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Abstract

Background

Joint inflammation is the common feature underlying juvenile idiopathic arthritis (JIA). Clini-

cians recognize patterns of joint involvement currently not part of the International League of

Associations for Rheumatology (ILAR) classification. Using unsupervised machine learning,

we sought to uncover data-driven joint patterns that predict clinical phenotype and disease

trajectories.

Methods and findings

We analyzed prospectively collected clinical data, including joint involvement using a stan-

dard 71-joint homunculus, for 640 discovery patients with newly diagnosed JIA enrolled in a

Canada-wide study who were followed serially for five years, treatment-naïve except for

nonsteroidal anti-inflammatory drugs (NSAIDs) and diagnosed within one year of symptom

onset. Twenty-one patients had systemic arthritis, 300 oligoarthritis, 125 rheumatoid factor

(RF)-negative polyarthritis, 16 RF-positive polyarthritis, 37 psoriatic arthritis, 78 enthesitis-

related arthritis (ERA), and 63 undifferentiated arthritis. At diagnosis, we observed global

hierarchical groups of co-involved joints.

To characterize these patterns, we developed sparse multilayer non-negative matrix fac-

torization (NMF). Model selection by internal bi-cross-validation identified seven joint
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patterns at presentation, to which all 640 discovery patients were assigned: pelvic girdle (57

patients), fingers (25), wrists (114), toes (48), ankles (106), knees (283), and indistinct (7).

Patterns were distinct from clinical subtypes (P < 0.001 by χ2 test) and reproducible through

external data set validation on a 119-patient, prospectively collected independent validation

cohort (reconstruction accuracy Q2 = 0.55 for patterns; 0.35 for groups).

Some patients matched multiple patterns. To determine whether their disease outcomes

differed, we further subdivided the 640 discovery patients into three subgroups by degree of

localization—the percentage of their active joints aligning with their assigned pattern: local-

ized (�90%; 359 patients), partially localized (60%–90%; 124), or extended (<60%; 157).

Localized patients more often maintained their baseline patterns (P < 0.05 for five groups by

permutation test) than nonlocalized patients (P < 0.05 for three groups by permutation test)

over a five-year follow-up period.

We modelled time to zero joints in the discovery cohort using a multivariate Cox propor-

tional hazards model considering joint pattern, degree of localization, and ILAR subtype.

Despite receiving more intense treatment, 50% of nonlocalized patients had zero joints at

one year compared to six months for localized patients. Overall, localized patients required

less time to reach zero joints (partial: P = 0.0018 versus localized by log-rank test; extended:

P = 0.0057).

Potential limitations include the requirement for patients to be treatment naïve (except

NSAIDs), which may skew the patient cohorts towards milder disease, and the validation

cohort size precluded multivariate analyses of disease trajectories.

Conclusions

Multilayer NMF identified patterns of joint involvement that predicted disease trajectory in

children with arthritis. Our hierarchical unsupervised approach identified a new clinical fea-

ture, degree of localization, which predicted outcomes in both cohorts. Detailed assessment

of every joint is already part of every musculoskeletal exam for children with arthritis. Our

study supports both the continued collection of detailed joint involvement and the inclusion

of patterns and degrees of localization to stratify patients and inform treatment decisions.

This will advance pediatric rheumatology from counting joints to realizing the potential of

using data available from uncovering patterns of joint involvement.

Author summary

Why was this study done?

• Juvenile idiopathic arthritis (JIA) is a heterogeneous childhood disease for which joint

inflammation is the common denominator.

• The current classification system, the International League of Associations for Rheuma-

tology (ILAR) subtypes, categorize patients according to the number of active joints

(four or fewer versus five or more affected joints in the first six months of disease) with

little evidence to support this cut-off.
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• Grouping frequently co-involved joints into joint patterns may help to better classify

patients and predict disease course.

What did the researchers do and find?

• We analyzed baseline joint involvement data from 640 treatment-naïve patients from 16

Canadian centers participating in the Research in Arthritis in Canadian Children,

Emphasizing Outcomes (ReACCh-Out) study between 2005 and 2010.

• We identified seven joint patterns that grouped frequently co-involved joints using mul-

tilayer non-negative matrix factorization (NMF), an unsupervised pattern recognition

technique. We named these patterns as follows: pelvic girdle, fingers, wrists, toes, knees,

ankles, and indistinct.

• These seven patterns described more homogenous groupings of joints than the ILAR

subtypes and further stratified them.

• Throughout disease course, we found that patients with joint involvements largely over-

lapping their baseline patterns, i.e., those having localized involvement, continued to

have the same active joints, whereas patients with nonlocalized involvement did not.

• Patients with localized joint involvement reached zero joint involvement faster than

those with nonlocalized involvement.

What do these findings mean?

• Patterns of joint involvement represent prognostic features that should be incorporated

into a comprehensive JIA disease classification.

• Patients with nonlocalized joint involvement are at high risk of poor outcome.

• Grouping patients by joint pattern and degree of localization may help clinicians tailor

treatments based on predicted disease trajectories.

Introduction

Juvenile idiopathic arthritis (JIA) is the most common chronic inflammatory rheumatic dis-

ease in childhood, characterized by joint inflammation of unknown etiology lasting at least six

weeks starting at<16 years of age. The International League of Associations for Rheumatology

(ILAR) criteria classify JIA into seven subtypes [1].

Clinicians acknowledge that individual joints or groups of joints influence outcome. Dis-

tinct joint involvement patterns such as dactylitis, sacroiliac joint involvement, or tarsitis are

clearly recognized in patients with JIA [1]. However, despite efforts to characterize distinct dis-

ease entities, these patterns remain heterogeneous in clinical presentation and consequently

disease course and response to treatment. In addition, individual joints such as the hip, cervical

spine, ankle, or wrist may be indicators of poor outcome [2–5] and have therefore been
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considered in the 2011 American College of Rheumatology (ACR) treatment recommenda-

tions as indicator joints for poor prognosis [6–8]. However, existing classification subtypes

and treatment recommendations do not take affected joint patterns into account [1,6]. More-

over, these findings only apply to a subset of JIA patients and are based on a small number of

joints [9,10]. A significant gap remains in our understanding of the relationship between pat-

terns of joint involvement and disease outcome.

Systematically collected data from the Research in Arthritis in Canadian Children, Empha-

sizing Outcomes (ReACCh-Out) study have enabled us to address this knowledge gap.

