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Schizophrenia is characterized by abnormal brain structure such as global reductions
in gray matter volume. Machine learning models trained to estimate the age of
brains from structural neuroimaging data consistently show advanced brain-age to be
associated with schizophrenia. Yet, it is unclear whether advanced brain-age is specific
to schizophrenia compared to other psychotic disorders, and whether evidence that
brain structure is “older” than chronological age actually reflects neurodevelopmental
rather than atrophic processes. It is also unknown whether advanced brain-age is
associated with genetic liability for psychosis carried by biological relatives of people
with schizophrenia. We used the Brain-Age Regression Analysis and Computation
Utility Software (BARACUS) prediction model and calculated the residualized brain-
age gap of 332 adults (163 individuals with psychotic disorders: 105 schizophrenia,
17 schizoaffective disorder, 41 bipolar I disorder with psychotic features; 103 first-
degree biological relatives; 66 controls). The model estimated advanced brain-ages
for people with psychosis in comparison to controls and relatives, with no differences
among psychotic disorders or between relatives and controls. Specifically, the model
revealed an enlarged brain-age gap for schizophrenia and bipolar disorder with
psychotic features. Advanced brain-age was associated with lower cognitive and
general functioning in the full sample. Among relatives, cognitive performance and
schizotypal symptoms were related to brain-age gap, suggesting that advanced brain-
age is associated with the subtle expressions associated with psychosis. Exploratory
longitudinal analyses suggested that brain aging was not accelerated in individuals with
a psychotic disorder. In sum, we found that people with psychotic disorders, irrespective
of specific diagnosis or illness severity, show indications of non-progressive, advanced
brain-age. These findings support a transdiagnostic, neurodevelopmental formulation of
structural brain abnormalities in psychotic psychopathology.
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INTRODUCTION

Schizophrenia is a debilitating mental disorder, characterized
by psychotic symptoms and cognitive impairments, and
individuals with the illness often have difficulties functioning
in social and community settings. Crucially, it is unclear
whether the neuropathology underlying the syndrome is
neurodevelopmental or neurodegenerative in nature (Walker
et al., 2010; Kochunov and Hong, 2014). Evidence for aberrant
neurodevelopment in schizophrenia includes increased rates
of adverse events during pregnancy and birth that lead to
abnormal prenatal brain development, early signs of cognitive
and behavioral abnormalities during childhood, and brain
structural abnormalities that are evident during adolescence,
either prior to illness onset or early in the course of the illness
(Lewis and Levitt, 2002: Rapoport et al., 2005). Nevertheless,
schizophrenia, which was originally described as dementia
praecox [premature dementia; Kraepelin et al. (1971)], has
recently been hypothesized to be associated with accelerated
cell aging such that normal age-related physiological changes
occur at an earlier age. The premature aging hypothesis is
supported by evidence of increased rates of cardiovascular
and metabolic syndromes (Hennekens et al., 2005; von
Hausswolff-Juhlin et al., 2009) and lower cognitive performance
in schizophrenia that is similar to older healthy controls
(Kirkpatrick et al., 2008).

In the current investigation, we examined whether
abnormalities in brain structure associated with schizophrenia
are consistent with a pattern of atypical neurodevelopment or
premature aging, whether such abnormalities extend beyond
schizophrenia to other disorders with psychotic symptoms,
and if increased genetic liability for psychotic psychopathology
is associated with aberrant brain structure. Because structural
brain abnormalities in schizophrenia are widespread and
diverse, we used a recently developed brain-age algorithm to
quantify and summarize the degree of overall deviation in brain
morphology. We further investigated how such deviation is
related to symptomatology and cognitive impairments that are
central to the disorder.

A neurodevelopmental pattern of abnormalities—where the
brain fails to achieve a normative state—is consistent with global
structural brain abnormalities that appear early in the course of
schizophrenia and are highly heritable (Keshavan et al., 2008). For
example, whole brain and total gray matter volumes are reduced
in schizophrenia compared to what is seen in typical development
(Daniel et al., 1991; Ward et al., 1996; Wright et al., 2000;
Shenton et al., 2001; Steen et al., 2006; Gupta et al., 2015; Van
Erp et al., 2018). Meta-analyses of first-episode psychosis studies
(Steen et al., 2006; Vita et al., 2006) have provided evidence of
smaller whole brain and hippocampal volumes as well as larger
ventricular spaces in comparison to controls. Also, gray matter
perturbations in the absence of medication effects are evident
early in the course of the illness (Cahn et al., 2002; Hietala et al.,
2003; Szeszko et al., 2003).

To characterize advanced aging of the brain, researchers
have developed machine learning tools to quantify the aggregate
impact of gray matter loss in a variety of health conditions.

