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Introduction
Despite ongoing efforts to improve diagnosis and treatment, 
cancer continues to claim over eight million deaths per year 
worldwide.1 Two dominant approaches have been cited2 to 
improve outcomes: (1) earlier detection and (2) improved 
treatment personalization.3,4 A focus on earlier detection stems 
from recent studies observing that earlier detection5,6 can 
improve outcomes .30%. A focus on treatment personaliza-
tion stems from the recognition that therapeutic approaches, 
highly effective in some patients, may have little or no benefit 
to other patients seemingly with the same tumor type.7 Con-
sequently, tools to correctly assign patients to treatment plans 
are critical. Ideally, relatively cheap, highly accurate, blood bio-
marker-based diagnostic tests could help diagnose disease and 
subsequently manage treatments.

Biomarker discovery approaches attempt to find pro-
teins that are (1) relatively unique to the tumor, (2) indicative 
of its presence and likely behavior (eg, treatment response), 
and (3)  easily quantifiable in the circulation. The underly-
ing hypothesis of biomarker discovery approaches is that 
pathophysiological changes in cells or tissues are reflected 
through genomic alterations that influence protein expression 

in a disease-specific fashion. Accordingly, biomarker-discovery  
approaches have asserted that many potential markers are 
tumor-derived proteins that are shed from the tumor into 
circulation. Shedding for our purposes is considered as the 
aggregate of multiple processes, including protein secre-
tion, extracellular domain cleavage, cell lysis, and diffusion to 
the circulation.

The biophysical processes governing how a protein 
leaves cancer cells, transits to the blood, and persists in circu-
lation remain incompletely understood. As a purely empirical 
approach cannot measure shedding and persistence rates for all 
proteins across all tumor sizes, architectures, cell compositions, 
and types, we apply an interdisciplinary modeling–experimental 
approach as a first step toward linking biomarker expression to 
tumor state of viability. The ultimate goal for such an approach 
is to uncover fundamental biophysical processes of tumor pro-
gression, protein shedding, and protein persistence that underlie 
biomarker discovery, thereby accelerating biomarker develop-
ment to help overcome challenges faced in cancer diagnosis 
and treatment.

Previous studies have advanced computational modeling 
to address the need for an integrated, quantitative analysis of 
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tumor progression, typically using diffusion reaction equations 
describing the space and time dynamics of mass and diffus-
ible substances (see reviews 8–18). Models using multiscale 
approaches (ie, linking events across subcellular, cellular, and 
tumoral scales),19–32 studying vascularized tumor treatment,33–42 
and evaluating nanotherapy37,41–52 have also been developed. 
Parameters in these models can be coupled with biological and 
clinical data, including measurements from in vitro cell culture, 
intravital microscopy, and histopathology. Signaling networks 
in cancer have been modeled,53,54 encompassing gene,55,56  
protein,57,58 and metabolic59 activities. Recent work by 
Gambhir, Mallick, and coworkers60–62 has helped to establish 
theoretical frameworks supporting cancer biomarker stud-
ies. In particular, a mathematical model relating tumor size 
and biomarkers secreted into circulation was developed.60,62 
Although model development has advanced, a more com-
prehensive understanding of biophysical processes governing 
protein abundance in tumors and their release into circula-
tion by describing the complex interactions among tumor 
cells and their microenvironment is needed. To address this 
and other shortcomings and to advance the study of protein 
biomarkers, we build upon work modeling tumor progres-
sion to develop a computational model that includes protein 
production and release based on tumor vascularization, cell 
proliferation, hypoxia, and necrosis. This system enables defi-
nition of quantitative relations linking the tumor and circu-
lating proteomes while considering tumor structure and the 
associated microenvironment.

Methods
Simulation of protein shedding by vascularized tumor 

lesions. The mathematical model is based on Refs. 22, 37, 48, 
and 63 and is capable of representing in two spatial dimensions, 
viable and necrotic tumor tissues with angiogenesis-driven vas-
cularization similar to that of tumor lesions and with shed-
ding and transport of molecules throughout these tissues. The 
model dynamically couples a continuous tumor growth compo-
nent with an angiogenesis model and accounts for blood flow, 
transcapillary fluid flux, interstitial fluid flow, and lymphatic 
drainage. This approach enables simulation of the complex 
interactions between tumor cells and their microenvironment 
and the associated protein shedding and transport. Tumor 
growth is calculated based on the balance of cell proliferation 
and death. Proliferation depends on adequate cell nutrients and 
oxygen. Death is induced by levels of nutrients below a certain 
threshold. Model parameter values are calibrated to experi-
mental data as in Refs. 30–32, 34, 35, and 48. The model and 
its parameters are described in the following sections.

