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Reversible Regulation of Catalytic 
Activity of Gold Nanoparticles with 
DNA Nanomachines
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Zisheng Tang3 & Huajie Liu2

Reversible catalysis regulation has gained much attention and traditional strategies utilized 
reversible ligand coordination for switching catalyst’s conformations. However, it remains challenging 
to regulate the catalytic activity of metal nanoparticle-based catalysts. Herein, we report a new DNA 
nanomachine-driven reversible nano-shield strategy for circumventing this problem. The basic idea is 
based on the fact that the conformational change of surface-attached DNA nanomachines will cause 
the variation of the exposed surface active area on metal nanoparticles. As a proof-of-concept study, 
we immobilized G-rich DNA strands on gold nanoparticles (AuNPs) which have glucose oxidase (GOx) 
like activity. Through the reversible conformational change of the G-rich DNA between a flexible 
single-stranded form and a compact G-quadruplex form, the catalytic activity of AuNPs has been 
regulated reversibly for several cycles. This strategy is reliable and robust, which demonstrated the 
possibility of reversibly adjusting catalytic activity with external surface coverage switching, rather 
than coordination interactions.

The fine control of catalytic behavior has long been an interesting topic in chemical and materials sciences1. 
This interest is, in particular, inspired by the growth of our attention and knowledge on enzymes2–4. As 
essentials in metabolism, enzymes are natural biocatalysts that can respond to environmental stimuli to 
selectively enhance or suppress their catalytic activity. Likewise, the ability to regulate catalytic activity 
of synthesized catalysts in abiotic systems offers great potential to control the catalytic efficiency and 
selectivity, as well as to choose catalytic pathway in complex and concurrent processes5. Towards this 
goal, for both natural and synthesized catalysts, a key issue is to regulate the exposing and blocking of 
active catalytic sites with the help of proper materials. Ligands are widely used for either inducing con-
formational changes of enzymes6,7, organometallic and supramolecular catalysts8–10, or simply binding to 
surface active sites of metal nanoparticle catalysts11–13. Recently, synthesized nanoparticles14 and carbon 
nanotubes15 were also used for adjusting enzymatic activity through surface-binding. However, unlike 
their natural counterparts, it remains a challenge to regulate the catalytic activity of synthesized catalysts 
dynamically and especially, reversibly. Though small molecule “effectors” have been demonstrated to be 
able to switch the catalytic activity of organometallic catalysts through reversible coordination8–10, revers-
ibly regulating metal nanoparticles’ catalytic activity is likely to be more difficult.

Herein, we developed a new strategy for circumventing the above problem with DNA nanomachines. 
With the unparalleled ability of programmable hybridization through unique base pair recognition, DNA 
has been considered as a powerful material for the construction of functional nanodevices16–20. Static 
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DNA nanostructures, such as lattices and polyhedrons, are known to be able to anchor functional objects 
precisely at nanoscale and therefore are ideal platforms for studying distance-dependent interactions21–24. 
Dynamic DNA nanomachines, on the other hand, can produce nanometer spatial changes driven by 
external stimuli25–29. The controllable and reversible features enable DNA nanomachines powerful tools 
for regulating target binding affinity30,31, enzyme cascade reaction32, and enzymatic activities in situ33. 
In this work, we for the first time exploited DNA nanomachines for reversible regulation of catalytic 
activity of gold nanoparticles (AuNPs). It is important to note that, different from the reversible ligand 
coordination approach, we utilized the conformational change of a G-quadruplex DNA nanomachine 
to switch the packing density of the surface-immobilized DNA monolayer on AuNPs, which acts as an 
adjustable shield for controlling the exposing and blocking of surface catalytic sites.

Results and Discussion
Design.  The working principle of our system is shown in Fig. 1. As one of the most important metal 
nanoparticle catalysts, AuNPs can catalyze a variety of reactions34,35. Typically, it is well know that 
AuNPs have high catalytic activity towards the oxidation of glucose in the presence of O2, producing 
gluconic acid and H2O2, which mimic natural glucose oxidase (GOx)36–38. Though the catalytic mecha-
nism remains elusive, it is believed that the surface gold atoms play essential roles39,40. Accordingly, the 
catalytic activity of AuNPs is assumed to be dependent on the degree of their surface coverage with 
inert materials. It is therefore expected that through adjusting surface coverage on AuNPs, the catalytic 
activity could be regulated.

