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Abstract

Development and change in forest communities are strongly influenced by plant-soil interactions. The primary objective of
this paper was to identify how forest soil characteristics vary along gradients of forest community composition in aspen-
conifer forests to better understand the relationship between forest vegetation characteristics and soil processes. The study
was conducted on the Fishlake National Forest, Utah, USA. Soil measurements were collected in adjacent forest stands that
were characterized as aspen dominated, mixed, conifer dominated or open meadow, which includes the range of
vegetation conditions that exist in seral aspen forests. Soil chemistry, moisture content, respiration, and temperature were
measured. There was a consistent trend in which aspen stands demonstrated higher mean soil nutrient concentrations than
mixed and conifer dominated stands and meadows. Specifically, total N, NO3 and NH4 were nearly two-fold higher in soil
underneath aspen dominated stands. Soil moisture was significantly higher in aspen stands and meadows in early summer
but converged to similar levels as those found in mixed and conifer dominated stands in late summer. Soil respiration was
significantly higher in aspen stands than conifer stands or meadows throughout the summer. These results suggest that
changes in disturbance regimes or climate scenarios that favor conifer expansion or loss of aspen will decrease soil resource
availability, which is likely to have important feedbacks on plant community development.
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Introduction

Forest community types are often associated with specific soil

classes, and soil chemistry and texture have important influences

on forest function [1,2]. Plant-soil interactions in turn have

important feedbacks on soil traits [3] that contribute to patterns of

plant community development over time [4,5]. As plant commu-

nities change, corresponding shifts in stand productivity and

architecture, litter quantity and quality, root traits and microbial

activity can alter soil moisture status, decomposition rates, nutrient

cycling, and soil-atmosphere gas fluxes that are important controls

of forest ecosystem function [6,7].

Populus tremuloides (Michx) is a keystone tree species in subalpine

and boreal forests of North America. In mid elevation forests of the

Rocky Mountains, aspen are often associated with conifers in

mixed forest communities that develop under cycles of secondary

succession [8]. Each cycle begins with a disturbance event,

typically fire that removes the overstory stand and releases the

aspen root system from apical dominance, usually resulting in root

suckering that forms the foundation for re-establishing the forest

community [9]. In time, aspen facilitate the establishment of

conifer seedlings that grow rapidly and expand in size resulting in

competitive interactions that can promote conifer dominance and

aspen mortality until fire returns and initiates a new succession

cycle [10]. Secondary succession in aspen-conifer forests changes

both overstory and understory plant community characteristics

through time [11]. Aspen stands tend to have higher biodiversity

and productivity than both the forest meadow into which they

expand, and conifer dominated stands that in the absence of

disturbance replace them [12]. These shifts in plant community

characteristics can alter soil characteristics and initiate a sequence

of plant-soil interactions and feedbacks [13,14,15,16]. For

example, there is evidence that aspen accumulates more snowpack

than open meadows or conifer stands, which likely has large

impacts on the hydrological and developmental characteristics of

these community types [17]. While differences in various soil

characteristics have been compared under aspen versus conifer

dominated stands in boreal forests [18,19,20], few studies have

examined how soil traits vary across gradients of forest community

composition (meadowRaspen dominantRmixedR conifer dom-

inant).

The characteristics and timing of disturbance is a key driver of

successional outcomes in plant communities [21]. Fire suppression

[22] and climate conditions [23] can alter fire intervals in aspen-

conifer forests [24,25]. Longer fire intervals promote late

successional conditions that increase conifer abundance in

aspen-conifer forests [25,26]. Aspen regeneration tends to decrease

under conifer dominance [8,9] a response that is partially driven

by changes in soil chemistry [10]. We are interested in

understanding plant-soil interactions and feedbacks in mixed

montane forests (which are much more poorly studied than boreal

aspen forests), and how differences in overstory forest composition

correspond to soil characteristics. This will provide a framework

for understanding how shifts in stand composition, based on
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changing disturbance regimes are likely to affect plant-soil

relations that underlie forest community development. We

hypothesize that soil resource availability and activity (as measured

by soil respiration) are relatively low in meadows, increase under

aspen dominated stands and then decrease with greater conifer

abundance.