Tumor growth. The tumor model component is based 
on Ref. 63, Briefly, the tumor tissue is denoted by Ω, and its 
boundary is denoted by Σ. In general, tumor tissue may have a 
proliferative region ΩP (typically in the order of 100–200 µm 
around arterial vessels) in which cells have sufficient nutrients, 
a hypoxic region ΩH in which nutrients and oxygen are 

sufficient for survival but not for proliferation, and a necrotic 
region ΩN in which nutrients are insufficient for survival. The 
tumor growth velocity (nondimensionalized) is implemented 
via a generalized Darcy’s law63:

	 v c EP E= − ∇ + ∇µ χ 	 (1)

where m is a cell mobility representing the net effects of 
cell–cell and cell–matrix adhesions, P is an oncotic pres-
sure, χ

e
 is a haptotaxis, and E is an extracellular matrix 

(ECM) density. Definitions for χ
e
 and E are in Ref. 63. By 

assuming that the cell density is constant in the proliferative 
region, the overall tumor growth is associated with the rate 
of volume change:

	 ∇⋅ =v c pλ 	 (2)

where λ p is a nondimensional net proliferation rate (see later). 
Here, the cell density is assumed not to exceed 70% of the total 
tissue, with the remainder composed of ECM. Tumor growth 
was simulated to Day 18 after inception, which allowed for rea-
sonable computational cost (longer times will be explored in 
future work).

Angiogenesis. The vasculature model component is inspired 
by Ref. 64 and based on Refs. 22 and 63, representing blood 
flow, vascular leakage, and vascular network remodeling due to 
wall shear stress and mechanical stresses imposed by the tumor 
tissue. The vasculature model is described in detail in Refs. 22 
and 63. The main model parameters influencing vascular flow 
include blood vessel pressure, vessel radii, vessel wall hydraulic 
conductivity, and osmotic pressure difference, with values set 
from previously reported experimental work.22 We simulate 
a simplified lung capillary organization composed of square 
elements, acknowledging that in reality the capillaries are 
heterogeneously delineated by the lung alveoli. As the tumor 
grows within this vascular environment, the tissue may locally 
experience heterogeneous access to elements diffusing from the 
vasculature, which may depend on tissue pressure as well as 
distance from the nearest vascular source.

Transport of oxygen and nutrients. The transport of nutri-
ents (s = n) and oxygen (s = σ) is simulated from the location of 
the vasculature. These small molecules are supplied at rates λneo

s  
and λ pre

s , respectively, diffuse with a coefficient Ds, are taken up 
both by normal cells (with a rate λtissue

s ) and tumor cells (λtumor
s  in 

the proliferative region and qs in the hypoxic region), and decay 
(with a rate λN

s ) in the necrotic regions. The formulation is63
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where λev
s  is the constant transfer rate from both pre-existing 

and tumor-induced vessels, x is the position in space, t is the 
time, p is the tumor (solid) pressure, 1vessel is the characteristic 
function for vasculature (equals 1 at vessel locations and 0 other
wise), and h is the hematocrit in the vascular network related 
to oxygen extravasation (following Ref. 63). The extravasation 
is modulated by the extravascular interstitial pressure pi scaled 
by the effective pressure pe, with kpi

 being the weight of the 
convective transport component of small molecules22:
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Constants H D and hmin represent normal and minimum blood 
hematocrit required for oxygen extravasation, respectively.

Production and transport of protein. Similar to the model 
for production, diffusion, and uptake of tumor angiogenic 
factors (TAFs),22,63 which drives the angiogenesis process, 
the tumor cells are simulated to shed proteins ranging from 
very small (with size comparable to insulin, 5.7 kDa) to very 
large (with size comparable to titin, 3,700  kDa) when in  
a particular state (eg, hypoxic) and when transitioning into 
or out of this state. We define secreted as those proteins that 
are actively shed (exported or cleaved from the cell surface). 
Viable cells typically shed mostly secreted proteins, whereas 
necrosing cells tend to shed their contents as intracellular pro-
teins. In this study, we focus on the bulk of the proteins shed 
from viable (proliferating or quiescent) and nonviable (necros-
ing) cells; in contrast, apoptotic cells will typically condense 
and not spill their contents into the surroundings as do the 
necrotic cells. Thus, in the model, the cellular states include 
proliferation, quiescence (hypoxia), and necrosis. ECM and 
vasculature creation or degradation are also assumed to trigger 
protein shedding by the corresponding cells.

Once shed, the proteins diffuse through the interstitial 
space and either decay or enter circulation into the surround-
ing vasculature. Assuming steady-state conditions, the overall 
mass balance for a protein P is

	0 1= ∇⋅ ∇ + − − −( ) ( )D P PP
Pλ λ λproduction

P
circulation vessel decay1 1Ω

PP P	 (6)

where DP is the diffusivity, and λ production
P , λcirculation

P , and λdecay
P  

are the (constant) rates of protein production, entering circula-
tion, and decay, respectively.

For all the diffusion equations, as well as the pressure 
and angiogenic factors, the conditions at the boundaries are 
∂
∂ =B

n 0 (zero Neumann condition), where B is the element at 
the boundary (oxygen, pressure, or protein).

A fivefold range of protein production rates was simulated, 
and a fivefold range of interstitial diffusivities was simulated 
for each production rate (Table 1). Since the effect of diffu-
sivity is nonlinear, the values within the defined range were 
separated by a constant factor (3.76) to span from the lowest 
to the highest value. For simplicity, very small molecules were 

assumed to have the highest interstitial diffusivity, similar 
to that of insulin, while very large molecules had the lowest 
interstitial diffusivity, on the order of magnitude of that of 
larger proteins, such as titin. Protein transfer rates into the 
vasculature as well as decay rates were in this study assumed 
to be the same for all types of proteins.