One commonly used model estimates a person’s age based
on T1-weighted structural imaging data (Franke et al., 2010;
Liem et al., 2017). The difference between the model-
estimated age and chronological age is the estimated brain-
age gap.1 The brain-age gap gives an estimate of gray matter
abnormalities throughout the brain. Brain-age models generally
produce brain-age estimates for people with schizophrenia
that are older than true chronological age, by about 2.5–
8 years (Koutsouleris et al., 2014; Schnack et al., 2016;
Nenadić et al., 2017; Shahab et al., 2019; Truelove-Hill
et al., 2020; Constantinides et al., 2022). This pattern extends
to early phases of illness, including first-episode psychosis
(Kolenic et al., 2018; Hajek et al., 2019), schizophreniform
and psychotic disorder not otherwise specified (Shahab et al.,
2019), and clinical high risk (Chung et al., 2018) or ultra-
high risk (Iftimovici et al., 2020) for psychosis. Despite
evidence that abnormalities in brain morphology occur prior
to the development of psychosis, the gap between model-
estimated and chronological age widens with illness duration
such that chronic schizophrenia has the largest gap, followed
by recent-onset schizophrenia, and then ultra-high risk for
psychosis (Koutsouleris et al., 2014), which could reflect
a neurodegenerative process. Importantly, longitudinal data
suggest that the brain-age gap may progressively increase over
time in schizophrenia (Schnack et al., 2016). Thus, research to
date has generated evidence for both neurodevelopmental and
neurodegenerative processes in schizophrenia.

Regardless of the origins of aberrant brain morphology in
schizophrenia, detection of advanced brain aging may have
clinical utility. A large brain-age gap in combination with
an early onset of clinical high risk symptoms may predict
an insidious onset of psychosis (Chung et al., 2019a,b). Such
information could be used in a risk calculator, and possibly
be clinically useful in connecting those individuals at highest
risk of developing a severe and persistent mental illness with
appropriate treatments. However, a critical test for a clinical
detection tool is whether it differentiates between individuals
who develop psychotic psychopathology from those who do
not. Contrasting brain-age of affected and unaffected individuals
in a family is one way to appraise the potential for using
an index to predict development of the disorder. Before any
clinical implementation, however, more research is needed to
replicate previous findings, explore diagnostic specificity, and
test generalizability to a wider population, as well as understand
the influence of confounds (e.g., obesity) to the link between
brain-age gap and psychotic illness (Nenadić et al., 2017;
Andreou and Borgwardt, 2020).

Whether advanced brain-age is specific to schizophrenia
among mental disorders is unclear. There is some evidence
for specificity to schizophrenia based on lack of abnormally
large age gaps among mixed samples of bipolar disorder
with and without psychosis (Nenadić et al., 2017; Shahab
et al., 2019), offspring of people with bipolar disorder (Hajek
et al., 2019), and non-psychotic major depressive disorder

1Brain-age gap here is the same construct as Brain Age Gap Estimate (BrainAGE),
as it is sometimes referred to in this literature.
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[Besteher et al., 2019; although, see Han et al. (2021)].
However, there is some evidence of larger age gaps among
major depressive disorder and borderline personality disorder
in comparison to controls, though these gaps are attenuated in
comparison to that of the schizophrenia group (Koutsouleris
et al., 2014). Structural brain abnormalities such as ventricular
enlargement which underlie advanced brain-age estimation
do not seem to be specific to schizophrenia, but extend to
other psychotic disorders such as psychotic bipolar disorder
(Strasser et al., 2005; Keshavan et al., 2008). Further, when
comparing bipolar disorder participants with and without
a history of psychosis, no difference in brain-age gap was
found (Shahab et al., 2019). Based on this previous work,
advanced brain-age is most evident in schizophrenia among
psychiatric illnesses, but is present to a lesser degree in
other mental health conditions; however, few studies to date
have specifically compared schizophrenia with other psychotic
disorders, including bipolar disorder with psychotic features
and schizoaffective disorder. Therefore, it is unknown whether
a larger brain-age gap is more generally evident in psychotic
psychopathology rather than specific to the diagnostic category
of schizophrenia.

In the current study, we examined whether schizophrenia
and other psychotic disorders are associated with an advanced
brain-age gap. Additionally, we tested the degree to which
biological relatives demonstrate brain-age gaps similar to their
family members who exhibit psychotic psychopathology. We
hypothesized that people with schizophrenia would demonstrate
the most advanced brain-age followed by other psychotic
disorders and then relatives, who were expected to show
attenuated abnormality to people with psychotic disorders
(PwP). We also investigated the relationship of brain-age
gap with cognitive impairment, functioning, and symptom
severity. In order to examine whether brain-age gap suggests
neurodegeneration, we conducted exploratory analyses in a
subgroup of participants with longitudinal data. Finally, we tested
for group differences in gray matter volume, cortical thickness,
and surface area in order to approximate specific brain regions
with structural deficits that lead to an advanced brain-age gap
estimated by the model.