Methods

Field sites and experimental design
This study was conducted at ten field sites across the Fishlake

National Forest in central Utah (Fig. 1). Each of the ten sites had

four adjacent stands (,25 m distance) that varied in overstory

composition as follows: predominantly aspen (.75% aspen stems),

equal mix of aspen and conifer (,50% aspen and conifer stems),

predominantly conifer, which was dominated by subalpine fir but

also included Engelmann spruce (Picea engelmannii Parry ex Engelm)

and Douglas-fir (Pseudotsuga menziesii Carriere) (.75% conifer

stems), and open meadow without trees that was immediately

adjacent to the forest edge. Differences in canopy composition at

each field site were representative of stages in the pathway of

secondary succession that is initiated by disturbance, followed by

aspen establishment and ending with conifer dominance. Tree

composition and density in each stand type were calculated using

the point quarter method along a 50 meter transect [27]. The

percentage of aspen to conifer in the aspen, mixed and conifer

stands were 90:10, 51:49 and 24:76. Average stand densities for

the aspen, mixed, and conifer stands were: 22286472, 28066428

and 19786548 stems ha21 (included trees with diameter $8 cm).

Basal tree area for the aspen, mixed and conifer stands were:

58612, 76613 and 59618 m2 ha21. Shrubs (Symmphoricarpos,

Amelanchier), grasses (Agropyron, Bromus) and forbs (Achillea, Vicia)

were common in the vascular plant understory with plant density

and cover being greatest under aspen dominated stands. Adjacent

meadow consisted of mixed grass-forbs and low density shrubs,

particularly sagebrush. Site elevations ranged from 2700m to

3000m and stand slopes varied from 6–23 degrees. While aspect,

elevation and slope differed between sites, they did not vary

significantly among stand types. Because stands were adjacent and

occurred on similar aspects, it is assumed that they experienced

similar temperature and precipitation patterns.

Soil samples for nutrient analysis were collected from each of

the four stand types at seven field sites in July of 2008, with an

additional three sites sampled in August of 2011. Permits for soil

sampling were obtained from the Fishlake National Forest. Soil

profiles were dug and soil samples were collected at three points

along a 50 meter transect in each of the three stand types, and in

an open meadow immediately adjacent to the stands. Two soil

samples were collected from each pit. The first, termed the OA

fraction, was collected from the soil surface (including the O

horizon) to the A–B soil horizon boundary (typically 0–10 cm in

depth). The second soil sample was collected from the B-horizon

(typically 10–25 cm in depth). The samples were placed in plastic

bags and were transported back to the lab in a cooler.

Soil chemistry
Soil samples were analyzed for total nitrogen, ammonium-

nitrogen, nitrate-nitrogen, carbon, organic matter, pH, and

mineral nutrient concentrations (P, K, Ca, Mg, Fe, Mn, Cu Zn).

Soil texture was measured by the hydrometer method [28].

Percent nitrogen and carbon were determined using a CN

analyzer (Truspec CN Determinator, LECO Cooperation, St.

Joseph, Michigan, USA). Ammonium and nitrate concentrations

were determined colorimetrically using a rapid flow analyzer

(Lachat QuickChem 8500, Lachat Instruments, Loveland, CO,

USA). Percent organic matter was measured using the dichromate

oxidation method [29]. Soil pH was assessed using the saturated

paste method with a pH meter. Bioavailable phosphorus and

potassium concentrations were measured by a sodium bicarbonate

extraction [30]. Exchangeable Ca, Mg, K, and Na were extracted

with ammonium acetate and Cu, Zn, Fe and Mn with DTPA

[31,32]. Soil cation concentrations were measured using induc-

tively coupled plasma spectroscopy (Iris Intrepid II XSP, Thermo

Electron Cooperation, Waltham, MA, USA).

Soil moisture content
Measurements of soil moisture content were taken at three

points along the same 50m transects in each stand type using a

Field Scout 100 time-domain reflectometry (TDR) probe with 12

cm rods (Spectrum Technologies Inc., Plainfield, IL, USA). Three

measurements were taken at each measurement point and

averaged together. Soil moisture measurements were taken June

8–11, July 20–22, and August 24–25, 2009. Values were recorded

as percent volumetric water content (%VWC).

