — — — tr Low — tr —
Plum — 5 — <0.1 Low — Low tr
Fig — 4 — tr Middle — tr tr

1High, fruit or vegetables with signal intensities in the highest tertile of the signal intensities for this analyte; Low, fruit or vegetables with signal intensities
in the lowest tertile of the signal intensities for this analyte; Middle, fruit or vegetables with signal intensities in the middle tertile of the signal intensities for
this analyte; tr, trace analytes (analytes below a signal intensity of 8000).

2Ratios of mannoheptulose and perseitol signal intensities for the fruit and vegetables compared with avocado signal intensity.
3Ratios of mannitol signal intensities for the fruit and vegetables compared with button mushroom signal intensity.

determined. Some sugar compounds were excreted with a narrow
concentration range, for example glucuronic acid with a CV of
29.8%, whereas others showed a huge biological variability, such
as lactose with a CV of 294.5% (see Figure 2). In addition, the
relative frequency of occurrence of individual sugar compounds
in the 24-h urine samples of KarMeN participants is listed
in Supplemental Table 3. To further assess factors underlying
the huge biological variability, analyses focused on sex as a
determinant and on dietary intake reconstructed from dietary
intake measures.

Association of the urinary sugar profile with sex

To identify sugar compounds associated with sex, a decision
tree using the CART algorithm was built (see Figure 3). In

FIGURE 1 Classification assignment of sugar compounds into different
substance classes.

Table 3, possible candidates for a split are given for the first
3 nodes and for leaves. Evidently, the most relevant sugar
compound separating men and women was maltose, which was
detected in 78.3% of women but only in 35.5% of men. In
addition, the urinary maltose concentration was significantly
higher in women (P < 0.0001, see Figure 3). Other important
metabolites were gluconic acid, fructose, and an unknown sugar
compound, which were found in >75% of the study samples and
recently discussed by Rist et al. (34). In the second node, where
age was included as an additional potential splitting candidate,
the 3 top determinants for separating men and women were
age, gluconic acid, and sedoheptulose. Interestingly, splitting on
the basis of sedoheptulose would have been similar to splitting
on age as a result of the close association between age and
sedoheptulose concentration in 24-h urine samples (34). The
second split was done based on age as a top determinant, thereby
indicating a close association between urinary maltose, sex,
and age. The cut point for age was 45 y, thus suggesting that
sugar excretion patterns change with menopause in women (see
Figure 3). Gluconic acid was the only possible candidate
metabolite for the third and last split (see Figure 3 and Table 3);
however, to prevent overfitting, no further splitting was done.
Boxplots of the 2 most important sugar compounds that separate
men and women and the interaction between maltose excretion,
sex, and age (menopausal status) are shown in Figure 3.

Association of the urinary sugar profile with diet

A correlation analysis was performed based on 24-h urinary
sugar profiles with the food consumption and nutrient intake
data and a heat map generated on the basis of the Spearman
rank correlation coefficients (Figure 4). The Spearman rank
correlation coefficients with ρ > 0.30 are listed in Table 4;
no correlations with ρ < –0.30 were observed. Significant
correlations were observed for 1) avocado consumption with
perseitol, 2) dairy product consumption with galactose and
lactose, 3) alcoholic beverage consumption with xylitol and
ethyl-β-glucuronide, 4) mushroom consumption with mannitol,
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FIGURE 2 Interindividual/biological variability of the sugar profile in human urine from 301 participants of the KarMeN study. Sugar compound intensities
were median-centered and unit variance scaled to allow for a comparison of the biological variance. Whiskers of box plots indicate ± 1.5 IQR. Median,
minimum, maximum, and CV refer to peak area and enable a relative comparison of signal intensity. For reasons of simplicity, only the first of 2 derivatives
was listed.

5) fruit consumption with threitol, xylose, and an unknown
polyol, 6) citrus fruit juice and fruit drink consumption with
chiro-inositol and galactonic acid, and 7) sucrose intake with
fructose and sucrose (see Table 4 and Figure 4). In the case of
avocado, in addition to perseitol, mannoheptulose presented itself
as a potential dietary marker although the correlation coefficient
was slightly below our threshold of 0.30 (ρ = 0.2704; see
Figure 4). To verify this observation despite the low number
of avocado consumers (n = 9), Spearman rank correlation
coefficients were calculated for the avocado consumers and
18 randomly chosen nonconsumers (n = 27) (mannoheptulose:
ρ = 0.7748, perseitol: ρ = 0.8713; see Figure 5). For some
of these potential dietary markers box and scatter plots as well

as their origin and potential confounders or other interferences
are shown in Figure 5. A second line of evidence that
those metabolites may be potential dietary markers for distinct
foods/products was provided by analyzing the sugar profiles of
75 selected fruit and vegetable varieties (see Table 2).