MATERIALS AND METHODS

Participants
Data were collected as part of two family studies focusing
on psychosis. Study 1 recruited adults aged 18–65, including
people with major mental illness (schizophrenia, schizoaffective
disorder, bipolar I disorder without psychotic features, and
bipolar I disorder with psychotic features), their first-degree
biological relatives, and unrelated healthy controls. Only patients
with a history of psychotic symptoms were included in
primary analyses, though a separate analysis was completed
comparing participants with bipolar I disorder with and
without psychotic features (see below). Study 2, the Psychosis
Human Connectome Project, recruited people aged 18–65 with
a psychotic disorder (schizophrenia, schizoaffective disorder,

or bipolar I disorder with psychotic features), their first-
degree biological relatives (aged 18–69), and unrelated healthy
controls. Exclusion criteria for study 2 have been described
previously (Demro et al., 2021) and match those of study
1. In total, 332 participants (48 from study 1; 284 from
study 2) were included in primary analyses: 163 participants
with psychosis (105 schizophrenia, 17 schizoaffective, 41
bipolar I disorder with psychotic features), 103 first-degree
biological relatives (57 siblings, 35 parents, 11 offspring),
and 66 controls. Of the 103 relatives, 63 were related
to a person with schizophrenia, seven to a person with
schizoaffective disorder, and 33 to a person with bipolar I
disorder with psychotic features. Forty-two participants (nine
controls, 13 relatives, 20 PwP) completed both studies (within
2 weeks–4 years; mean time between scans = 633.55 days,
SD = 415.10 days), allowing for exploratory analyses of
longitudinal data. For the primary analyses, study 2 data
were used for participants who completed both studies. An
additional 15 individuals with bipolar I disorder without
psychosis and seven relatives of people with such a diagnosis
were included in exploratory analyses. Groups were matched on
basic demographic characteristics as much as possible during
study enrollment. For descriptive statistics of the full sample, see
Table 1.

Clinical Assessment
The Structured Clinical Interview for DSM-IV-TR disorders
(First et al., 2002) was used to assess clinical diagnosis
and estimate Global Assessment of Functioning (GAF) for
participants in both studies. The Brief Psychiatric Rating Scale
[BPRS; Ventura et al. (2000)] was administered to all participants
as a broad measure of psychiatric symptom severity. Participants
with psychosis were additionally assessed with the Scale for
the Assessment of Negative/Positive Symptoms [SANS/SAPS;
Andreasen (1984, 1989)]. This measure provides an estimate of
current psychotic symptom severity. The Schizotypal Personality
Questionnaire [SPQ; Raine (1991)] was used to capture subtle
psychosis-like traits. Similarly, to capture variation in propensity
for dysregulated negative emotional states the trait domain
“negative affect” of the Personality Inventory for DSM-5 (PID-
5) was used in analyses (Longenecker et al., 2020). Cognitive
functioning was assessed using subscales of the Wechsler
Adult Intelligence Scale (WAIS; Wechsler, 2008) to yield
an estimate of IQ.

Neuroimaging Data Acquisition
Study 1 collected structural Magnetic Resonance Imaging
(MRI) data using a 10-min T1-weighted MPRAGE sequence
(TE = 2.12 ms, TR = 2,400 ms, flip angle = 8, resolution = 256) on
a 3 Tesla Siemens Prisma scanner using a 32 channel head coil.
Imaging data for study 2 were collected on a separate Siemens
3 Tesla Prisma scanner with a Siemens 32 channel head coil.
An 8-min HCP T1w MPRAGE (TE = 1.81/3.6/5.39/7.18 ms,
TR = 2,500 ms, flip angle = 8, resolution = 256) with volumetric
navigators for real-time motion correction was performed. Both
studies completed MRI scanning at the Center for Magnetic
Resonance Research of the University of Minnesota.
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TABLE 1 | Demographic and clinical characteristics.

Controls n = 66 Relatives n = 103 PwP n = 163 Statistic

Mean age in years (SD) 41.16 (12.69) 45.93c (14.24) 40.18c (12.65) F(2,329) = 6.26, p = 0.002

Female sex 35 (53.0%) 65c (63.1%) 68c (41.7%) χ2
(2,332) = 11.75, p = 0.003

Racial/ethnic minority identity 6a (9.1%) 13c (12.6%) 52ac (31.9%) χ2
(2,332) = 21.36, p < 0.001

Parent education 5.77 (1.18) 5.56 (1.22) 5.39 (1.28) H(2) = 4.44, p = 0.108

Participant education (years) 16.08ab (2.27) 15.10bc (2.30) 13.96ac (2.02) F(2,329) = 24.62, p < 0.001

BMI (kg/m2) 26.15a (5.18) 28.39c (5.93) 31.25ac (7.40) F(2,328) = 15.60, p < 0.001

BPRS total 27.03ab (3.51) 32.41bc (6.84) 44.87ac (12.45) F(2,329) = 100.44, p < 0.001

SPQ total 7.85ab (7.51) 14.96bc (13.09) 31.14ac (16.33) F(2,327) = 81.12, p < 0.001