Soil respiration (CO2 efflux) and temperature
Soil respiration was measured using a gas exchange system with

a soil CO2 flux chamber (Li-Cor 6400, Li-Cor Biosciences,

Lincoln, NE, USA) at three points along the same 50 m transects.

PVC collars (10 cm tall and 10 cm diameter) inserted 5 cm into the

soil surface were used to create a standard sampling volume for

each measurement. Readings at each site were taken within the

same hour and the order in which measurement were taken was

randomized within sites. Soil temperature was measured simulta-

neously with CO2 efflux measurements using a soil temperature

probe inserted 10 cm into the soil (Li-Cor 6400, Li-Cor

Biosciences, Lincoln, NE, USA). Measurements were taken at

the same time points and locations as soil moisture measurements

during the summer of 2009.

Figure 1. Map of the study sites on the Fishlake National
Forest. Inset map of the state of Utah, USA with the study area
outlined with the coordinates of the map center at: 38u30932.2699N and
111u52955.9499 W. Map was created using ArcGIS ArcMap v9.3.
doi:10.1371/journal.pone.0052369.g001
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Statistical analysis
Differences in soil characteristics among stand types were tested

using analysis of variance. In the ANOVA models, stand type was

treated as a fixed effect with blocking across sites. Multiple

comparisons among stand types were determined using a Tukey’s

adjusted t-test. Data were tested for normality and homogeneity of

variance using Shapiro-Wilk W statistics and equal variance tests.

Time-course measurements of soil moisture, CO2 efflux, and

temperature were analyzed for stand type and time differences

using a repeated measure ANOVA model. Statistical analysis was

performed using JMP version 8.0.1 statistical software (SAS

Institute, Cary, NC, USA).

Results

Soil chemistry
For the OA soil fraction, organic matter, C:N, total N, K, Fe,

and Zn demonstrated statistically significant differences (P,0.05)

between stand types in the ANOVA analysis, while NO3, P, and

Mn showed slightly weaker stand effects (0.05.P#0.075) (Table 1).

Specifically, total N, NO3 and NH4 were nearly two-fold higher in

aspen stands than mixed and conifer stands or meadow soils.

Organic matter, total N, and Zn were greatest in aspen stands

followed by mixed and conifer dominated stands and were lowest

in meadows (Table 1). Potassium concentrations followed the same

trend; however conifer stands had lower K than meadows. Conifer

stands had the highest C:N ratio and Fe concentrations when

compared to the other stand types (Table 1). Aspen stand soils had

significantly higher total N and K, with a lower C:N ratio than

conifer stands (Table 1).

Soil chemistry in B horizon samples did not vary significantly

between stand types (Fe and Zn: P = 0.17 and 0.11; all other

nutrients with P-values .0.45). Soil texture across sites varied from

a loam to sandy loam, but soil texture as assessed by the percent of

sand, silt and clay did not differ significantly between stand types

(Sand: P = 0.98, Silt: P = 0.95, Clay: P = 0.54).

Soil temperature
Meadows and aspen stands consistently had higher soil

temperature (1–5uC, P,0.0001) over the course of the summer

than mixed or conifer dominated stands (Figure 2). Changes in soil

temperature across the summer were consistent across stand types;

they increased approximately 5uC from early June to mid-July and

then decreased by approximately 1uC by the end of summer

(P,0.0001) (Figure 2).

Soil moisture content
Soil moisture content decreased significantly for all stand types

across the summer as indicated by the significant time effect in the

repeated measures ANOVA model (Figure 2). Aspen stands and

meadows had approximately 30% higher soil moisture content

than mixed and conifer stands at the beginning of summer

(P = 0.04), but mean values converged by mid-summer resulting in

a significant stand x time interaction term (P = 0.04) (Figure 2).