DISCUSSION

Sugar profiling in participants of the KarMeN study

Sugar profile of human urine and biological variability

With the analytical method described here, we provide a
straightforward and reliable tool to obtain sugar profiles and
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FIGURE 3 Identification of urinary markers discriminating sex via the CART approach. (A) Decision tree with splitting rules, the number of men or
women, and the ratio between men and women for each branch; (B) box plots for the 2 top sugar compound candidates to differentiate sex; (C) association of
age with maltose excretion in women (pre- and postmenopausal). Significance was established with the use of the Wilcoxon test, with participants excluded
where the sugar compound was not detected. CART, classification and regression tree.

TABLE 3
Results of building a decision tree (CART) for the identification of possible
markers to differentiate sex. Possible candidate sugar compounds for split-
ting are listed only if significant P values were achieved after Bonferroni
correction1

Sugar compound Candidate G² −log10 (P value) Cut point2

First node: split candidates
Maltose 152.6 55.8316 6.50E + 03
Gluconic acid 56.6 17.0557 1.05E + 05
Unknown U05 37.8 9.1285 6.66E + 05
Fructose3 27.1 5.0777 2.25E + 05

Second node: split candidates
Age 34.7 8.6471 45.363
Gluconic acid 27.1 5.8762 1.38E + 05
Sedoheptulose3 25.3 5.2497 1.32E + 05
Unknown U05 19.8 3.4428 7.07E + 05

Third node: split candidates
Gluconic acid 20.0 4.0476 1.38E + 05

First leaf: split candidates4

Second leaf: split candidates4

Third leaf: split candidates
Mannonic acid 21.6 4.6179 5.62E + 04
Unknown U03 17.5 3.3893 4.73E + 04

Fourth leaf: split candidates4

1G2, likelihood ratio chi-square; highest values indicate best split.
2Best value for splitting the variables (cut point).
3For reasons of readability, only the higher-ranking derivative was listed.
4Candidate P values were below the significance level.

semiquantitative data in biofluids like urine. We observed a
considerably wider range of sugar compounds than commonly
known or expected in human urine (see Figure 2, Table 1, and
Supplemental Table 1). There are many less known urinary sugar
compounds with unclear origin such as psicose, perseitol, or
mannoheptulose; their origin could be exogenous or endogenous.
However, urinary sugar profiles partly showed a remarkable
variability (see Figure 2), and thus, we believe that many
individual sugars are dependent on sex, health status, or are a
surrogate of a dietary pattern or the consumption of distinct food
items.

Association of the urinary sugar profile with sex

The most important metabolites to differentiate between
male and female sugar profiles were maltose and gluconic
acid. Maltose has been reported to be present in very low
concentrations in human urine, but no differences with respect
to sex have been described so far (10, 12, 23, 36–39). We
hypothesize that the maltose excretion seen in women may be
associated with the vaginal microbiota (dominated by lactic acid–
producing Lactobacillus species). Spear et al. (40) demonstrated
that vaginal fluid possesses α-amylase activity, and thus is able to
degrade free glycogen to maltose, maltotriose, and maltotetraose,
which can then be utilized by Lactobacillus species (41, 42). This
degradation pathway of free glycogen released from the vaginal
epithelium might be responsible for the higher excretion rate of
maltose in female urine.
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FIGURE 4 Heat map of Spearman rank correlation coefficients for the correlations of sugar compound excretion with food consumption and sugar intake
(for an explanation of variables, see Supplemental Table 2) during the 24-h collection of urine. Correlations were estimated by a pairwise method. Boxes
indicate the highest (most significant) correlations. The amount of consumed food is always given in g/d.

We observed a significantly lower maltose content in the urine
of postmenopausal women in comparison with premenopausal
women (see Figure 3). Postmenopausal women have significantly
lower amounts of glycogen and Lactobacilli counts in the vaginal
fluid as a result of reduced estrogen concentrations (41, 43,
44). Collectively, these observations concur with our finding of
reduced maltose concentrations in postmenopausal women and
add plausibility to a link between maltose excretion and the
vaginal microbiota.

For gluconic acid and fructose we could not find a plausible bi-
ological explanation for the observed sex-dependent differences
in urine.

Association of the urinary sugar profile with diet

Based on the correlation analysis, potential dietary markers for
the consumption of various food items as well as food groups

were identified (Figure 5 and Table 4). This analysis suggests the
following sugar compounds to serve as specific dietary markers:
mannoheptulose and perseitol for avocado and galactose and
lactose for dairy products. These sugars are known constituents
of these respective foods (45–50). Although an increase of
mannoheptulose and perseitol excretion in urine after avocado
consumption (25) has been described in an intervention with 3
volunteers, it was not specifically defined as a dietary marker. An
increase of galactose and lactose after pure lactose ingestion has
been observed (49, 51–53). Moreover, in a recent intervention
study with milk, both galactose and lactose were suggested as
specific dietary markers for milk consumption (54).