ReACCh-Out is a prospective inception cohort study of children with newly diagnosed JIA

[11] that has rigorously collected detailed longitudinal clinical data, including information

on joint inflammation. A standard 71-joint homunculus precludes the use of traditional statis-

tical—or supervised learning—techniques to associate individual joints, let alone combinations

of joints, to descriptors of outcome in an unbiased manner due to multiple hypothesis testing

in the context of small patient numbers, a common challenge in rare diseases. To address this

challenge, unsupervised learning can help identify a small number of patterns of arthritis in a

principled, logical, and expressive manner, whose outcomes we can then explore. We can

draw from previous successes applying these approaches in JIA analyzing clinical and bio-

marker data [12,13]. These patterns not only provide possible predictive features of outcome

but also help to organize the patients into homologous groups that may underlie further dis-

ease research.

In this study, we pursued a data-driven strategy in a novel data domain, joint involvements,

to identify two easily measurable clinical variables—joint pattern and degree of localization—

in children with newly diagnosed JIA. We then determined the relationship of these measures

to longitudinal outcomes, including pattern stability and response to treatment.

Methods

Our analysis, outlined as a flow chart in S1 Fig, can be divided into the following phases: data

collection and filtering, dimensionality reduction, clustering, and postclustering analysis. As

indicated in our transparent reporting of a multivariable prediction model for individual prog-

nosis or diagnosis (TRIPOD) checklist (S1 Checklist), our postclustering analysis plan was

developed after we completed the clustering and observed that some patients defied identifica-

tion with a single joint grouping. This observation prompted us to include a variable describ-

ing this in our multivariate prediction model.

Study design

For the discovery cohort, patients enrolled in ReACCh-Out were included if they satisfied the

classification criteria for any of the seven ILAR JIA subtypes [1]. Enrolled patients were

included within one year of JIA diagnosis and were treatment naïve for medications except for

nonsteroidal anti-inflammatory drugs (NSAIDs). ReACCh-Out is a prospective inception

cohort of newly diagnosed patients with JIA recruited between 2005 and 2010 from 16 tertiary

Canadian centers. These 16 centers included 14 academic and two community centers: Royal

Jubilee Hospital, Victoria, British Columbia; BC Children’s Hospital, Vancouver, British

Columbia; Penticton Regional Hospital, Penticton, British Columbia; University of Calgary,

Calgary, Alberta; Alberta Health Services, Edmonton, Alberta; Royal University Hospital, Sas-

katoon, Saskatchewan; Health Sciences Centre, Winnipeg, Manitoba; The Hospital for Sick

Children (SickKids), Toronto, Canada; Children’s Hospital of Eastern Ontario, Ottawa,

Ontario; Montréal Children’s Hospital, Montréal, Québec; Université de Montréal, Montréal,

Québec; Université de Sherbrooke, Sherbrooke, Québec; le Centre Hospitalier Universitaire de
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Québec, Québec, Québec; Santé et Services Sociaux, Québec, Québec; IWK Health Centre,

Halifax, Nova Scotia; and Janeway Children’s Hospital and Rehabilitation Centre, St. John’s,

Newfoundland [11].

The nonoverlapping independent validation cohort comprised prospectively collected

patients with newly diagnosed chronic childhood arthritis and detailed information about

joint involvement recruited between 1980 and 2007 from two tertiary Canadian sites: Royal

University Hospital of Saskatoon, Saskatchewan and Health Sciences Centre of Winnipeg,

Manitoba [14]. These sites were chosen because they had standardized collection of prospec-

tive data by the same personnel over the study timeframe. For this study, all patients were

treatment naïve except for NSAIDs. Prior to the introduction of the ILAR classification crite-

ria, patients in the validation cohort were identified as satisfying ACR criteria for juvenile

rheumatoid arthritis (JRA).

Research ethics boards at each participating center approved the study protocols. Informed

written consent for participation was obtained from parents, and informed consent or assent

was obtained from patients as appropriate.

Demographic, clinical, and laboratory data

For the discovery cohort, detailed demographic, clinical, and laboratory data were collected

prospectively at study entry using standardized clinical reporting forms. Collected information

included key features of the ILAR classification [1], the ACR pediatric core set measures of dis-

ease activity [15], standard laboratory markers, and physician assessments of global disease

activity. All forms were subsequently validated. Musculoskeletal information for 71 joints as

well as treatment regimens were serially collected at six-month intervals for the first 18 months

and yearly thereafter for five years after study enrollment.

In the validation cohort, the features of the ILAR classification were collected as well as

joint involvements at all subsequent clinical visits.

Hardware and software

All analyses were conducted using R version 3.3.0 (Vienna, Austria) and Python version 3.6

and higher (Wilmington, Delaware, US) on Apple computers running Mac OS X 10.10 and

higher, as well as at supercomputing facilities at the High Performance Facility at SickKids

(Toronto, Ontario, Canada) and the Terrence Donnelly Centre for Cellular and Biomolecular

Research at the University of Toronto (Toronto, Ontario, Canada).

Joint co-involvements

Initially, joint co-involvements—which describe pairs of joints that are active together—were

analyzed by calculating joint co-involvement frequencies and conditional joint co-involvement

frequencies. A joint co-involvement frequency, P(x,y), for a reference joint x and a co-involved

joint y is the proportion of patients having both joints involved. The conditional joint co-

involvement frequencies, P yjxð Þ ¼
Pðy;xÞ
PðxÞ , are the fraction of all patients with x involved who

also have y involved.

To investigate whether joint co-involvement frequencies were asymmetric, i.e., higher for

joints on the same side of the body, we developed a measure of same-side versus opposite-side

skew in the co-involvement frequencies computed across the discovery cohort. A “joint type”

is the pair of corresponding joints on opposite sides of the body, e.g., the knee joint type con-

sists of the left and right knee joints. To compute skew for a reference joint type x and a co-

involved joint type y, we counted the number of patients for whom a reference joint was paired
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with a co-involved joint on the same side (nsame) and on the opposite side (nopposite) and used

these to compute a z-score to measure skew for the joint type pair by setting z ¼ m� 0:5

s
, such

that m ¼ nsameþ1

nsameþ1þnoppositeþ1
and s ¼

ffiffiffiffiffiffiffiffiffiffiffi
mð1� mÞ

n

q

. If the joint type pair co-involvement was symmetric,

z would be close to zero, whereas if co-involved joints tended to occur on the same side of the

body, z would be large and positive. To assess the significance of the skew, χ2 tests were con-

ducted using nsame and nopposite under the null hypothesis that both quantities were equal. P
values were translated to false discovery rates (FDRs) to account for multiple hypothesis test-

ing. FDR < 0.1 was considered significant.