Soil respiration (CO2 efflux)
Soil respiration changed dynamically across the summer in all

stand types as indicated by the strongly significant time variable

(P,0.0001) in the repeated measures model (Figure 2). Across all

four stand conditions, soil respiration increased from early June to

mid-July where it peaked, and then decreased markedly from July

to late August (Figure 2). Across the summer, aspen stands

consistently had the highest soil respirations rates (aspen .

mixed. conifer . meadow) (Figure 2). The significant interaction
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term (stand x time) was primarily the result of much greater

differences in soil respiration rates between stands in mid-summer

than was observed at the beginning or end of summer with aspen

stands showing the strongest increase (175%) in July (Figure 2).

Discussion

Plant-soil interactions play a critical role in structuring soil and

plant community characteristics that underlie ecosystem function

[33]. Plant-soil interactions can be reset through large scale

disturbances, such as fire, that can result in shifts in soil microbial

communities and changes in soil resource availability [34,35]. The

developmental patterns of plant communities in periods between

disturbance events can influence soil characteristics that also feed

back on plant community development [36]. We examined how

differences in overstory stand composition in aspen-conifer forests

correspond to forest soil properties. Although this is an observa-

tional and not a manipulative study, the data are consistent with

our hypothesis in which soil resource availability and activity

(respiration) increase from meadow to aspen dominated stands and

then decreased with greater conifer abundance.

Soil chemistry
There are multiple avenues for nutrient inputs from plants into

soils, including: root exudates, root turnover, litter inputs, and

stemflow [37,38]. Differences in litter quality produced in aspen,

meadow and conifer communities likely contribute to shifts in soil

nutrient status that we observed across the stand composition

gradients in our study. Foliar nitrogen content has been used to

accurately predict soil nitrogen availability across differing forest

stand types due to soil-plant feedbacks [39]. The litter of broadleaf

species generally and aspen specifically tend to have higher N and

lower C:N ratios than conifers [40,41,42]. Our results showing

lower soil N and increasing soil C:N ratios in stands with

increasing conifer dominance are consistent with the interpreta-

tion that chemical differences in conifer litter inputs contribute to

shifts in soil C and N chemistry.

The data also demonstrated a pattern of higher mineral nutrient

availability in the surface soil horizons of aspen stands (Table 1).

Due to similarity in soil texture across stand types, and the lack of

stand differences in soil nutrients in the deeper B horizon, trends in

soil chemistry that were only apparent in the surface soils (OA) are

likely influenced by differences in litter inputs. Conifer species tend

to have lower foliar mineral nutrient concentrations than

deciduous species [43], suggesting that reductions in surface soil

fertility with increasing conifer abundance may correspond to

greater proportions of litter inputs from conifer species. Aspen

understories also tend to have much higher productivity and

greater biodiversity than conifer stands including N-fixing legumes

[11,12], which may also contribute to greater aspen stand fertility

via increased soil nutrient inputs and cycling. Differences in soil

pH can also influence differences in soil nutrient availability

between aspen and conifer soils [44]. In other forest systems,

conifers have been shown to lower soil pH [45]. However, we did

not observe statistically significant differences in soil pH across our

study gradient (Table 1), suggesting that the influence of conifers

on soil chemistry in our study system may still be developing.

It has been suggested that lower soil C:N ratios in aspen

dominated stands may explain differences in microbial community

composition and nutrient cycling rates compared to conifer

dominated stands [13,15]. Microbial biomass can also be

responsive to changes in forest composition [46]. However, a

reciprocal transfer study of aspen soils and conifer soils found that

the microbial biomass and community structure was unaffected by

relocation to the contrasting forest stand type, suggesting that

differences in C:N ratios in aspen-conifer forests may have a

stronger influence on microbial activity than microbial community

structure [14].