Model parameters. The main parameters of the model are 
summarized in Table 1. All other parameters are as in Ref. 22.

Experiments in vivo to obtain tumor protein data. Pro-
tein data were obtained from our previous study.61 The meth-
ods are summarized in the following sections.

Xenografts and sample collection. Epidermoid carcinoma 
A-431 cells (2 × 109) (ATCC) were mixed 1:1 with Matrigel 
(BD Biosciences) and subcutaneously injected into the f   lanks 
of nude athymic BALB/c female mice (Charles River Labo-
ratories). All animal experiments were performed as per the 
institutional guidelines and were approved by the Institutional 
Animal Care and Use Committee at Cedars-Sinai Medical 
Center (IACUC Number 001276). Tumor volumes were mea-
sured twice a week with a digital vernier caliper and were cal-
culated as: π/6 × (larger diameter) × (smaller diameter). Tumor 
tissue and plasma were harvested after 18 days postinjection 
in order to avoid animal discomfort due to tumor burden. At 
this time, the average size of tumors was 2,500 mm3. Frozen 
tumor pieces from five mice were individually ground in liquid 
nitrogen with the aid of a ceramic mortar, and equal masses 

Table 1. Main model parameters and associated values.

Parameter Value Reference

Tumor proliferation rate 1 day–1 48

Tumor necrosis threshold 0.5700 48

Tumor hypoxic threshold 0.5750 48

Oxygen diffusivity 1 (*) 63

Oxygen transfer rate from 
vasculature

5 (*) 63

Oxygen uptake rate by 
proliferating tumor cells

1.5 (*) 63

Oxygen uptake rate by 
hypoxic tumor cells

1.3 (*) 63

Oxygen uptake rate by 
tumor microenvironment

0.12 (*) 63

Oxygen decay rate 0.35 (*) 63

Protein production rate 
(low; medium-low; medium; 
medium-high; high)

0.2, 0.4, 1.0, 2.5, 
5.0 (**)

Calculated

Protein diffusivities (high; 
medium-high; medium; 
medium-low; low)

0.01880; 0.00500; 
0.00133; 0.00035; 
0.00009 (*)

Calculated

Protein transfer rate into 
vasculature

0.006 (*) Calculated

Protein decay rate 0.001 (*) Calculated

Notes: *Value is rescaled by the square of the simulation system characteristic 
length (1 cm) and divided by the system characteristic time (one second) 
multiplied by the oxygen diffusivity80 (1 × 10−5 cm2/s). **Values are rescaled by 
the model production rate of VEGF-A (VEGF-165) protein.
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of individual tumor homogenate were pooled and suspended 
in RAF buffer (50 mM Tris-HCl, pH 7.4; 1% NP-40; 0.25% 
sodium deoxycholate; 150 mM NaCl; 1 mM EDTA, 1mM 
PMSF; 1 mg/ml each aprotinin, leupeptin, pepstatin; 1mM 
Na3VO4; 1 mM NaF). The homogenate was centrifuged for 
five minutes at 200 × g. The supernatant was sonicated on ice 
for two minutes and centrifuged for one hour at 12,000 × g. 
The supernatant (soluble fraction) was cleared through a 0.22-
mm filter. Sera from five mice were pooled and depleted using 
two MARS-3 columns (Agilent Technologies) connected 
in tandem with High Performance Liquid Chromatography 
(HPLC). The unbound fraction was concentrated to a final 
concentration of 2 mg/mL. Tumor and plasma samples were 
labeled with C12 acrylamide as in Ref. 65.

Fractionation of plasma samples. Tumor samples were 
fractionated by reversed-phase chromatography using 1  mg 
of total protein. All samples were reduced with Dithiothreitol 
(DTT) (0.6 mg DTT/mg protein) and alkylated with iodo-
acetamide (3  mg IA/mg protein) prior to chromatography 
as in Ref. 66. The separation was performed in a POROS 
R1/10 column (4.6650  mm, Applied Biosystems) at a flow 
rate of 2.7  mL/min using a linear gradient of 10–80% of 
organic solvent over 30  minutes. The aqueous solvent was 
5% acetonitrile/95% water/0.1% trifluoroacetic acid, and the 
organic solvent was 75% acetonitrile/15% isopropanol/10% 
water/0.095% trifluoroacetic acid. Fractions were collected at 
a rate of three fractions per minute, and 72 fractions were 
collected. Each fraction was individually digested in solu-
tion with trypsin (400 ng/fraction).67 Adjacent fractions were 
combined based on protein chromatography features, result-
ing in a total of 25 fractions for mass spectrometry analysis. 
Plasma samples were subjected to two-dimensional fraction-
ation based on the previously described intact protein analysis 
system approach.67–70 Briefly, the sample was diluted to 10 mL 
with 20 mM Tris (pH 8.5) in 6% isopropanol and 4 M urea 
and immediately injected on an anion exchanger, Mono-Q 
10/100 column (Amersham Biosciences Corp.), for the first 
dimension of the protein fractionation. The buffer system 
consisted of solvent A (20 mM Tris, pH 8.5, in 6% isopro-
panol and 4 M urea, pH 8.5) and solvent B (20 mM Tris in 
6% isopropanol, 4 M urea, and 1 M NaCl). The separation 
was performed at a flow rate of 4.0 mL/min in a gradient of 
0–35% solvent B for 44 minutes, 35–50% solvent B for three 
minutes, 50–100% solvent B for five minutes, and 100% sol-
vent B for an additional five minutes. A total of 12 pools were 
collected. Each pool was then subjected to a second dimen-
sion of separation by reversed-phase chromatography. The 
reversed-phase fractionation was carried out on a POROS 
R2 column (4.6650 mm; Applied Biosystems) using trifluo-
roacetic acid/acetonitrile as a buffer system (solvent A: 95% 
H2O, 5% acetonitrile, and 0.1% trifluoroacetic acid and sol-
vent B: 90% acetonitrile, 10% H2O, and 0.1% trifluoroacetic 
acid) at a flow rate of 2.7 mL/min. The gradient was 5% sol-
vent A until the absorbance reached baseline (desalting step) 