PID-5 negative affect 0.89a (0.32) 0.98c (0.37) 1.31ac (0.42) F(2,320) = 35.82, p < 0.001

WAIS IQ 109.09ab (12.28) 101.88bc (11.35) 97.40ac (12.15) F(2,328) = 22.81, p < 0.001

Groups that share a superscript reflect a significant (p < 0.05) pairwise comparison; Participant racial/ethnic identities were as follows, in order of group
(controls/relatives/PwP): 90.9/87.4/68.1% White, 4.5/6.8/20.9% Black, 1.5/2.9/3.7% Latino/a, 1.5/1.0/3.1% Asian/Asian American, 0/0/0.6% Native American,
1.5/1.9/3.7% Other; Number of participants who were missing data: nine on parent education, two on SPQ and one on WAIS IQ; Parent education = highest of
either parent’s level of education achieved, coded on an ordinal scale: 1 = 7th grade or less, 2 = 7th–9th grade, 3 = 10th–12th grade, 4 = high school graduate/GED,
5 = partial college/vocational/technical/RN, 6 = 4 year college/university graduate, 7 = graduate degree; BMI = body mass index calculated as [weight/(height ∗ height)]
and then multiplied by 703 to convert to metric units; BPRS = Brief Psychiatric Rating Scale (minimum score = 24); SPQ = Schizotypal Personality Questionnaire;
PID-5 = Personality Inventory for DSM-5; WAIS IQ = estimated from Wechsler Adult Intelligence Scale.

Neuroimaging Data Processing
The T1-weighted DICOM data was converted to NIfTI by
following the standardized brain imaging data structure (BIDS)
format (Gorgolewski et al., 2016). The BIDS-organized NifTI
data was then processed through the Brain-Age Regression
Analysis and Computation Utility Software [BARACUS; Liem
et al. (2017)] using a containerized version of the software
(Liem and Gorgolewski, 2017). The BARACUS container was
downloaded locally and used to produce the BARACUS model
estimate of brain-age. The BARACUS container includes all
functionality and software dependencies to take raw NIFTI
data, run the FreeSurfer processing, and calculate the brain-age
estimate based on the BARACUS model. We used BARACUS
version 1.1.2. The BARACUS framework uses previously trained
machine learning based prediction models to estimate the age
of a participant based on their anatomical data. To perform
the prediction, BARACUS utilizes metrics from the cortical
reconstruction and volumetric segmentation tool FreeSurfer
v5.3.0 (Dale and Sereno, 1993; Sled et al., 1998; Dale et al.,
1999; Fischl et al., 1999a,b, 2001, 2002, 2004a,b; Fischl and Dale,
2000; Rosas et al., 2002; Kuperberg et al., 2003; Salat et al.,
2004; Segonne et al., 2004; Desikan et al., 2006; Han et al.,
2006; Jovicich et al., 2006; Segonne et al., 2007; Reuter et al.,
2010, 2012; Reuter and Fischl, 2011) such as cortical thickness,
cortical surface area, and subcortical volumes. The BARACUS
model was trained and implemented in a two-level approach.
The first level predicted ages with a support vector regression
model (SVR) (Drucker et al., 1996) from each FreeSurfer metric
separately. The second level stacked all of the SVR models
from the first level with a random forest (RF) model (Breiman,
2001). Previous research suggests that generating a predictive
model with this two-level strategy with neuroimaging data
produces prediction with smaller variability (Rahim et al., 2016).
The present analysis used the previously trained BARACUS
model “Liem (2016)__OCI_norm,” which was trained on 1,166
participants (566F/600M, age: µ = 59.1, σ = 15.2, range = 20–80)

with no objective cognitive impairment (OCI), because it most
closely matched the demographics of our sample.

Brain-Age Gap Estimate
The brain-age gap estimate is the difference between a person’s
chronological age and their model-estimated age. The model-
estimated age was calculated using the publicly available
BARACUS model. We used a corrected version of brain-age gap
[see Smith et al. (2019)] because chronological age correlates
with brain-age gap, leading to overestimation of age in younger
people and underestimation in older people due to regression
to the mean (Le et al., 2018). In order to correct for this, we
computed the age gap by subtracting chronological age from the
model-estimated age. We then fit a regression line to our data,
predicting the age gap from chronological age and saving the
unstandardized residuals. The residual values were then used for
subsequent analyses and are hereafter referred to as brain-age gap
estimates.2

Statistical Analysis
Data analyses were completed using SPSS version 25 and R
version 4.1.1. We conducted multilevel modeling to examine
whether participants were nested due to family relatedness. We
then used multilevel modeling to assess group differences in
brain-age gap, accounting for family relatedness. Scanner type
was used as a covariate in analyses to control for possible
effects related to each study using a different MRI scanner.
Additional covariates included race, sex, and BMI, as groups
differed on these variables and previous studies, as well as
our own analyses, suggest that these variables are associated
with brain-age gap (Nenadić et al., 2017; Kolenic et al.,
2018). We first tested for a main effect of group on brain-
age gap by comparing healthy controls, relatives, and PwP.