Soil moisture content
Environmental influences on plant community responses in

subalpine forests are often mediated through changes in soil

moisture [47,48]. In contrast to more mesic boreal systems,

subalpine forests in the western U.S. often experience drier

conditions toward the end of summer [47,48] as water derived

from snowpack disappears [49]. Consistent with these patterns, we

observed a steady decline of soil moisture content, regardless of

Figure 2. The influence of stand type on soil temperature,
moisture and CO2 efflux over the summer of 2009. For soil
temperature, the main effects in the repeated measures ANOVA model
were significant but the interaction term was not: stand (F3,80 = 38,
P,0.0001), time (F F2,79 = 94, P,0.0001), stand 6 time (F6,158 = 1.7307,
P,0.1171). For soil moisture, stand type was not significant (F3,80

= 1.67, P = 0.17), but the main effect of time (F2,79 = 249, P,.0001) and
the stand by time interaction were significant (F6,158 = 2.23, P = 0.04).
For soil CO2 efflux both the main effects and the interaction term were
statistically significant: stand type (F3,80 = 11.7, P,0.0001), time (F2,79

= 187, P,0.0001), stand 6 time (F6,158 = 2.31, P = 0.03). Means
presented as symbols with error bars 61 SE.
doi:10.1371/journal.pone.0052369.g002
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stand type, through the summer season (Figure 2). Soil moisture

content differed markedly between aspen stands and meadow

(21% VWC) and conifer stands (15% VWC) at the beginning of

summer but converge by mid to late summer (Figure 2). Stand

replacement of beech to spruce also yielded similar patterns of

decreased soil moisture content in subalpine forests [50].

Differences between deciduous and evergreen species in canopy

architecture and leaf persistence through winter result in aspen

stands having significantly greater winter snowpack accumulation

than conifer stands [17]. Convergence in soil moisture content

between stand types by the end of summer may be partially driven

by aspen stands having higher summer evapotranspiration rates

than conifer stands [17,51].

Soil texture and organic matter content play an important role

in soil moisture storage and retention in surface soils. While we did

not observe any differences in soil texture across stand types, aspen

stands had higher soil organic matter content (Table 1), which

increases water holding capacity of soils. Duff accumulation in

conifer dominated stands exhibits significant water repellency and

this may also have negative influences on water penetration and

retention into the upper soil surface layers as conifer dominance

increases [52].

Biological activity of soils
Trends in soil respiration across stand type changed throughout

the summer, indicating that abiotic factors likely have important

influences on soil respiration rates (Figure 2). More favorable soil

moisture and temperature conditions in aspen stands likely

contribute to higher rates of respiration [19,53]. Greater pools

of organic carbon substrate, lower C:N ratios (Table 1), higher

levels of microbial biomass and finer root biomass can also

contribute to higher soil respiration rates [15]. Greater soil organic

matter (which our data shows to be highest in aspen stands) would

result in more substrate for microbial activity [19]. As discussed

previously, aspen stands also had lower soil C:N ratios than conifer

stands, which would tend to promote microbial decomposition

contributing to greater CO2 efflux [53].

The observed July peak of soil respiration in all stand types is

likely explained by optimal soil moisture and temperature

conditions. The pattern suggests that total soil respiration is

constrained by low temperatures in the early summer and soil

moisture deficit toward the end of summer [54]. Drought in aspen

forests has been shown to have negative effects on soil respiration

rates by interfering with microbial metabolism, and reducing root

respiration [48,55]. Low soil moisture conditions can limit

microbial acquisition of organic substrates and cause microbial

dormancy [56]. While aspen stands had higher soil respiration

across the entire summer, it was much more responsive to peak soil

moisture content and temperature conditions (July) than meadow,

mixed or conifer dominated stands (Figure 2). These results

suggest that aspen soils are much more biologically active than the

other soil types, particularly under optimal environmental

conditions. These data suggest that shifts in canopy composition

can significantly influence carbon sequestration dynamics via

differences in organic matter accumulation and soil respiration

rates.

Plant community responses
These data indicate that higher aspen abundance in aspen-

conifer forests [26] is related to greater soil resource availability

and respiration. Changes in the abundance of soil resources are

likely to have significant impacts on plant community develop-

ment. As an example, changes in soil chemistry driven by conifers

documented in this study have been shown to have stronger

negative effects on primary metabolism, growth, and defense of

establishing aspen than fir seedlings [57]. Furthermore, light

limitation imposed by conifer expansion also constrains symbiotic

mycorrhizal associations on aspen roots that can further limit their

acquisition of soil nutrients [58]. Changes in disturbance regimes

or climate scenarios that favor conifer expansion or loss of aspen

are likely to decrease soil resource availability, with strong

potential feedbacks on plant community development.
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