Identifying patterns of joint involvement

We selected an analysis strategy suitable for the positive joint counts that would be able to

identify sparse patterns of joint involvement if they were present in the data. Sparse patterns

better support interpretation and application of these patterns by clinicians. Also, we sought a

mixed membership model so that patients could belong to multiple groups. Finally, our pre-

liminary analysis suggested a hierarchical structure to the joint co-involvement patterns, with

some tightly coupled joint groups (e.g., toe joints) that often co-occur along with one or more

broader patterns of co-activation of these tight groups.

As such, we adapted a form of multilayer non-negative matrix factorization (NMF) [16] to

learn hierarchical, sparse representations (S1C Fig). Multilayer NMF progressively applies

NMF to the joint patterns. NMF is a dimensionality reduction method that fits summary indi-

cators or “factors” that group frequently co-involved joints together [17]. Broadly, NMF

decomposes joint involvements X into a basis/loading matrix W, describing the contributions

of joints to factors, and a coefficient/score matrix H that scores patients on factors. Multiplying

these two matrices approximates the input data (X�WH). NMF produces an intuitive parts-

based representation in which reconstructing patient data involves only adding groups of

joints in factors, similar to adding parts of faces (different eyes or noses) to reconstruct facial

representations [17]. Unlike other dimensionality reduction techniques like principal compo-

nent analysis (PCA), NMF constrains the elements of W and H to be positive. This constraint

often causes many elements of the two matrices to be zero, a trend that we supplement by set-

ting small elements to zero (a technique called “sparsifying”), as described in S1 Text. NMF

can be used to cluster patients by interpreting the nonzero elements of H for each patient as

assignments to clusters represented by the factors in W [18].

Multilayer NMF was conducted as described in S1 Text. Briefly, NMF was applied to the

joint involvement data, and W was then sparsified to produce low-level factors that correspond

to tight joint groupings. NMF was then applied to the H matrix to identify tight joint group-

ings that often co-occur; the term “high-level factors” refers to these frequently co-occurring

tight joint groupings. Through matrix multiplication, joint involvements can be recovered

from the high-level factors. “Key joints” for each high-level factor were those appearing with

nonzero contributions. For both the high- and low-level factors, patients were assigned into

patient groups (“[x]”) corresponding to their highest-scoring factor [19].

The degree of overlap was assessed between patient groups at both levels of the analysis.

Patient factor scores were normalized patient-wise to the highest factor score and then z-

score–transformed factor-wise. One-sided z-tests determined which patient groups had higher

scores than expected on individual factors. FDRs were calculated from P values to account for

multiple hypothesis testing. Relationships between patient groups and factors were significant

if their FDR was<0.1.
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Relationships between patient groups and ILAR subtypes

Relationships were visualized between patient groups and ILAR subtypes through a circular

figure built using Circos 0.63 [20]. To identify enriched relationships between patient groups

and ILAR subtypes, a χ2 test was conducted. Relationships were enriched if their standardized

residual was�1.96 (i.e., P< 0.05).

Localization of joint involvements

To describe how closely patients aligned with their associated high-level factors or patient

groups, patients were further stratified by the “degree of localization” of their active joints.

Patients with “localized” involvement had�90% of active joints being key joints in the high-

level factor underlying their patient group. For patients with “partially localized” involvement,

this range was�60% and <90%. All other patients had “extended” involvement. S2 Text

describes how these boundaries were determined.

To determine which patient groups skewed towards any localization, χ2 tests were con-

ducted to compare the distribution of localizations within a single patient group against the

global distribution. P values were Bonferroni-adjusted for multiple hypothesis testing.

Associations of patient groups with treatment decisions

For each medication at six-month and one-year visits, multivariable logistic regression was

conducted to predict medication status as an outcome from both patient groups and degrees

of localization. Model significance was assessed using likelihood-ratio tests. A model for a

medication and visit was significant if P< 0.05 after a Bonferroni adjustment for multiple

hypothesis testing.

Patient group trajectories and disease trajectories

To track how joint involvement changed over subsequent visits, high-level patient factor scores

and patient group assignments were calculated where possible at six-month, one-year,

18-month, two-year, three-year, four-year, and five-year visits. From baseline patient group

assignments and localizations, frequencies of transitioning between two patient groups at any

time between six-month and five-year visits were calculated. Significantly overrepresented

transitions were determined by a 2,000× permutation test.

A multivariate Cox proportional hazards analysis, as implemented in the survival R pack-

age, version 2.41 [21], was conducted to identify which patient groups, ILAR subtypes, and

degrees of localization experienced zero joint involvement more quickly. The assumption of

proportional hazards was assessed visually and tested using the “cox.zph” function in survival.
Hazard ratios (HRs) and 95% confidence intervals (CIs) were computed and patient groups,

ILAR subtypes, and degrees of localization were compared using log-rank tests.

Validation

To determine whether the identified patterns of joint involvement could generalize beyond the

discovery cohort, validation cohort joint involvement data were projected onto high-level fac-

tors and patient groups. At each level, the same scaling parameters were applied to joint

involvement data or low-level patient factor scores. Patients were assigned to patient groups

based on their highest-scoring high-level factors as above. Patterns of joint involvement were

also identified independently of discovery joint patterns using the multilayer NMF framework

described above.
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Results

Patient characteristics

We included 640 patients with newly diagnosed JIA in the discovery cohort and 119 in the val-

idation cohort. Table 1 outlines demographic data for these cohorts respectively. Discovery

cohort patients were diagnosed at a median age of 7.7 years, with a range of 0.57 to 16.6 years,

whereas validation cohort patients were diagnosed at a younger age (median: 5.7 years; range:

0.5–18 years). The most highly represented subtype in both cohorts was oligoarthritis (discov-

ery: 47%; validation: 56%), and most patients were female (discovery: 65%; validation: 71%).

Joints were co-involved in distinct patterns across the entire discovery cohort

To investigate patterns of joint involvement and co-involvement, we computed overall fre-

quencies of individual joint involvement and pair co-involvement in the discovery cohort. Fig

Table 1. Patient demographics.