2This type of corrected brain-age gap estimate is sometimes referred to as
“BrainAGER” (Brain Age Gap Estimate Residualized) scores in the literature.
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We then split the group of PwP into subgroups reflecting
clinical diagnosis (schizophrenia, schizoaffective disorder, bipolar
disorder with psychotic features). We conducted multilevel
modeling (controlling for scanner, race, sex, and BMI) to assess
the relation between brain-age gap and various clinical and
cognitive measures, using False Discovery Rate (FDR) to correct
for multiple comparisons.

In terms of exploratory analyses, we used linear regression
to examine relations between brain-age gap and clinical and
cognitive measures among subgroups of participants, controlling
for scanner, race, sex, and BMI. We used mixed analysis of
variance (ANOVA) to examine group differences in brain-age
gap over time for a subset of participants who completed both
study 1 and study 2. Using a subset of participants from study
1 that are not included in primary analyses, we conducted an
analysis of covariance (ANCOVA; controlling for sex, race, and
BMI) to test for group differences between 15 individuals with
bipolar I disorder without psychosis, seven relatives of people
with such a diagnosis, and the other groups previously described.
Finally, we used ANCOVA to test for group differences in cortical
thickness, cortical surface area, and subcortical volume. We
entered cortical thickness, cortical surface area, and subcortical
volume measures for all regions as dependent variables, group
status (control, relative, PwP) as the independent variable, and
sex, age, scanner, and estimated total intra-cranial volume as
covariates. We corrected for multiple comparisons using FDR.

RESULTS

Demographic and clinical characteristics of the sample are
provided in Table 1. Groups differed in terms of age, sex,
and race (see Table 1) largely due to relatives who were older,
more female, and more White than PwP. Controls and PwP
had similar demographic characteristics (i.e., no differences
with the exception of race) and there were no group-by-age
[F(70,210) = 1.26, p = 0.109], group-by-sex [F(2,326) = 0.43,
p = 0.653] or group-by-race [F(8,316) = 0.62, p = 0.760]
interactions in predicting brain-age gap. As in previous studies,
obesity [defined as BMI > 30 kg/m2; Weir and Jan (2021)]
was associated with more advanced brain-age [F(1,330) = 7.23,
p = 0.008] but there was no group-by-obesity status interaction in
predicting brain-age gap [F(2,326) = 1.96, p = 0.143]. Even though
only 50 of the 163 PwP were related to one or more relatives
in the study, and families in our sample were small (the modal
PwP-relative family contained one relative), results of multilevel
modeling suggest that brain-age gap data were nested within
families. Primary analyses were conducted with the following
covariates: sex, race, BMI, family relatedness, and scanner.

We tested our hypothesis that people with psychotic disorders
(PwP), and to a lesser degree their first-degree biological relatives,
would demonstrate advanced brain-age compared to healthy
controls. The results of multilevel modeling indicated that
participant group predicted brain-age gap after accounting for
sex, race, BMI, family relatedness, and scanner [χ2

(2,332) = 17.95,
p< 0.001]. Specifically, PwP demonstrated a larger brain-age gap
compared to their biological relatives [p = 0.001] and healthy

controls [p = 0.002], indicating that the estimated brain-age
of individuals with a history of psychosis was further beyond
their chronological age than the other groups (see Figure 1).
In order to examine whether the particular form of psychotic
psychopathology was relevant, we compared subgroups of PwP
along clinical diagnostic boundaries. A multilevel model showed

FIGURE 1 | Violin density plot of group comparison on brain-age gap. People
with psychotic disorders (PwP) demonstrated a greater estimated brain-age
than chronological age (i.e., brain-age gap) in contrast to biological relatives of
people with psychotic psychopathology and healthy controls.

FIGURE 2 | Violin density plot of brain-age gap across diagnostic groups
within people with psychotic disorders (PwP). Schizophrenia (SZ) and bipolar I
disorder with psychotic features (BPp) groups demonstrated larger brain-age
gaps than healthy controls (Ctrl). There were no differences in brain-age gap
between the forms of psychotic disorders. Relatives (Rel) had smaller
brain-age gaps than SZ; relatives did not differ from BPp, schizoaffective
(SZA), or controls. Sample size for SZA is small and interpretation requires
caution.
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that a five-category diagnostic group variable (see Figure 2)
predicted brain-age gap when controlling for sex, race, BMI,
family relatedness, and scanner [χ2

(4,332) = 20.26, p < 0.001].
Pairwise comparisons indicated that people with schizophrenia
and bipolar I disorder with psychotic features demonstrated
larger brain-age gaps compared to controls (p = 0.008 and
p = 0.049, respectively; Tukey-corrected), with no group
differences between any of the psychotic disorders (p > 0.584;
see Figure 2). Contrary to hypotheses, biological relatives of
PwP failed to have greater brain-age gaps than healthy controls
(p = 0.990; see Supplementary Material for more details).
A multilevel model was run to determine whether IQ and
community functioning predicted brain-age gap in the full
sample (with scanner, race, sex, BMI, and family relatedness
as variables of non-interest in the model). The results of this
model indicated that lower IQ (p = 0.007), lower functioning
(p = 0.003), and female sex (p < 0.001; see Figure 3) predicted
greater brain-age gap.