and then 5–50% solvent B for 18 minutes, 50–80% solvent B 
for seven minutes, and 80–95% solvent B for two minutes. 
During the run, 72 900-mL fractions were collected. Each 
fraction was individually digested in solution with trypsin 
(400 ng/fraction), and the fractions were grouped into eight 
pools based on chromatographic features, corresponding to a 
total of 96 fractions for analysis from each experiment.

Protein identification and quantification. Liquid chro-
matography-tandem mass spectrometry (LC-MS/MS) 
was performed as described previously.67 Brief ly, pools 
of fractions were individually analyzed by LC–MS/MS 
in a LTQ-FTICR or LTQ-Orbitrap Mass Spectrometer 
(Thermo-Finnigan LLC) coupled to a nanoflow chroma-
tography system (Eksigent) using a 25-cm column (PicoFrit 
75  mm ID, New Objective) packed in-house with Magic 
C18 resin (Michrom BioResources) over a 90-minute linear 
gradient. Acquired data were automatically processed using 
default parameters, except where noted using the Computa-
tional Proteomics Analysis System, version 8.2.71 The tan-
dem mass spectra were searched against version 3.44 of the 
human International Protein Index (IPI) (71,884 protein 
entries) and mouse IPI (version 3.44 with 55,078 protein 
entries) databases. The searches were performed with X! 
Tandem (version 2008.02.01). The mass tolerance for precur-
sor ions was set to 5 ppm. The mass tolerance for fragment 
ions was set to 0.5 Da. A fixed modification of 71.0371 mass 
units was added to cysteine residues for database search-
ing to account for the acrylamide modification, and 3.01 Da 
were used as variable modification to account for the heavy 
cysteine isotope. All identifications with a PeptideProphet72 
probability .0.95 were submitted to ProteinProphet,73 and 
each of the subsequent protein identifications was required 
to have at least two unique peptides with tryptic frag-
ments (one missed cleavage) with allowance for variable 
modifications on E = −18.011, K = 6.020, M = 15.995, and 
Q = 217.027. In order to assign a species, at least one unique 
human peptide for identification as a human protein was 
required. One unique mouse peptide was required for iden-
tification as a mouse protein. The Q3 algorithm,65 developed 
to accommodate a 3-Da mass shift in heavy and light pep-
tides, was used to compute the ratios between the light and 
heavy isotopic pairs. A spectral count method74 was used to 
estimate the relative abundance of proteins. More specifi-
cally, peptide spectra with the PeptideProphet probability 
of .0.95 or an error rate of 1% were counted for each IPI  
entry identified.

Comparison of human and mouse database entries. Protein 
sequences in human database (human IPI version 3.44) and 
mouse database (mouse IPI version 3.44) were computation-
ally digested with trypsin, and a minimum of seven residues 
was used to match the X! Tandem default search parameter of 
the minimum parent fragment.

Data processing and integration. To facilitate comparisons 
of protein groups among samples, data were aligned by tracking 
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all proteins that were members of a single ProteinProphet 
group as described by Ref. 75. This provided an analytic data set 
with one row for each protein group and specifically a column 
with values indicating the spectral count for proteins in each 
sample consistent with that group. The cellular location for 
each protein sequence was determined using the March 2008 
generic GO slim from the Gene Ontology (GO) consortium 
(http://www.geneontology.org/GO.slims.shtml). GO slim files  
are reduced ontologies with significantly fewer categories  
than the complete GO ontology. The script map2slim (avail-
able from GO) was used to assign proteins to their nearest 
GO category and to identify those that are located in the 
extracellular or plasma membrane. Based on GO definition, 
the term extracellular herein refers to space outside the plasma 
membrane and is intended to annotate gene products that are 
not tightly attached to the cell surface. Therefore, proteins 
annotated with extracellular are basically proteins secreted into 
the medium. In cases that an IPI had multiple locations, the 
protein was considered extracellular as long as one annota-
tion was extracellular space. The protein masses were segre-
gated matching the nonlinear separation of diffusivities in 
the simulations (Table 1), ie, using a factor 3.76 to define the 
ranges. Accordingly, five size categories were defined: high  
(3,816,030–1,014,901 Da), medium-high (1,014,901–269,920 Da),  
medium (269,920–71,787 Da), medium-low (71,787–19,092 Da),  
and low (19,092–32 Da).