Feature Cohort

Discovery Validation

Number of patients 640 119

ILAR classification, n (%)

• Systemic arthritis 21 (3.3%) 10 (8.4%)

• Oligoarthritis 300 (47%) 67 (56%)

• RF-negative polyarthritis 125 (20%) 17 (14%)

• RF-positive polyarthritis 16 (2.5%) 5 (4.2%)

• Psoriatic arthritis 37 (5.8%) 6 (5.0%)

• ERA 78 (12%) 13 (11%)

• Undifferentiated arthritis 63 (9.8%) 1 (0.8%)

Demographic features

• Age at diagnosis, years† 0.57� 7.7� 16.6 0.5� 5.7� 18

• Symptom onset to diagnosis, months† 0.0� 3.6� 12 0� 0.14� 1.5

• Female, % 415 (65%) 84 (71%)

Clinical features

• Number of active joints† 1� 2� 63 1� 2� 43

• CHAQ score† 0.00� 0.38� 3.0 —

• JAQQ score† 1.0� 2.6� 6.9 —

• QoML score† 0.0� 7.9� 10 —

• Physician global assessment of disease activity† 0.0� 2.9� 10 —

Laboratory parameters

• RF-positive, n/patients tested (%) 30/551 (5.4%) 6/107 (5.6%)

• ANA-positive, n/patients tested (%) 297/579 (51%) 62/112 (55%)

• HLA-B27–positive, n/patients tested (%) 58/269 (22%) 9/97 (9.3%)

• ESR, mm/h† 0.0� 19.5� 130 3.0� 30� 102

• CRP, mg/dL† 0.0� 1.7� 341 0.0� 3.5� 409

• Hemoglobin, g/L† 8.2� 121� 157 —

• Platelets, 109/L† 5.9� 362� 1,110 —

†Minimum�median�maximum.

All patients experienced symptom onset before the age of 16 years.

Abbreviations: “—,” not available; ANA, antinuclear antibody; CHAQ, Childhood Health Assessment Questionnaire; CRP, C-reactive protein; ERA, enthesitis-related

arthritis; ESR, erythrocyte sedimentation rate; HLA-B27, human leukocyte antigen B27; ILAR, International League of Associations for Rheumatology; JAQQ, Juvenile

Arthritis Quality of Life Questionnaire; QoML, Quality of My Life Considering My Health; RF, rheumatoid factor.

https://doi.org/10.1371/journal.pmed.1002750.t001
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1 depicts overall joint involvement frequencies. Knees, ankles, and wrists had the highest rate

of involvement. When we considered conditional co-involvement frequencies partitioned by

side of body (Fig 2), 3,271 of 5,041 (65%) of these probabilities were significant (P< 0.05 after

Bonferroni adjustment). Examining the heat maps for same-side joints in the top-left and bot-

tom-right quadrants, we observed hierarchical patterns of joint co-involvement along the ver-

tical axis. Joints closer on the vertical body axis were generally more often co-involved joints.

For example, index finger joints and middle finger joints were likely to be co-involved. How-

ever, there also appeared to be broad, nonlocal patterns of co-involvement, e.g., finger and toe

joints were frequently co-involved.

In contrast, the heat maps for opposite-side involvement in the top-right and bottom-left

quadrants appeared nearly identical (Frobenius norm = 3.7; P< 0.001 by permutation test),

indicating little proximity preference along the horizontal axis. For example, left index finger

joints were as likely to be co-involved with right middle finger joints as those on the left middle

finger. This observation was consistent with widespread symmetric joint involvement in JIA.

Asymmetric joint involvement is associated with more severe forms of JIA [22]. To study

the prevalence of asymmetric co-involvements, we determined which joint types were more

Fig 1. Site involvement frequencies for the discovery cohort. Homunculus of joints (circles) measured in this study, colored by the

frequency of involvement (bottom-left legend). Patient numbers are on the right.

https://doi.org/10.1371/journal.pmed.1002750.g001
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likely to be co-involved with joints on the same side of the body. Consistent with our initial

impression of Fig 2, and different than what we expected based on previous reports in JIA, we

found few statistically significant asymmetric joints: only ankle, midfoot, and subtalar joints

(with ankle: χ2 = 14, PFDR = 0.0097; with subtalar joints: χ2 = 11, PFDR = 0.048) had statistically

significant same-side co-involvement (S2 Fig).

Multilayer NMF identified seven distinct patterns of joint involvement

To characterize hierarchical patterns of joint co-involvements, we applied multilayer NMF on

discovery cohort joint involvements to identify groups of frequently co-involved joints. Con-

ventional NMF identified 19 low-level groupings (or factors)—<1–19> (S6A Fig)—of verti-

cally proximal joints, which S3 Text details. Consistent with the pairwise analysis (S2 Fig),

most factors grouped joints of the same type (S6A Fig), with exceptions being pairs of groups

containing only ankles and subtalar joints, only a single knee, and one group containing joints

from the index (second) and middle (third) fingers on the right side. We named these 19

factors (“<x>”) as follows: <1 TMJs>, <2 shoulders>, <3 sternoclavicular joints>, <4

elbows>, <5 thumbs>, <6 sacroiliac joints>, <7 MCPs>, <8 second–third fingers>, <9

Fig 2. Logical groupings of joints were co-involved. Heat map of conditional probabilities of involvement, P(x|y)

(colors; right upper legend), of co-involved joints x (x-axis) given reference joints y (y-axis). White denotes zero.

Arrows represent side of body (right middle legend), and the number of dots represents finger or toe number (right

lower legend). DIP, distal interphalangeal; MCP, metacarpophalangeal; PIP, proximal interphalangeal; TMJ,

temporomandibular joint.

https://doi.org/10.1371/journal.pmed.1002750.g002
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hips>, <10 subtalar and midfoot>, <11 finger PIPs>, <12 knee>, <13 knee>, <14 finger

DIPs>, <15 subtalar and midfoot>, <16 grand toes>, <17 ankles>, <18 toe IPs>, and <19

MTPs>. Multiple low-level joint groups were significantly co-involved (S7A Fig), suggesting a

hierarchical structure not captured by low-level factors.

To identify this hierarchical structure to the co-involvements, we conducted a second

round of conventional NMF on low-level patient scores, which identified seven groupings of

groups we deem “high-level factors”, <A–G>. S3 Text describes the process of deriving these

high-level factors. As expected from our preliminary investigations (Fig 2), each high-level fac-

tor combined low-level factors into broader, symmetric groupings covering partially overlap-

ping areas of the vertical body axis (S6 Fig). We named these high-level factors <A pelvic

girdle>, <B fingers>, <C wrists>, <D toes>, <E ankles>, <F knees>, and<G sternoclavi-

cular joints>. Finger distal interphalangeal (DIP) joints distinguished <B fingers> from <C

wrists>, as<B fingers> skewed towards finger DIPs and<C wrists> towards shoulders and

elbows. <A pelvic girdle> included sacroiliac joints and/or hips, and<E ankles> included

ankles, subtalar, and midfoot joints.