G-quadruplex is a special DNA form which is folded quadruply from a G-rich (G =  guanine) sequence 
containing four Gn (n ≥  2) stretches41. A remarkable feature of this structure is its high sensitivity to 
alkali metal ions, especially K+. The conformational change of G-rich sequences driven by K+ has been 
widely used as a model DNA nanomachine due to its simplicity and robustness25. Though DNA has been 
successfully anchored on GOx-mimicking AuNPs recently42–45, studies on G-quadruplex have not been 
reported. In our design, a thiol-modified G-rich sequence containing four GGG stretches is firstly immo-
bilized on AuNPs (d =  10 nm) surface through thiol-Au bonds. In the absence of K+ (open state), these 
G-rich strands maintain flexible single-stranded conformations (ssDNA) and if the inter-strand distance 
is large enough, the glucose molecules are expected to be able to interact with surface gold atoms and 
the reaction can go ahead. In order to alter the activity, K+ will then be introduced and under its action, 
each G-rich strand will fold into a G-quadruplex conformation (closed state) which has a theoretical 
diameter of 2.5 nm41. Since the diameter of a G-quadruplex is much bigger than that of an ssDNA strand, 
the effective surface coverage in the closed state will be higher than that in the open state, resulting in 
decreased contact areas between catalyst AuNPs and substrate glucose molecules in the closed state, and 
thus the deactivation of the catalyst. The catalytic activity of AuNPs is expected to be recovered after 
removing K+, while the DNA nanomachines will transform from the compact closed state back to the 
flexible open state. Through alternately adding and removing K+, these DNA nanomachines will switch 
between “open” and “closed” states, resulting in a reversible variation of the exposed surface area of 
AuNPs, and thus achieving a reversible regulation of their catalytic activity.

GOx-like catalytic activity of DNA-modified AuNPs.  Given the assumption of the surface 
coverage-dependent catalytic activity, the amount of DNA nanomachines should be optimized to avoid 
low activity caused by high density immobilization and low adjustability caused by low density immo-
bilization. Therefore, we quantitatively studied the effect of ratio between AuNPs and DNA strands on 

Figure 1.  Schematic illustration of the reversible regulation of the GOx-like catalytic activity of AuNPs 
by G-quadruplex DNA nanomachines. 
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the catalytic activity. According to the reported procedure46, naked AuNPs (Fig. S1) were firstly capped 
with protector dipotassium bis(p-sulfonatophenyl) phenylphosphane dehydrate (BSPP) to increase 
their stability in ionic solution. Varied amount of thiolated ssDNA strands were then incubated with 
BSPP-AuNPs to immobilize DNA nanomachines on AuNPs surface. The ratio between AuNPs and DNA 
strands has been adjusted from 1:1 to 1:100. Agarose gel electrophoresis results demonstrated the success 
of the immobilization (Fig. S2).

The catalytic activities of as-prepared DNA-AuNPs conjugates were then evaluated with a coupled chro-
mogenic reaction, in which the produced H2O2 can oxidize 2,2′ -azinobis(3-ethylbenzthiazoline-6-sulfonate 
acid) (ABTS2−) and generate characteristic color (max. absorption at 420 nm) in the presence of 
Horseradish peroxidase (HRP). It is noteworthy that BSPP protected AuNPs have no catalytic activity 
(Fig. S3), possibly due to the surface passivation. However, as long as AuNPs were functionalized with 
DNA, they showed the capacity of glucose oxidization (Fig. 2). The catalytic activity kept relatively sim-
ilar to each other when AuNPs were functionalized with DNA at low density (AuNPs:DNA =  1:1, 1:5, 
1:10), but it decreased with further gradually increasing of DNA immobilization density to 1:50 and 
1:100. Since the immobilization of thiolated ssDNA could substitute a number of BSPP molecules, a 
reasonable explanation is that at low density DNA immobilization, the surface area around DNA strand 
is exposed directly to solution and the catalytic ability has been activated. However, when continuously 
increasing the amount of thiolated DNA, there would be a competition between two factors. The pos-
itive one is that more BSPP molecules are replaced by thiol groups to activate AuNPs. The negative 
one is probably caused by the increased packing density of ssDNA on AuNPs, as well as the increased 
non-specific adsorption. In the cases of high density DNA immobilization, the negative factor may play 
the dominant role and cause the deactivation of AuNPs. From the above test, an optimized AuNPs:DNA 
ratio of 1:10 has been selected for the subsequent experiments. The catalysis behavior of this conjugate 
has been analyzed (Fig. S4) and the Michaelis-Menten constant (Km) was calculated to be 28.59 mM, 
showing lower affinity to glucose than naked AuNPs39.