Results
Evolution of tumor growth in time. The simulated 

tumor begins within normal host tissue as a small avascular 

nodule (,100 µm) surrounded by normal (capillary) vascula-
ture (Fig. 1A). Even though the nascent lesion is minuscule, 
the viable tissue is already shedding proteins produced by 
proliferative cells as well as a small number of hypoxic cells. 
Necrosis, however, is absent. As the cells proliferate and exceed 
the supply of oxygen in the surrounding microenvironment, 
hypoxia develops and triggers the release of TAFs that dif-
fuse out of the tumor.63 The surrounding capillaries uptake 
the TAF and start proliferating into small irregular capillaries 
that grow toward and into the tumor tissue. With increased 
access to nutrients, the lesion is able to grow larger, which in 
time leads to the development of hypoxia and necrosis, as the 
tissue geometry is distorted and the metabolic demand from 
the proliferative tissue exceeds the vascular supply. By Day 18, 
the lesion has grown to 750 µm in diameter (Fig. 1B), sur-
rounded by numerous angiogenesis-induced capillaries. By 
this time, there are substantial levels of proliferative tissue-, 
hypoxic tissue-, and necrotic tissue-related proteins shedding 
into the vasculature.22,63

Figure  2A quantifies the fractions of proliferative, 
hypoxic, and necrotic tumor tissues from inception (Day 0) 
through Day 18, at which time 49% of the tissue is prolife
rative, 18% of the tissue is hypoxic, and 33% of the tissue is 
necrotic. After Day 6, the angiogenesis-induced supply of 
nutrients stabilizes the change in the tumor cell fractions, as 
noted by the smoother curves in Figure 2A, which is consistent 
with previous experimental observations showing the stabi-
lization of tumor-induced vasculature by Day 6 after incep-
tion.76 The ratio of neo- and pre-existing vasculature to tumor 
tissue during the course of growth is shown in Figure 2B. The 

A

Tumor protein shedding

BDay 0 (inception)

Tumor lesion

Hypoxic tissue
protein shedding

Hypoxic tissue
protein shedding

Necrotic tissue
protein shedding

Necrotic tissue
protein shedding

0.0

0.00.0 0.0 0.0

1.0 1.0

1.0 1.0

1.0 1.0

0.0Tumor lesionProliferative tissue
protein shedding

Proliferative tissue
protein shedding

Day 18

Figure 1. Visualization of protein shedding by tumor lesion at (A) inception (Day 0) and (B) on Day 18. Viable (proliferative) tumor tissue (red) encloses 
a hypoxic (quiescent) region (blue) without necrosis. The capillaries are modeled by the rectangular grid, with irregular sprouts generated through 
angiogenesis elicited by angiogenic factors from the hypoxic tissue. Shown for the two timepoints are (nondimensionalized) levels of protein shedding into 
vasculature for activity related to proliferative, hypoxic, and necrotic tissues. Bar, 250 µm.
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neovascular development, in response to the tumor hypoxia, 
follows an oscillatory pattern with an increasing trend in time, 
reaching 0.5 by Day 17, whereas the pre-existing vasculature-
to-tumor ratio remains fairly constant at ∼0.1 after Day 6 as 
the growing tumor begins to co-opt the surrounding vessels. 
This simulates a highly vascularized lesion, with results con-
sistent with previous modeling work.46

Evaluation of proliferative tissue-related protein-
shedding dynamics. During the growth of the tumor, viable 
proliferative cells are simulated to secrete proteins (as defined 
in the Methods section), and in previous work, we have 
observed the extracellular domains of such proteins for viable 
cells.77 In contrast, necrosing cells release their internal con-
tent into the surroundings, which includes the intracellular 
proteins. Figure 3 shows the amount of protein per tumor unit 
area released into the vasculature over the course of 18 days 
as a function of protein diffusivity and for a medium produc-
tion rate. Following lesion inception, the initial amount enter-
ing vasculature by Day 4 is large, with the higher diffusing 

proteins approaching 2,200 per tumor unit area and the lower 
diffusing proteins being 45% less (∼1,200). By Day 5, the over-
all amount of shedding into the vasculature reaches a maxi-
mum of ∼2,500 for the higher diffusing category and ∼1,600 
for the lower diffusing category. As cell viability is restrained 
by insufficient tumor cell access to oxygen and nutrients, the 
amount of proteins entering the vasculature is correspondingly 
lowered beyond Day 5.

The hypoxic conditions developed within the first five 
days lead to vessel creation through angiogenesis, which sta-
bilizes the proliferation process and enables the lesion to grow 
in a more measured manner, as has been observed experimen-
tally.76 Once the vasculature is functional, the model assumes 
that proteins shed by the tumor can enter the circulation. The 
amount of proteins released into the vasculature reflects this 
condition by the smoother curve in Figure 3 starting on Day 6.  
Interestingly, a 45% decrease in protein shedding is observed 
during Days 5–12, reflecting a transient deterioration to vas-
cular access by the tumor tissue. In time, this phenomenon is 
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expected to reflect oscillations in tumor-to-vessel ratio, which 
have been observed in previous modeling21 and experimental78 
work. Simulation of proliferative tissue-related proteins with 
low and high production rates (not shown) evince smaller 
and larger amounts of protein released into the vasculature, 
respectively, but maintaining overall a similar profile in time 
as in Figure 3.