We classified each patient into one of seven groups (“[x]”) corresponding to the high-level

factors based on their highest-scoring high-level factor. Fig 3 shows joint involvement

Fig 3. Distinct patterns of joint involvement. Homunculi of frequencies of involvement (colors; bottom-right

legend) for individual joints (circles) for each patient group (panels) identified in the discovery cohort. White denotes

a frequency of zero. Outlined joints represent key joints for high-level factors (S6 Fig) underlying each patient group.

See Fig 1 for the identity of each joint.

https://doi.org/10.1371/journal.pmed.1002750.g003
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frequencies in each patient group, and S8 Fig depicts individual joint involvements for

patients. Key joints—outlined in Fig 3—were those with nonzero weights in the corresponding

high-level factors (S6 Fig). Non-key joints were rarely involved except in [G indistinct] and for

some finger/wrist involvement in [D toes], suggesting that most patients had what we deem

localized involvement; in other words, most or all of their joints overlapped with key joints.

Overall, these patient groups corresponded to logical patterns of joint involvement reported at

the bedside [23].

Patterns of joint involvement subdivided the ILAR subtypes

Six of seven patient groups associated with at least one ILAR subtype, despite patient groups

comprising different stratifications of patients from the ILAR subtypes (χ2 = 313; P< 0.001).

Conversely, six of seven ILAR subtypes associated with patient groups. More opaque ribbons

in the Circos figure (Fig 4), linking patients common to patient groups and ILAR subtypes,

represent these enriched associations encompassing more patients than expected through

standardized residuals from the above χ2 test (S2 Table). These standardized residuals quantify

how far the number of patients shared by a patient group and ILAR subtype deviated from

expectation. Children in [A pelvic girdle] associated with enthesitis-related arthritis (ERA), [B

fingers] with rheumatoid factor (RF)-negative polyarthritis; [C wrists] with systemic arthritis

and both RF-positive and negative polyarthritis; [D toes] with RF-negative polyarthritis, psori-

atic arthritis, and ERA; and [F knees] with oligoarthritis.

Some patients had nonlocalized joint involvement

Although the high-level groupings completely encapsulated joint involvements for most

patients (56%), a small group of patients (25%) had more non-key joints involved than key

joints (S9 Fig). We deemed these patients as having extended involvement. Patients with 90%

of their joints as key were localized, and those with 60% to 90% were partially localized. S4

Text describes how we determined these thresholds. To determine the clinical significance of

these subcategories, we compared the clinical attributes of patients therein.

Patient groups with significantly skewed distributions of localizations included [C wrists],

[D toes], [F knees], and [G indistinct] (χ2� 21.5; P< 0.001; S9C Fig and S3 Table). Patients in

[G indistinct] skewed towards extended involvement, [C wrists] towards partially localized

involvement, and [D toes] towards both partially localized and extended involvement. Chil-

dren in [F knees] skewed towards localized involvement.

Treatment decisions were associated with degrees of localization

To determine whether treatment decisions were associated with patient groups and degrees of

localization, we conducted multivariable logistic regression. S10A Fig depicts the number of

patients in each group and localization with medication data at six-month and one-year visits.

S10B Fig depicts the proportion of patients in each patient group, divided by localization, who

received biologics, disease-modifying antirheumatic drugs (DMARDs), joint injections, and

systemic corticosteroids prior to these visits. Patient groups differed by DMARD usage, with

higher than expected utilization in children in [C wrists] and [E ankles] with localized involve-

ment and [F knees] with partially localized and extended involvement, and lower than

expected utilization in [F knees] with localized involvement (S4 Table). In terms of systemic

corticosteroid usage, patients in [F knees] with localized involvements were less likely to

receive such treatment at six-month visits. Therefore, patient joint group and localization

influenced treatment.
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Patient groups remained stable throughout initial disease course

To observe how the data-driven joint patterns evolved throughout disease course, we traced

patient group assignments longitudinally. Fig 5 depicts transition probabilities from baseline

patient groups, divided by degree of localization, to groups at any visit up to five years. While

patients often transitioned to zero joint involvement, several transitions were enriched

(P< 0.05; Holm-Bonferroni–adjusted), with little movement between patient groups given

the lack of filled circles outside the diagonals. Among patients with localized involvements (Fig

5A), patients in [A pelvic girdle], [B fingers], [D toes], [E ankles], and [F knees] remained in

their own patient group. Even among patients with partially localized involvements (Fig 5B),

Fig 4. Patient groups subdivided ILAR subtypes. Circos figure visualizing relationships between patient groups (left; colored

wedges in the second-innermost ring) and ILAR subtypes (right; grey wedges in the second-innermost ring). Heat maps (outer

rings; bottom legend) display high-level patient factor scores, scaled to 0% to 100%, starting with<A pelvic girdle>moving

outwards to factor<G sternoclavicular joints>. Each set of arcs along the radial axis, aligned along a ray from the center, represents

an individual discovery cohort patient. Ribbons link groups of patients between patient groups and ILAR subtypes. Enriched

relationships, as determined from a χ2 test, appear more opaque. ILAR, International League of Associations for Rheumatology; RF,

rheumatoid factor.

https://doi.org/10.1371/journal.pmed.1002750.g004
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patients in [A pelvic girdle] often transitioned to zero joint involvement, whereas patients in

[B fingers] and [C wrists] transitioned to or remained [C wrists]. Patients in [E ankles] often

remained in the same patient group. Among patients with extended involvement (Fig 5C),

patients in [A pelvic girdle], [E ankles], and [G indistinct] often remained in their respective

patient groups.