In exploratory analyses, we examined these relations among
subgroups of participants. Among relatives of PwP, multiple
regression was run to predict brain-age gap from IQ, community
functioning (GAF score), schizotypal symptoms (SPQ total),
and emotion dysregulation (PID-5 negative affect), maintaining
scanner, race, sex, and BMI as variables of non-interest in
the model. Among relatives, lower IQ (p = 0.028), lower SPQ
(p = 0.032), and study 1 scanner (p = 0.040) predicted larger
brain-age gap [F(8,89) = 3.39, p = 0.002, R2 = 0.233]. Since scanner
was entered as a variable of non-interest, and there were no group
differences to suggest disproportionate assessment by scanner
type [χ2

(2,332) = 4.56, p = 0.102], we did not further interpret
the contribution of scanner in this analysis. Among PwP,
multiple regression with IQ, community functioning, current
symptom severity (BPRS total), duration of psychotic illness,
and current antipsychotic medication dosage [quantified using
chlorpromazine equivalents, see Leucht et al. (2016)] failed to
predict brain-age gap, with scanner, race, sex, and BMI entered
as covariates [F(9,122) = 1.74, p = 0.086, R2 = 0.114]. These
results suggest that larger brain-age gap in biological relatives
is associated with lower cognitive functioning, while in PwP,
brain-age gap is not a marker of current cognitive functioning,
symptoms, medication load, or time since disorder onset.
This is consistent with brain-age gaps reflecting developmental
abnormalities, rather than neurodegeneration, of brain structure
in individuals with psychotic disorders.

Additional exploratory analyses included a longitudinal
examination of brain-age gap among the subgroup of participants
who completed both study 1 and study 2. The intraclass
correlation coefficient between predicted brain-age scores from
the study 1 and study 2 scans was 0.90 (95% CI: 0.81–0.95),
suggesting good reliability and stability. A mixed ANOVA
controlling for amount of time between scans 1 and 2 revealed
that brain-age gap scores increased over time [F(1,38) = 4.15,
p = 0.049], but there was no interaction to suggest a group
difference in changes in brain-age gap over time [F(2,39) = 0.49,
p = 0.615; see Figure 4]. In terms of years of brain-age gap
reflected in the unadjusted values, PwP increased from an average
brain-age gap of 7.94 years (SD = 9.03) at the first scan to

9.08 years (SD = 10.01) at the follow-up scan; controls increased
from -0.75 (SD = 10.73) to 0.89 (SD = 10.33) years; and relatives
increased from -1.35 (SD = 10.66) to 2.18 (SD = 8.27) years.
The brain-age acceleration rate was calculated as the change
in uncorrected brain-age gap over the change in chronological
age. Aging accelerated at a rate of 2.56 years per chronological
year (SD = 10.76) for PwP, 2.21 years per chronological year
(SD = 4.62) for controls, and 1.54 years per chronological year
(SD = 11.61) for relatives.

In an exploratory analysis to specifically examine the
dependency of brain-age gap on history of psychosis, we
compared participants with bipolar I disorder without a history
of psychosis to the other groups. We found an effect of group on
brain-age gap [F(4,163) = 4.16, p = 0.003] such that participants
with bipolar I disorder without psychotic features, surprisingly,
had a greater brain-age gap in comparison to bipolar I disorder
participants with psychotic features (p = 0.029), biological
relatives of people with bipolar I disorder with (p = 0.003) and
without psychotic features (p = 0.003), and healthy controls
(p< 0.001). Although based on a small sample, this effect suggests
that other factors beyond psychosis are related to altered brain
morphology in bipolar disorder.

In order to investigate which brain regions may be driving
brain-age gap findings, we compared groups on cortical
thickness and surface area as well as subcortical volume.
We found an effect of group in a range of regions when
controlling for sex, scanner, age, and intra-cranial volume (see
Supplementary Material). Briefly, groups differed in frontal
regions (bilateral: caudal middle frontal, lateral orbitofrontal,
paracentral, pars opercularis, pars orbitalis, pars triangularis,
precentral, superior frontal; left medial orbitofrontal; and right
rostral middle frontal), parietal regions (bilateral: inferior
parietal, isthmus cingulate, precuneus, postcentral, superior
parietal, supramarginal; and right posterior cingulate), temporal
regions (bilateral: inferior temporal; fusiform; middle temporal,
superior temporal, temporal pole, transverse temporal; and
right parahippocampal), and occipital regions (bilateral: lateral
occipital, lingual, pericalcarine; and left cuneus) as well as the
right banks of superior temporal sulcus (see Supplementary
Table 1). People with psychotic disorders had lower cortical
thickness, surface area, and/or subcortical volume values than
controls and relatives in all these regions; relatives had
lower values than controls in only a few regions (surface
area in left: lateral orbitofrontal, medial orbitofrontal, middle
temporal, and pars opercularis regions; left transverse temporal
cortical thickness; and right pericalcarine surface area; see
Supplementary Table 1).