Evaluation of hypoxic tissue- and necrotic tissue-related 
protein-shedding dynamics. Figure 4 illustrates the release of 
hypoxic tissue-related proteins into vasculature as a function 
of their diffusivity and for a medium production rate. There is 
a spike of mostly high and medium-high diffusivity proteins 
at lesion inception on the first day, as tumor cells struggle to 

gain access to oxygen and nutrients from the surrounding (pre-
existing) vasculature. For the next seven days, mostly high and 
medium-high diffusivity proteins make it to the vasculature and 
evince a rapidly fluctuating pattern reflecting sporadic angio-
genesis. As the vasculature stabilizes after Day 7 to reach more 
regions of the growing tumor,76 hypoxic tissue-related proteins 
of all diffusivities are shed more steadily into the vasculature, 
although still favoring the higher diffusing proteins by a 50% 
higher amount compared to the lower diffusing category.

The release of nonviable cell (necrotic tissue-related) pro-
teins for a medium production rate is shown in Figure 5. As 
expected, initially (Days 0–5) the overall amount is negligible 
since most of the cells are viable in the lesion. Within the next 
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four days, the amount of protein shed increases by 300% as 
necrosis develops due to inadequate vascular access. The extent 
of necrosis stabilizes beyond Day 14, as the lesion becomes vas-
cularized and the process of angiogenesis better balances with 
the oxygen and nutrient demand of the proliferating tumor 
cells, as has been observed to occur experimentally between 
Days 8 and 20 postlesion inception.76,79 The exact timepoint 
depends on cell type and tumor conditions, and thus, Day 
14  in the simulations reflects an average time. Interestingly, 
there is a steep disparity between the amounts of necrotic 
tissue-related proteins entering the vasculature based on their 
diffusivity (spanning a range of ∼550 to ∼130 proteins per 
tumor unit area from high to low diffusivity, respectively), in 
contrast to the proliferative tissue- (range of ∼1,700 to ∼1,300) 
and hypoxic (range of ∼700 to ∼400) tissue-related proteins.

Similar to the proliferative tissue-related proteins, simu-
lation of hypoxic tissue- and necrotic tissue-related proteins 
with low and high production rates (not shown) evince smaller 
and larger amounts of protein released into the vasculature, 
respectively, but maintaining overall a similar profile in time 
as with the medium production rate.

Assessment of stage of tumor growth based on protein 
shedding. The ratio of high-to-low diffusivity proteins associ-
ated with a specific cellular state may provide an indication of 
the stage of tumor growth as well as the extent of its vascular-
ization. Figure 6 shows these ratios calculated for the proteins 
released by proliferative, hypoxic, and necrotic tissues for a 
medium production rate. In general, a larger ratio would indi-
cate that the tumor tissue releasing these proteins is poorly 
vascularized, as the lower diffusing proteins have difficult 

shedding into the circulation. This hypothesis is supported by 
the ratio of 4.0% obtained for the necrotic tissue-related pro-
teins compared to 1.7% for the hypoxic tissue-related proteins 
and 1.2% for the proliferative tissue-related proteins. The poor 
vascularization during the initial days after lesion inception is 
also reflected in the higher ratios obtained for all the cellular 
states, while the associated fluctuations reflect the transient 
instability of the incipient angiogenesis process.

Figure 7 plots the cumulative amount of proliferative tis-
sue-related protein shedding into vasculature from inception 
through Day 18, based on variation in protein diffusivity and 
rate of protein production. As expected, the proteins with the 
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highest amount of release into vasculature (∼100,000) have 
high diffusivity and a high production rate, while those with 
low diffusivity and a low production rate represent the smallest 
amount (∼19,500). More interestingly, the plot highlights the 
three-dimensional interaction landscape among protein diffu-
sivity (which relates to size), protein production (which relates 
to cellular activity), and the total amount that is released into 
the vasculature (which relates to the extent of tumor vascu-
larization). Plots for the hypoxic tissue- and necrotic tissue-
related proteins shedding have similar shapes (not shown).

Evaluation of protein counts from in vivo xenografts. 
Spectral counts of human tumor derived extra- and intracellu-
lar proteins measured from plasma in circulation were obtained 
on Day 18 (Tables 2 and 3). As defined in the Methods sec-
tion, proteins secreted to the exterior of tumor cells are labeled 
extracellular, while those released from the interior of the cells 
are called intracellular. Figure 8A shows that proteins of extra-
cellular origin, considered proportional to cell viability, were 
mainly medium to low mass (ranging from 260 to 11 kDa) 
with the latter being most abundant. In contrast, proteins of  
intracellular origin (Fig. 8B), mainly reflecting cellular necrosis,  

spanned a wider range of mass (from 3,816 to 10 kDa) and 
also exhibited a wider variation in spectral counts (up to 508) 
than the extracellular proteins (up to 124). Assuming that 
protein diffusivity is inversely proportional to mass, these 
count variations were consistent with those simulated by 
the computational model on Day 18 (Fig. 3 for proliferative 
tissue-related proteins and Fig.  5 for necrotic tissue-related 
proteins). In the simulations, the proteins per tumor unit area 
reflect the fractions of tissue that are proliferative, hypoxic, 
and necrotic. Whereas the simulated tumor represents a lesion 
growing orthotopically, in the in vivo experiments, the tumors 
were xenografts, which experienced higher levels of necrosis 
as shown by the spectral counts. Furthermore, in looking at 
the human proteome, there are not nearly as large secreted 
proteins as there are intracellular proteins. One discrepancy 
was the amount of intracellular protein measured experimen-
tally for the low-mass cases, which was much lower, and hence 
did not follow the exponentially increasing trend set by the 
other sizes (Fig. 8B). This suggests that low-mass intracellu-
lar proteins may have difficulty in shedding into circulation 
beyond what can merely be attributed to diffusion – an effect 

Table 2. Human tumor-derived extracellular (secreted) proteins measured from plasma in circulation obtained on Day 18.