Although mannitol appears to be a plausible dietary marker
for mushroom consumption (55), its specificity is questioned
because there are many other sources of mannitol in the human
diet (48) (see also Table 2) — a fact that confounds the
aforementioned identified association (see Figure 5).
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TABLE 4
Correlations between analytes and the consumed amounts of certain foods, food groups, or nutrients as determined by a 24-h recall (see Supplemental
Table 2)1

Participants
Spearman2

Sugar compounds Dietary intake nexcr. ning. ρ

Perseitol Avocado 219 9 0.3388
Galactose3 Milk sum 301 234 0.6644
Galactose3 Dairy products sum 301 279 0.6082
Galactose3 Milk 301 174 0.4779
Galactose3 Yoghurt 301 84 0.3017
Lactose3 Milk sum 300 234 0.4204
Lactose3 Dairy products sum 300 279 0.3364
Lactose3 Milk 300 174 0.3180
Galactonic acid Milk sum 296 234 0.3403
Galactonic acid Dairy products sum 296 279 0.3005
Xylitol Alcoholic beverages 301 96 0.6379
Xylitol Beer 301 47 0.4667
Xylitol Wine and sparkling wine 301 55 0.4531
Ethyl-β-glucuronide Alcoholic beverages 144 96 0.5885
Ethyl-β-glucuronide Wine and sparkling wine 144 55 0.4446
Ethyl-β-glucuronide Beer 144 47 0.3457
Sorbitol Alcoholic beverages 299 96 0.4948
Sorbitol Wine and sparkling wine 299 55 0.4496
Allose Alcoholic beverages 301 96 0.3425
Allose Wine and sparkling wine 301 55 0.3128
Arabitol Alcoholic beverages 301 96 0.3340
Mannitol Mushrooms 301 35 0.3633
Mannitol Button mushroom 301 32 0.3489
chiro-Inositol Citrus fruit juices and drinks 260 65 0.4941
chiro-Inositol Citrus fruit 260 37 0.3000
Galactonic acid Citrus fruit juices and drinks 296 65 0.3825
Threitol Fruit sum 301 228 0.4904
Threitol Apple 301 106 0.4359
Xylose3 Fruit sum 301 228 0.4768
Xylose3 Apple 301 106 0.4736
1-Deoxy-sorbitol Apple 299 106 0.4653
1-Deoxy-sorbitol Fruit sum 299 228 0.3504
1-Deoxy-sorbitol Fruit juice and juice drink 299 131 0.3130
1-Deoxy-sorbitol Fruit juices 299 123 0.3097
Sugar acid U09 Fruit juice and juice drink 301 131 0.3649
Sugar acid U09 Fruit juices 301 123 0.3395
Polyol U02 Fruit sum 301 228 0.3516
Galactonic acid Fruit juices 296 123 0.3498
Galactonic acid Fruit juice and juice drink 296 131 0.3320
Xylonic acid Fruit juice and juice drink 301 131 0.3408
Xylonic acid Fruit juices 301 123 0.3107
Xylonic acid Fruit sum 301 228 0.3091
chiro-Inositol Fruit juices 260 123 0.3350
chiro-Inositol Fruit juice and juice drink 260 131 0.3119
1-Deoxy-sorbitol Monosaccharides 299 301 0.4676
Unknown U24 Polysaccharides 301 301 0.4477
Unknown U24 Bread sum 301 293 0.4463
Unknown U24 Carbohydrates 301 301 0.3949
Fructose3 Monosaccharides 301 301 0.3966
Fructose3 Sucrose 301 301 0.3581
Fructose3 Disaccharides 301 301 0.3192
Threitol Monosaccharides 301 301 0.3955
Xylonic acid Monosaccharides 301 301 0.3919
Xylose3 Monosaccharides 301 301 0.3785
Sucrose Sucrose 301 301 0.3620
Sucrose Disaccharides 301 301 0.3243
Sucrose Candy 301 104 0.3132
Mannoheptulose Monosaccharides 300 301 0.3135

1nexcr., number of participants who excreted a certain sugar compound; ning., number of participants who ingested individual foods or food groups.
2Spearman rank correlation coefficients < –0.30 or >0.30. All listed correlations had significant P values < 0.0001.
3For reasons of readability, only the higher-ranking derivative was listed.
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FIGURE 5 (Continued)