DISCUSSION

Our analysis revealed evidence of advanced brain-age (quantified
by a larger gap between chronological and model-estimated age)
for individuals with a primary psychotic disorder as well as people
with bipolar I disorder with a history of psychotic symptoms.
There were no differences in brain-age gap across the types
of psychotic disorders, indicating that advanced brain-age is
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FIGURE 3 | (A,B) Correlations among the full sample. Lower IQ (A) and lower Global Assessment of Functioning (B) predicted larger brain-age gap after adjusting
for covariates.

not diagnostically specific in our sample. Biological first-degree
relatives, unaffected and affected, demonstrated model-estimated
ages that did not differ from their chronological age and did not
have an intermediate brain-age gap compared to people with
psychosis and healthy controls. Thus, advanced brain-age may
possess clinical utility for identifying individuals within a family
who are likely to develop psychosis. Exploratory analyses of a
subset of individuals with longitudinal data revealed that over an

average period of 21 months, psychotic psychopathology failed to
be associated with acceleration in brain aging. This supports the
assertion that excessive advance in brain-age occurs earlier in the
disorder and could reflect neurodevelopmental abnormalities.

Our findings support the presence of an abnormal
neurodevelopmental process in psychotic disorders. Brain-
age gap was unrelated to duration of psychotic illness,
antipsychotic load, or current symptom severity, suggesting
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FIGURE 4 | Scatterplot of uncorrected brain-age gap scores from exploratory longitudinal analysis. Brain-age gap scores increased over time for all groups; groups
did not differ in change in brain-age gap over time (i.e., brain-age acceleration).

that early disruptions to brain development—rather than current
clinical severity—are indicative of advanced brain-age. Based
on our longitudinal analyses, the large brain-age gap that we
observed in schizophrenia and bipolar disorder does not seem
to worsen over time. Morphological abnormalities underlying
advanced brain aging likely occur early in the course of illness
without progressing throughout the lifespan, thus reflecting
neurodevelopmental processes [see Shahab et al. (2019)].
However, it is possible that our follow-up period of 21 months
on average was too short to observe accelerated atrophy and that
there may exist subgroups of persons with psychosis for whom
neurodegenerative processes are implicated (Murray et al., 1992).

The current study involved a transdiagnostic sample of
individuals with a history of psychotic symptomatology that
allowed us to directly compare across diagnostic boundaries.
Our primary findings suggest that the presence of psychotic
psychopathology, regardless of specific diagnostic category, is
implicated in advanced brain-age. Exploratory analysis revealed
that advanced brain-age is evident in bipolar disorder regardless
of a history of psychosis, which suggests that there are
additional factors that affect brain structure in bipolar disorder.
However, given the small sample, future studies would be
more informative if they included more individuals with
bipolar disorder who are classified based on their history
of psychosis. The utility of examining brain-age gaps across
different psychotic disorders lies in informing transdiagnostic,
biologically-based classification. Classifying patients according
to biological rather than clinical parameters can identify
specific pathophysiological processes that contribute to the
manifestation of psychotic symptoms and perhaps explain the
heterogeneity within diagnoses (Clementz et al., 2016). Brain-
age gap could characterize individual differences in overall brain

morphology within psychotic disorders, which may improve
the ability to predict the development and course of psychotic
psychopathology (Cole et al., 2019). Our findings add to the
growing literature by demonstrating cross-disorder associations
between brain-age gap and IQ and community functioning.
Specifically, we found among biological relatives that lower
general cognitive performance predicted greater brain-age gap,
suggesting that advanced brain-age could be a measure of subtle
effects of genetic liability for psychosis that is more sensitive than
the clinical presentation of psychotic psychopathology.

Our study provides further evidence of an association between
lower cognitive performance and advanced brain-age. However,
the association between advanced brain-age and lower cognitive
functioning in our sample appears not to depend on the
presence of clinically significant psychopathology. Similarly,
lower cognitive performance has been associated with more
advanced brain-age gap in healthy controls (Liem et al., 2017;
Richard et al., 2018, 2020; Elliott et al., 2021) and in adults
with various medical conditions, such as HIV (Kuhn et al.,
2018), Alzheimer’s disease (Franke and Gaser, 2012), and
TBI (Cole et al., 2015). Within psychotic psychopathology,
cognitive performance has been associated with cortical thickness
throughout the brain in both schizophrenia and bipolar disorder
(Shahab et al., 2019) and structural connectivity in schizophrenia
(Yeo et al., 2016), and evidence suggests that different brain
regions are related to cognitive function for people with
schizophrenia versus controls (Hanford et al., 2019). Further,
people with schizophrenia can be classified according to cognitive
deficits in specific domains, which correspond to unique
structural brain alterations (Geisler et al., 2015).