Localizations predicted time to zero joint involvement

Having observed a strong tendency for some groups towards zero joint involvement (disease

control/inactive disease), we asked whether the groups differed by the rate in which they

achieved this outcome. We constructed a Cox proportional hazards model predicting time to

zero joint involvement from patient groups, localizations, and ILAR subtypes. The resulting

model did not deviate from the proportional hazards assumption (χ2 = 22.9, P = 0.062) and

identified localizations and ILAR subtypes that reached zero joint involvement at different

rates than others (R2 = 0.093, P< 0.001). At least half of the patients followed in [F knees]

reached this endpoint by six months, and [A pelvic girdle], [C wrists], [D toes], and [E ankles]

reached it by one year (S11A Fig). In contrast, patients in [B fingers] reached this endpoint

after 18 months, and those in [G indistinct] reached it after three years. Localization was espe-

cially important because patients with localized involvement achieved this outcome faster than

patients with partial involvement (HR = 0.70, Z = −3.1, P = 0.0018) and extended involvement

Fig 5. Patient groups and localizations predicted disease course. (A) Heat maps showing the probability (colors;

bottom legend) that patients in a baseline or reference patient group (y-axis) with localized involvement transition to

patient groups at any visit from six months to five years (x-axis). Filled circles denote significantly enriched transitions

(P< 0.05; Holm-Bonferroni–adjusted). (B) Same as panel A, but for patients with partially localized involvement. (C)

Same as panel A, but for patients with extended involvement. (D) Time to zero curves, by degree of localization (line

types; bottom legend), showing the proportion of patients continuing to have joint involvement (y-axes) after given

visits after baseline (x-axes). P values represent those for HRs calculated by a Cox proportional hazards model. HR,

hazard ratio.

https://doi.org/10.1371/journal.pmed.1002750.g005
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(HR = 0.63, Z = −2.8, P = 0.0057) (Fig 5D). Among diagnoses, patients with RF-positive poly-

arthritis (HR = 0.42, Z = 2.4, P = 0.016) and undifferentiated arthritis (HR = 0.64, Z = −2.8,

P = 0.0059) reached this outcome more slowly. S5 Table contains additional statistics for the

Cox proportional hazards model.

Patient groups generalized to an independent validation cohort

To determine whether factors and patient groups were generalizable beyond the discovery

cohort, we projected an independent validation cohort of JIA patients to the joint patterns.

These patients’ joint involvements were reconstructed by low-level factors with Q2 = 0.81,

high-level factors with Q2 = 0.55, and patient groups with Q2 = 0.48 (S1 Table), comparing

favorably against ILAR subtypes, with Q2 = 0.43. Projected patient groups presented with simi-

lar joint involvement frequencies (S12 Fig). We then calculated de novo factors and patient

groups, which we detail in S4 Text. Validation joint involvements were reconstructed by low-

level factors with Q2 = 0.84, high-level factors with Q2 = 0.55, and patient groups with Q2 =

0.35. De novo factors described similar joint groupings as discovery factors (S13C, S13F and

S13G Fig).

We then asked whether the projected groups could also predict time to zero joint involve-

ment. Considering individual univariate models due to limited power, patient groups (χ2 = 17,

P = 0.0072) and localizations (χ2 = 8.9, P = 0.012; S14 Fig) themselves predicted this outcome.

Patients with extended involvement took significantly longer to reach zero joint involvement

than patients with localized involvement (HR = 0.53, Z = −2.5, P = 0.011).

Discussion

We explored patterns of articular involvement in JIA using unsupervised data-driven pattern

recognition techniques. We initially observed joints co-occurring in logical and localized

groupings without same-side skewing (Figs 1 and 2 and S2 Fig). To better understand these

signals in a clinically applicable manner, we conducted a modified version of multilayer NMF,

identifying seven high-level groupings of joints (S6 Fig and Fig 3) describing arthritis foci

anchored by distinct subsets of joints. The resulting seven patient groups subdivided the ILAR

subtypes into distinct subgroups based on patterns of arthritis (Fig 4). Patients with localized

involvement often remained in the same patient group after baseline visit (Fig 5A, 5B and 5C)

and reached zero joint involvement faster than patients with nonlocalized involvement (Fig

5D). These patterns generalized to an independent validation cohort, supporting their applica-

bility beyond the discovery cohort (S12 Fig and S13 Fig).

Our study is the first to provide a detailed, data-driven description of heterogeneously co-

involved joints in JIA. Previous studies have focused on individual joints [2–8] in specific indi-

vidual ILAR subtypes [9,10], whereas we identified joint groupings in a data-driven fashion

independently of these ILAR subtypes. For example, our approach identified differences in

presentation among patients with polyarticular involvement, separating these patients based

on joint patterns. For example, the small joints of the fingers in [B fingers] and [C wrists] were

clearly distinct from the small joints of the toes in [D toes]. The composition of patient groups

in RF-negative polyarthritis further supported this distinction, with this ILAR subtype associ-

ating with [B fingers], [C wrists], and [D toes]. [B fingers] and [C wrists] may represent a spec-

trum of disease phenotypes (S7 Fig) that may transition between each other during disease

evolution (Fig 5). Wrist involvement has been associated with poor prognosis and decisions to

treat more aggressively [6]. Our results reflected this trend as patients in [C wrists] had less

defined disease trajectories and longer times to zero joint involvement (S11 Fig) despite more

commonly receiving DMARDs and systemic glucocorticoids. Similar findings were observed
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in patients in [B fingers] which tended to transition into [C wrists], with higher use of (bio-

logic) DMARDs and systemic glucocorticoids at diagnosis. These findings were notable as

patients in [B fingers] tended to transition to [C wrists] when they had partially localized

involvement.

The stability of the patient groups for up to five years after diagnosis supports how mean-

ingful these patterns are. As patients lose active joints over the course of treatment, we

expected their joint patterns to shift as patient factor scores represent weighted sums of indi-

vidual joints. With fewer active joints, we expected patterns to become more sensitive to the

specific joints involved. However, patients remaining in their same groups in at least one sub-

sequent visit suggested that patients with residual joint involvement had it in their group’s key

joints. Therefore, joint patterns may represent robust core groupings of joints much like the

indicator joints of poor outcome [2–7].

Our study is also among the first to identify the degree of active joint localization with out-

comes through an easily measurable clinical variable, the degree of localization. Patients had

worse disease outcomes if their active joints did not align strictly with a single pattern. This

has been instinctively recognized at the bedside by clinicians, as this aspect has clearly influ-

enced treatment decisions (S4 Table and S10 Fig), but is not included in any clinical guidelines.

Furthermore, classifying patients by the degree of localization predicted disease course and

time to zero joint involvement. For patients with recognizable patterns of joint involvement,

treatment decisions appear effective. However, patients with partially localized or extended

joint involvement had the poorest outcomes, taking a longer time to reach zero joint involve-

ment despite receiving stronger medications (e.g., more DMARDs). Patients with nonlocalized

joint involvement may therefore represent a high-risk group who require early aggressive

therapy.