Gene Symbol Plasma Spectral 
Counts

Tumor Spectral 
Counts

Length Mass (Da) Size 
Category

DMBT1 1 3 2413 260735 MED

FLG2 39 86 2391 248073 MED

GSN 1 171 782 85698 MED

CD44 4 83 742 81538 MED

GPI 4 213 558 63147 MED-LOW

ECM1 1 86 540 60674 MED-LOW

SBSN 6 125 590 60541 MED-LOW

DMKN 11 86 476 47082 MED-LOW

SERPINA1 3 14 418 46737 MED-LOW

CTSD 5 92 412 44552 MED-LOW

ANXA2 1 659 339 38659 MED-LOW

GGH 1 6 318 35964 MED-LOW

AZGP1 5 6 298 34259 MED-LOW

2 18 275 30847 MED-LOW

SFN 10 1433 248 27774 MED-LOW

ORM2;ORM1 2 2 201 23512 MED-LOW

PYCARD 1 39 195 21627 MED-LOW

PPIA 50 174 165 18012 LOW

CALML5 25 108 146 15893 LOW

PRB4; PRH1; PRH2; PRR4 1 1 134 15097 LOW

LGALS7 12 814 136 15075 LOW

MIF 6 49 115 12476 LOW

PI3 8 70 117 12270 LOW

S100A7 12 363 101 11471 LOW

S100A8 10 731 93 10835 LOW
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Table 3. Human tumor-derived intracellular proteins measured from plasma in circulation obtained on Day 18.

Gene Symbol Plasma Spectral 
Counts

Tumor Spectral 
Counts

Length Mass  
(Da)

Size 
Category

TTN 1 1 34350 3816030 HIGH

SYNE1 1 1 8797 1011086 HIGH

FLG 18 1809 4061 435170 MED-HIGH

TLN1 5 348 2541 269767 MED-HIGH

SFRS2IP 1 5 1463 164652 MED

SKIV2L 1 1 1246 137755 MED

XPO4 1 1 1151 130139 MED

TMF1 1 4 1093 122842 MED

DSG1 105 373 1049 113748 MED

MTHFD1 7 30 935 101559 MED

DSC1 18 148 894 99987 MED

DSC3 4 252 896 99969 MED

DPP6 1 1 865 97588 MED

TGM1 4 27 817 89787 MED

DDX21 2 5 783 87344 MED

HSD17B4 2 20 736 79686 MED

TKT 5 226 623 67878 MED-LOW

KPRP 2 6 579 64136 MED-LOW

CAT 1 43 527 59756 MED-LOW

PMPCA 1 4 525 58253 MED-LOW

CD276 1 1 534 57235 MED-LOW

TUFM 2 81 452 49542 MED-LOW

MFSD10 1 1 455 48339 MED-LOW

ENO1 215 1371 434 47169 MED-LOW

IDH1 1 34 414 46659 MED-LOW

ACAT1 5 11 427 45200 MED-LOW

SERPINB4; SERPINB3 3 223 390 44565 MED-LOW

GAPDHS 1 9 408 44501 MED-LOW

ACTBL2 1 343 376 42003 MED-LOW

CCDC86 1 6 360 40236 MED-LOW

ALDOA 38 497 364 39420 MED-LOW

ASPRV1 1 32 343 36991 MED-LOW

LDHA 19 512 332 36689 MED-LOW

CEBPB 1 1 345 36106 MED-LOW

DECR1 1 8 335 36068 MED-LOW

GAPDH 116 1111 335 36053 MED-LOW

ARG1 6 8 322 34735 MED-LOW

RALY 2 19 306 32463 MED-LOW

MARCKS 2 70 332 31555 MED-LOW

TPI1 59 286 286 30791 MED-LOW

PSMB8 2 5 276 30354 MED-LOW

CA2 5 51 260 29246 MED-LOW

NUBP2 2 9 271 28825 MED-LOW

CASP14 3 13 242 27680 MED-LOW

HSPB1 4 446 205 22783 MED-LOW

PXMP2 1 1 195 22253 MED-LOW

(Continued)
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that would have to be further analyzed in order to account for 
it in the computational model.