In terms of brain morphology, our analyses revealed
widespread gray matter perturbations among people with
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psychotic disorders. Brain-age provides an estimate of the
aggregate impact of such gray matter deficits. Previous brain-
age research has also linked larger brain-age gap with lower gray
matter volume: in the prefrontal cortex in typical development
(Truelove-Hill et al., 2020), throughout the brain among first-
episode psychosis patients (Hajek et al., 2019), and in the
left temporal and insular cortices as well as the left frontal
and parietal lobes in schizophrenia spectrum disorders (Shahab
et al., 2019). These regions are involved in higher-order
processing and highly implicated in psychotic disorders. We
found evidence of gray matter abnormalities throughout the
brain for people with psychosis, overlapping with previous
research. Finally, schizophrenia is associated with physical health
issues, including cardiovascular disease, obesity, and metabolic
syndrome (von Hausswolff-Juhlin et al., 2009). Such comorbid
physical conditions require more hospitalizations (Šprah et al.,
2017), further increasing the emotional and financial burden of
the disorder and contributing to a shorter life span for people
with schizophrenia. This increased mortality, in combination
with evidence of impaired cognitive performance and abnormal
brain development, may well be manifestations of compromised
cellular health. The brain-age gap offers a summary value that
provides an estimate of the degree to which abnormalities in brain
morphology could be characterized using a cell aging algorithm.

There are several strengths of our study. First, the clinical
sample included people with a range of psychotic disorders and
therefore allowed for transdiagnostic examination of the brain-
age gap model. Second, the study included biological first-degree
relatives, which allowed for the testing of hypotheses related to
genetic loading. Third, the sample size was relatively large for
a single site study. Fourth, we used a corrected version of the
brain-age gap to address the correlation between chronological
age and brain-age gap, which leads to an overestimation of age
in younger people and underestimation in older people due to
regression to the mean (Le et al., 2018; Smith et al., 2019).
The correlation suggests that chronological age can confound
the relationship between brain-age gap and variables of interest,
yielding spurious correlations. Thus, previous studies that did
not correct for this statistical dependency should be interpreted
with caution. Much of the data from the current study will be
publicly available to allow other investigators to examine brain
morphology in psychosis.

There are also some limitations of our study, including using a
brain-age gap model that is based on only structural T1-weighted
neuroimaging data, rather than incorporating functional data.
Previous findings suggest that multimodal data, combining both
anatomical and whole-brain functional connectivity information,
improves brain-based age prediction in healthy controls (Liem
et al., 2017). Another limitation is that our current findings are
based on two studies that used different MRI scanners, which
limited statistical power in our analyses as we had to covary
for scanner type in our models. Further, because the two time
points were collected on different scanners, results of longitudinal
analyses are considered exploratory and require replication. Our
sample was more diverse than the training sample in terms of
racial identity and our groups differed on this variable, which is a
potential limitation for the effectiveness of the brain-age model as

acknowledged by the BARACUS authors (Liem and Gorgolewski,
2017). Body mass index was calculated from body measurements
for a subset of participants, whereas it was based on participants’
self-reported estimates of height and weight for all study 1
participants (body measurements were not part of the study 1
protocol) and for 25 study 2 participants (body measurements
were not completed during the COVID-19 pandemic). Thus,
our BMI variable may contain additional measurement error.
However, the results of our group comparisons did not change
when we controlled for body mass index. Finally, psychotic
disorders have high rates of comorbidity with, for example,
mood episodes, trauma, and metabolic health issues. There is
a body of research documenting larger brain-age gap among
such conditions, including major depressive disorder (Han et al.,
2021), post-traumatic stress disorder (Liang et al., 2019; Clausen
et al., 2022), and obesity, which co-occurs with both psychosis
and cognitive impairment (Bora et al., 2017; Kolenic et al.,
2018). Importantly, certain medications, such as those to treat
obesity and bipolar disorder, may have neuroprotective effects
[see Kolenic et al. (2018)]. These findings highlight the need
to understand more about potential confounding factors to
advanced brain-age in psychotic psychopathology, not all of
which we could address in the current study.

Overall, our study revealed evidence of advanced brain-age
in schizophrenia and bipolar disorder. Interestingly, analysis
of a subset of individuals with longitudinal data failed to
provide evidence of accelerated brain aging in psychotic
psychopathology. This is consistent with early, and perhaps
neurodevelopmental, neural abnormalities. Relatives of people
with psychosis demonstrated an association between brain-
age and cognitive performance, suggesting that lower cognitive
function in individuals with genetic liability for psychosis
may be tied to cellular abnormalities that result in aberrant
brain morphology.
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