Our pattern recognition approach is well suited for analyzing joint involvements. Factors

supported signals that were apparent based on overall co-involvements. Low-level factors

grouped knees, subtalar joints, and midfoot joints on separate sides of the body into separate

factors, demonstrating that our approach identifies both asymmetrical and symmetrical pat-

terns of arthritis. As our approach identified patterns with little overlap outside the fingers,

patient groups described clinically homogeneous entities. Extending NMF into a multilayer

approach bears some similarity to other hierarchical modelling techniques such as deep auto-

encoders [24], in which each successive layer identifies increasingly broad representations of

the data, or Gaussian process latent variable models [25]. However, multilayer NMF provides

directly interpretable latent representations. This representation differs from PCA, which pro-

duces patterns that are orthogonal to each other, a feature with implications with respect to

joint involvements. Furthermore, PCA patterns are less intuitive as joints contribute both posi-

tively and negatively to them. To reconstruct a patient’s joint involvements, we would have to

add and subtract groups of joints, whereas with NMF, we would only add groups of joints.

Our study has a number of limitations. First, both discovery and validation cohorts were

based on sample sizes of convenience. Because discovering joint patterns involved an unsuper-

vised analysis, a priori power analyses were not done. However, the proximity of joints within

patterns along the vertical axis and our ability to identify useful clinical measures demon-

strated the potential of conducting such an analysis retrospectively. Secondly, the small size of

the validation cohort limited our ability to test our findings in a multivariate model in a valida-

tion cohort, although we successfully validated our predictors in univariate tests. Furthermore,

our validation cohort strongly supported these clinical measures, demonstrating that this con-

cern is one of statistical power rather than approach. Lastly, we required patients to be treat-

ment naïve except NSAIDs, which may have potentially skewed our patient cohorts towards

individuals with milder forms of disease.
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The identified joint patterns appear to have important prognostic implications. They are

conceptually simple to apply at the bedside as they represent an easily computed weighted sum

of active joints. Further classifying patients by the degree of localization may help clinicians

further tailor treatment decisions as patients with less strongly defined phenotypes may

require early aggressive therapy. Patterns of joint involvement may be among key components

of a new disease classification for JIA in addition to other data domains, including antinuclear

antibody (ANA) status [26], biological measures [13], and other musculoskeletal features such

as enthesitis. Beyond JIA, our approach may be a transferrable template for application in

rheumatoid arthritis (RA) and spondyloarthropathies (SpAs). Previous efforts in RA have

attempted to define a representative pattern of “core joints” as indicators instead of using the

full complement of joints [27,28]. This reductionist approach still counts joints. Alternatively,

utilizing the rich data for pattern recognition may identify predictors of outcome.

Using multilayer NMF, we identified patterns of joint involvement predictive of disease tra-

jectory in children with arthritis. Our results are consistent with previous observations point-

ing to key individual joints as predictors of poor outcome. Our hierarchical unsupervised

learning approach allowed us to identify a new clinical variable, localization of joint involve-

ment, as a key feature associated with poor outcomes in both our discovery and validation

cohorts. Detailed bedside assessment of every joint is already part of every musculoskeletal

exam for children with arthritis. Our study supports not only the continued collection of

detailed information about joint involvement but also the inclusion of these patterns together

with localization data (i.e., how closely affected children fit these patterns) to stratify patients

and inform treatment decisions. Our findings will move the field of pediatric rheumatology

out of infancy, from joint counts to realizing the potential of using data available from patterns

of joints involvement.

Supporting information

S1 Checklist. TRIPOD checklist. TRIPOD, transparent reporting of a multivariable predic-

tion model for individual prognosis or diagnosis.

(DOCX)

S1 Fig. Analysis workflow. (A) Overall analysis workflow for the discovery and validation

cohorts to identify factors and patient groups from joint involvement data. (B) Factor identifi-

cation workflow, which considers input data (left) comprising joint involvements or low-level

factor scores and identifies factors described by coefficient/score matrices and basis/loading

matrices (right). (C) The overall multilayer NMF scheme for this study. Boxes represent layers

vertically scaled to the number of dimensions, which are, from left to right, the number of

joints, the number of low-level factors, and the number of high-level factors. Circles represent

patient groups. NMF, non-negative matrix factorization.

(TIF)

S2 Fig. Few pairings of joint types were asymmetrically involved. Heat maps of z-scores

(colors; right legend), for co-occurring joint types (x-axis) on reference joints (y-axis). Pairings

whose absolute z-score was <1 were zeroed. Pairings with FDR < 0.1 are outlined. FDR, false

discovery rate.

(TIF)

S3 Fig. Nineteen low-level and seven high-level factors in the discovery cohort. (A) Recon-

struction accuracy of joint involvement data (first-level analysis) based on number of low-level

factors (x-axis) using 2,000× 3-fold BiCV. Q2 (y-axis) correlates, throughout BiCV, withheld

data with their original values. Higher Q2 is better. (B) Reconstruction accuracy of joint
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involvement data (first-level analysis) based on regularization coefficient (α; x-axis) using

2,000× 3-fold BiCV. The number of factors was fixed to 19. The horizontal grey strip repre-

sents the standard error when α = 0. (C) Same as panel A, but for the number of high-level fac-

tors (x-axis) with respect to low-level patient factor scores. (D) Same as panel B, but for high-

level factors with respect to low-level patient factor scores. The number of factors was fixed to

seven. BiCV, bi-cross-validation.

(TIF)

S4 Fig. Sparsification maintained relationships between patients on factors. (A) Scatter-

plots of sparsified scores (y-axes) compared to unsparsified scores (x-axes) for each low-level

factor (subpanel). Each point represents a single patient colored by the density of patients

within its vicinity (bottom legend). Diagonal lines represent lines of best fit. For all low-level

factors, P< 0.001. ρ: Spearman correlation. (B) Same as panel A, but for high-level factors

(subpanels). For all high-level factors, P< 0.001.

(TIF)

S5 Fig. Factors described localized groupings of joints. (A) Heat map of unsparsified contri-

butions of individual joints (y-axis) to low-level factors (x-axis). Contributions of sites to fac-

tors, scaled to 0%–100%, are given by colors (bottom legend). White denotes 0%. Left and

right arrows (bottom-right legend) denote side of body. (B) Same as panel A, but for high-level

factors (x-axis). (C) Same as panel B, but for unsparsified contributions of low-level factors (x-

axis) to high-level factors (y-axis).