We also identified xylitol as a potential dietary marker for
alcoholic beverage consumption. An increase of xylitol in
urine after administration of ethanol (56) has been described
before, but the causality underlying the relation between alcohol

consumption and urinary xylitol output (56, 57) warrants further
research. Ethyl-β-glucuronide has already been described as a
dietary marker for alcoholic beverage consumption (58–60); we
observed a moderate association (see Figure 5 and Table 4). In
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FIGURE 5 Overview of potential dietary markers (includes results of the KarMeN study and sugar screening of fruit and vegetables as well as literature
data). Potential dietary markers of food consumption with the strongest associations in the correlation analysis, their plausibility in terms of origin, and their
specificity in terms of potential confounders or other interferences. Shaded violet: food/nutrient level; shaded light blue: interfering sources for potential dietary
markers (foods, drugs, results from sugar screening of fruit and vegetables); shaded red: metabolization in human; shaded yellow: results in 24-h urine samples.
Colors of boxes and arrows as follows: green (part 1): consumption of avocado; grey (part 1): consumption of dairy products; dark blue (part 2): consumption of
alcoholic beverages; brown (part 2): consumption of mushrooms; light blue: interfering sources for potential dietary markers (foods, drugs, results from sugar
screening of fruit and vegetables). Check: compound occurs in specific food; cross: compound does not occur in specific food. The amount of consumed food is
given in g per day. Significance was established by use of the Wilcoxon test. Spearman rank correlation coefficients were calculated using all 301 participants,
except for avocado, where the 9 avocado consumers plus 18 randomly selected participants were used.
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light of the many other potential confounders and interferences
for ethyl-β-glucuronide detection (61–64) (see Figure 5), we
recommend to use measurements of additional metabolites such
as ethylsulfate (65) or in combination with xylitol.

It would be highly desirable to use some of these dietary
markers in future as an objective measure of food consumption
in comparison with self-reported consumption, where biases
such as under- or over-reporting in cases of perceived unhealthy
or healthy foods often occur (64). Objective dietary markers
would allow more reliable insights into health aspects, and thus,
relations between diet and health could be more accurately
ascertained.

In more general terms, a dietary marker should fulfil a number
of criteria such as its specificity, the dose-response relation,
plausibility of origin, and suitability in free-living populations,
and, importantly, analytical robustness (66). Questions around
the quality of dietary markers also cover issues on whether a
metabolite is a short-term marker of intake over a 24–36 h period
or whether it can also serve as a long-term reporter molecule
especially in epidemiologic studies (67). Moreover, whether
there are saturation effects and whether the dietary marker can
quantitatively assess consumption are also important issues (66).

Specificity and dose-response effect, plausibility, and suitabil-
ity in a free-living population as in our KarMeN population
on an unrestricted diet as well as methodological validity were
all addressed in the present study. The main limitations in our
approach were 1) the low number of participants consuming
some specific food items such as avocado, 2) the potential bias
through the use of self-reported food consumption data for the
correlation analysis, and 3) owing to our study design so far only
a conclusion about metabolites’ usefulness as short-term markers
can be drawn. Other limitations might be that only a single
urine collection was measured potentially leading to exaggerated
interindividual variation and that only fruit and vegetables, but
not processed food and beverages, were screened during the
sugar profiling of food. However, our aim is that the developed
analytical method and the approaches used to identify some
crucial sugar compound determinants will be taken into larger
and more diverse cohorts as the next step to deriving quantitative
dietary markers and to shedding light on the diet-health relation
for one of the most important food substrates in the human diet
and metabolism, namely the sugars.

In conclusion, we have demonstrated that the human urinary
sugar profile is complex and comprises many more compounds
than previously anticipated. With the large number of sugar
compounds detected, we identified also a huge gap in knowledge
regarding the metabolism of most of these sugar compounds, in
particular along the diet-health-disease trajectory. We therefore
suggest that future research should not only encompass analyzing
common and well-known sugar compounds, but rather strive for
a more comprehensive view on sugar compounds. However, the
data from our study can be used as a reference for normal sugar
profiles of healthy humans with respect to the occurrence of
individual sugar compounds along with variances in excretion.
For some sugars, we identified crucial determinants such as sex
and pre- compared with postmenopausal women. However, these
determinants need further study.We also identified a considerable
number of sugar compounds as potential dietary markers for
individual food items and groups (see Figures 4 and 5), for which
confirmation and assessment of their quantitative dimension and

their usability as long-term markers in epidemiologic studies
are required in future studies. Although our newly developed
semitargeted GC-MS method is only semiquantitative, it clearly
offers a rapid and cost-effective strategy to obtain comprehensive
insights into the sugar profile by detecting not only numerous
known, but also some unknown sugar-like compounds that
also deserve identification. Our analytical method may also
be useful in identifying the underlying physiologic processes
that allow assessing determinants for absorption/permeation
from the intestine into blood circulation as well as for renal
secretion/reabsorption. Ultimately, this analytical method may
not only help to identify dietary markers, but also to identify
disease biomarkers in the future.
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