Discussion
Biomarker discovery approaches assume that genomic alterations 
that influence disease-associated protein expression are 
driven by pathophysiological cell or tissue changes. However, 
the way these changes can influence the protein excretion 
from cells, diffusivity in the interstitium, and persistence in 
blood circulation is not well understood. In particular for 
cancer, the effects of tumor size, architecture, cell composi-
tion, and cell states in this regard are unclear. To complement 
the experimental effort and streamline the corresponding 
avenues of inquiry, we propose an interdisciplinary model-
ing–experimental approach. As a first step in this direction, 
we simulate the shedding into vasculature of proteins related 
to cell viability in a growing tumor lesion. Unlike typical 
observation-based biomarker studies, we employ a mecha-
nistic tumor model that explicitly considers the biophysical 

processes governing the shedding and the persistence kinet-
ics of tumor-derived circulating proteins. The spatial two-
dimensionality of the simulations enables incorporation of 
realistic tumor-induced vasculature with corresponding 
gradients of diffusible substances affecting the tumor tissue. 
The model couples the tumor growth with the vasculature 
development,22,37,48,63 including the proliferative, hypoxic, 
and necrotic activities of the tissue, thus providing insight 
into the interaction of these processes with the protein pro-
duction, diffusion through the tumor interstitial space, and 
shedding into vasculature.

Ultimately, the goal of this interdisciplinary approach is to 
uncover fundamental biophysical processes of tumor progres-
sion, protein shedding, and protein persistence that characterize 
discovery of biomarkers, thus helping biomarker development 
for cancer treatment and diagnostics. We recognize that iden-
tifying biomarkers is a difficult problem that depends on many 
factors unrelated to shedding dynamics (eg, tissue of origin). 
Advancing the understanding of these dynamics, however, 
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Figure 8. Spectral counts of human tumor-derived (A) extracellular (secreted) and (B) intracellular proteins measured from plasma in circulation obtained 
from live mice on Day 18. The protein mass is categorized in a range from high to low as defined in the Methods section.

Table 3. (Continued)

Gene Symbol Plasma Spectral 
Counts

Tumor Spectral 
Counts

Length Mass  
(Da)

Size 
Category

PRDX5 1 99 214 22086 MED-LOW

PRDX2 1 28 198 21892 MED-LOW

TMEM205 2 5 189 21198 MED-LOW

PARK7 2 101 189 19891 MED-LOW

CFL1 1 324 166 18502 LOW

FABP5; FABP5L7; FABP5L2; FABP5 46 843 135 15164 LOW

PFN1 20 151 140 15054 LOW

S100A9 50 791 114 13242 LOW

TXN 2 131 105 11737 LOW

CSTB 10 70 98 11140 LOW

CSTA 31 43 98 11006 LOW

NDUFA4 1 11 81 9370 LOW
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would help to relate the amount and fluctuations of biomarkers 
detected in circulation to the disease condition.

The results in this study highlight the link between protein 
shedding and the stage of tumor growth as well as the extent 
of vascularization. The proliferative tissue-, hypoxic tissue-, 
and necrotic tissue-related activities in time by the growing 
tumor are illustrated by the proteins releasing into vascula-
ture (Figs. 3–5, respectively). These activities could potentially 
be correlated with different ratios of tumor tissue fractions 
(Fig.  2A) and vascularization (Fig.  2B) to derive tumor- 
specific estimation of viable, hypoxic, and necrotic tissues based 
on the protein detected in circulation. The ratio of high-to-low 
diffusivity proteins provides a further glimpse into the tumor 
growth stage and its vascularization. A high ratio may indicate 
that a particular tissue fraction is undergoing rapid increase and, 
further, that the vascularization may be severely impaired, since 
in this case, low-diffusing proteins would be expected to reach 
the vasculature in much smaller amounts than high-diffusing 
proteins. This situation seems to be the case for the necrotic 
tissue during Days 4–14 postinception in the simulation in this 
study (Fig. 6).

Although the correlation between spectral counts and 
protein mass for both extra- and intracellular proteins in 
the animal experiments on Day 18 (Fig. 8) were similar to 
the trends obtained from the computational model simula-
tions (Figs. 3 and 5, respectively), the shedding of low-mass 
intracellular proteins did not seem to follow this trend. 
This could be due to a combination of factors, including an 
overall lower number of small intracellular proteins shed 
by the tumor, faster small protein degradation before the 
vasculature is reached, impaired diffusion, and inaccessibil-
ity to the vasculature perhaps caused by vascular deteriora-
tion. Since intracellular proteins are released upon cellular 
disintegration as occurs during necrosis, the surrounding 
microenvironment including the microvasculature would be 
affected by toxicity induced by the cellular debris. We fur-
ther note that future experimental and computational studies 
should explore the relation between tumor size and viable/
necrotic tumor fractions and how these parameters relate 
to protein production and shedding as a function of the 
dynamic microenvironment.

In Figures 3–5, the protein diffusivities were varied from 
high to low in five arbitrary increments (Table 1), while Figure 7 
additionally shows variation in protein production rates varied 
from low to high. Future work could parcel the values for these 
variables in different ways than what has been illustrated here 
to more specifically reflect particular tumor biological data. 
Furthermore, for simplicity, this study initialized protein decay 
rates and transfer rates into vasculature to be the same for all 
proteins (Table 1), regardless of their diffusivities and produc-
tion rates, which may not be realistic. Decay and transfer rates 
would depend on protein size as well as other tumor microen-
vironment-related variables, such as ECM density. The model 
could be expanded to include additional types of proteins that 

are secreted during tumor progression, and the parameters 
could be calibrated to cancer-specific values obtained from 
live subjects, with the ultimate goal to achieve clinically useful 
biomarker analysis.
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