(TIF)

S6 Fig. Sparsified factors described localized groupings of joints. (A) Heat map of sparsified

contributions of individual joints (y-axis) to low-level factors (x-axis). Contributions of sites to

factors, scaled to 0%–100%, are given by colors (bottom legend). White denotes 0%. Left and

right arrows (bottom-right legend) denote side of body. (B) Same as panel A, but for high-level

factors (x-axis). (C) Same as panel B, but for sparsified contributions of low-level factors (x-

axis) to high-level factors (y-axis).

(TIF)

S7 Fig. Factors and patient groups displayed little overlap. (A) Heat map of negative log-

FDRs (colors; bottom-right legend) depicting the degree to which low-level patient groups (x-

axis) associated with low-level factors (y-axis) based on z-tests. White denotes a negative log-

FDR less than 1.3 (i.e., FDR< 0.05). (B) Same as panel A, but for high-level patient groups (x-

axis) and high-level factors (y-axis). FDR, false discovery rate.

(TIF)

S8 Fig. Distinct joint patterns with respect to individual joints. Heat map of individual joint

involvements (x-axis) for each discovery cohort patient (y-axis), grouped by patient group

(rows). Black cells indicate active joints that appear in high-level factors, or key joints, underly-

ing patient groups (S6B Fig). Grey cells indicate other active joints (bottom-left legend). Left

and right arrows (bottom-right legend) denote side of body. DIP, distal IP; IP, interphalangeal;

MCP, metacarpophalangeal; MTP, metatarsophalangeal; PIP, proximal IP; TMJ, temporoman-

dibular joint.

(TIF)

S9 Fig. Thresholds for distinguishing degrees of joint localization. (A) At each given thresh-

old (x-axis), the proportion of patients exceeding that threshold (y-axis). This threshold

describes, for a given patient, the proportion of joints that are also key joints of that patient’s

underlying high-level factor (S6B Fig). Error bars represent standard errors derived from 2,000
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bootstraps. (B) Same as panel A but divided into patient groups (subpanels). (C) Bar graph of

the percent of patients in each group with each localization (shades of grey; right legend). Up

arrows denote enriched combinations of patient groups and localizations, and down arrows

denote depleted or rarer combinations. ���P< 0.001 by χ2 test with Bonferroni correction for

multiple hypothesis testing.

(TIF)

S10 Fig. Treatment decisions associated with degrees of localizations. (A) Bar plots of the

number of patients followed (y-axis) per patient group (columns) per visit (shades of grey; bot-

tom legend). (B) Bar plots showing, for each treatment (rows), the proportion of patients (y-

axes) per patient group (columns) and degree of localization (shades of grey; bottom legend)

prescribed that treatment within six-month windows prior to six-month and one-year visits

(x-axes). Up arrows denote, for each patient group, visit, and patient group, enriched localiza-

tions that occur more often than expected, and down arrows denote depleted localizations that

occur less often than expected.

(TIF)

S11 Fig. Patient groups reached zero joint involvement at different rates. Time to zero

curves for each patient group (columns) showing the proportion of patients continuing to

have joint involvement (y-axes) after given visits after baseline (x-axes) and degree of localiza-

tion (colors; bottom legend).

(TIF)

S12 Fig. Joint patterns generalized to an independent validation cohort. Homunculi of fre-

quencies of involvement (colors; bottom-right legend) for individual joints (circles) for each

projected patient group (panels) in the validation cohort. White denotes a probability of zero.

See Fig 1 for the identity of each joint.

(TIF)

S13 Fig. Similar de novo joint patterns in an independent validation cohort. (A) Mean

reconstruction accuracies (Q2; y-axis) of increasing numbers of low-level factors (x-axis). The

highest Q2 is circled, and the corresponding number of factors is indicated by the dashed verti-

cal line. Error bars represent 95% CIs. (B) Same as panel A, except for regularization coeffi-

cient (x-axis). The dashed horizontal line represents the mean Q2 when the regularization

constant is zero, and the grey ribbon represents its standard deviation. (C) Same as panel A,

except for high-level factors. (D) Same as panel B, except for high-level factors. (E) Heat map

of contributions (colors; right lower legend) of joints (y-axis) to low-level factors (x-axis).

White denotes zero contributions. Arrows denote side of body (right upper legend). (F) Heat

map of contributions (colors; right lower legend) of low-level factors (x-axis) to high-level fac-

tors (y-axis). White denotes zero contributions. (G) Same as panel E, but for contributions of

joints (y-axis) to high-level factors (x-axis).

(TIF)

S14 Fig. Disease course for the validation cohort. Time to zero curves, by degree of localiza-

tion (colors; bottom legend), showing the proportion of patients continuing to have joint

involvement (y-axes) after given visits after baseline (x-axes).

(TIF)

S1 Table. Reconstruction accuracy (Q2) of joint involvement data by factors, patient

groups, and ILAR subtypes. ILAR, International League of Associations for Rheumatology.

(DOCX)
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S2 Table. Associations between patient groups and ILAR subtypes. Standardized residuals �

generated from a χ2 test on a contingency table counting patients at the intersection of each

patient group and ILAR subtype. �P< 0.05, ��P< 0.01, ���P< 0.001. ILAR, International Lea-

gue of Associations for Rheumatology; RF, rheumatoid factor.

(DOCX)

S3 Table. Associations between patient groups and degrees of localization. �P< 0.05,
��P< 0.01, ���P< 0.001.

(DOCX)

S4 Table. Associations between patient groups and degrees of localization and treatment

decisions prior to subsequent visits. Associations are enriched, or observed more often than

expected, when the coefficient β> 0, and depleted when β< 0. DMARD, disease-modifying

antirheumatic drug.

(DOCX)

S5 Table. Coefficients from Cox proportional hazards modelling for time to zero joint

involvement. �P< 0.05, ��P< 0.01. CI, confidence interval.

(DOCX)

S1 Text. Multilayer NMF. NMF, non-negative matrix factorization.

(DOCX)

S2 Text. Localizations.

(DOCX)

S3 Text. Logical patterns of joint involvement.

(DOCX)

S4 Text. Degrees of joint localization.

(DOCX)

S5 Text. De novo validation.

(DOCX)

Acknowledgments

The following members of the ReACCh-Out consortium, all in Canada, contributed to

detailed patient data acquisition: Julie Barsalou, Susanne Benseler, Roberta Berard, Gilles

Boire, Roxana Bolaria, Alessandra Bruns, David Cabral, Bonnie Cameron, Sarah Campillo,
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