Reversible regulation of catalytic activity of AuNPs.  To validate our design, we next studied the 
reversible regulation of the GOx-like catalytic activity with K+. From circular dichroism (CD) measure-
ments (Fig. S5), it has been proved that the G-rich sequence in solution exhibited a typical G-quadruplex 
conformation47 in the presence of as low as 5 mM K+. G-quadruplex could form completely when 10 mM 
K+ ions was used and this concentration was then applied to induce the conformational change of the 
G-rich strands on AuNPs. As expected, this led to a remarkable drop in the catalytic activity, which was 
confirmed with UV absorption characterizations (Fig. 3a and blue curve in Fig. 3b). In order to rule out 
the possibility that the drop was simply caused by the variation of the K+ concentration rather than the 
K+ induced DNA conformational change, control experiments utilizing a random DNA sequence that is 
non K+ responsive as well as some analogous sequences to the used G-rich strand have been carried out. 
These sequences have a same length with the used G-rich sequence and 2–4 G bases were substituted 
with T bases in analogous sequences. CD experiments demonstrated that all these sequences can not 
form G-quadruplex with K+, even for the analogous sequences (Fig. S6). To test their influences on the 
catalytic activity of AuNPs, for each sequence, same amount of DNA has been immobilized on AuNPs 
to prepare a control DNA-AuNPs conjugate. Under same conditions, all these control conjugates showed 
almost same catalytic activities with DNA nanomachine-functionalized AuNPs in the absence of K+, 
implying that the sequences themselves had no influence on the catalytic ability. On the other hand, as 
expected, the catalytic activity remained constant in the presence of K+ even if its concentration has been 
raised to 100 mM (Fig. S7). This test verified the design that the catalytic activity of AuNPs is regulated 
by the spatial conformation of G-quadruplex formed under the action of K+. Furthermore, sodium ions, 

Figure 2.  Effect of AuNPs:DNA ratio on the catalytic activity of AuNPs: UV spectra (a) and plot of 
absorption values at 420 nm (b). 
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which were also reported to be important for some G-quadruplex structures41, can not help the G-rich 
sequence to form G-quadruplex and affect the catalytic activity (Fig. S8).

Multiple cycling of the regulation has also been achieved through alternately adding and removing 
K+. However, we noted that the catalytic capacity gradually decreased with each cycle. A control exper-
iment was therefore designed for the purpose of elucidating decay mechanism in this system. Using 
previously designed non K+ responsive control sequence, the control DNA-AuNPs conjugates were tested 
with the same cycling of adding and removing K+. Having run same number of cycles, the catalytic activ-
ity of control conjugates definitely decreased (red curve in Fig. 3b). Especially, the degree of the decay 
after each cycle was in good correspondence with that of G-rich DNA-functionalized AuNPs. According 
to literatures39,40, the main product of this reaction, that is gluconic acid, is likely to absorb on AuNPs 
and induce surface passivation which could be regarded as catalyst poisoning. In addition, the loss of 
AuNPs after repeated use may be another reason and it has been quantitatively assessed by UV absorp-
tion characterization (Fig. S9). We found that the rate of AuNPs loss was slower than that of the decay 
of the catalytic activity, proving that the decay was partially due to the loss of AuNPs. Though catalyst 
poisoning and AuNPs loss happened, this experiment clearly demonstrated that the catalytic activity of 
AuNPs can be reversibly regulated with DNA nanomachines, confirming the effectiveness of the design.

DLS measurements.  Finally, we carried out dynamic light scattering (DLS) measurements to further 
prove the conformational changes of the DNA nanomachines on AuNPs induced by K+, which could be 
reflected from the change of the hydrodynamic size of AuNPs. Since G-quadruplex conformation is more 
compact than ssDNA, the size of AuNPs in the closed state was expected to be smaller than that in the 
open state. As shown in Fig. 4, when the immobilization density of the G-rich DNA on AuNPs was low 
(AuNPs:DNA =  1:1, 1:5), the measured size of AuNPs in open states (d =  ~12 nm) was slightly bigger 

Figure 3.  Reversible regulation of the GOx-like catalytic activity of AuNPs: UV spectra (a) and cyclic 
switching indicated by monitoring the absorption values at 420 nm (b). 

Figure 4.  Diameters of DNA-AuNPs conjugates in the open and closed states with different AuNPs:DNA 
ratios. 



www.nature.com/scientificreports/

5Scientific Reports | 5:14402 | DOI: 10.1038/srep14402

than that in closed states (d =  ~11 nm), which are both close to the theoretical size of naked AuNPs of 
10 nm. However, with further increasing the DNA loading amount, the size of AuNPs in open states 
varied much with that in closed states. The decreased 3–4 nm in diameter was in good agreement with 
the design and can be attributed to the conformational change from the extended ssDNA to the compact 
G-quadruplex. Furthermore, the gradual increase of the size with DNA immobilization amount sug-
gested that more and more DNA strands have been densely packed on AuNPs with the result of blocking 
more surface active sites, which is consistent with the previously performed catalytic activity tests.

Conclusions
In summary, we developed a simple and reliable strategy for the reversible regulation of the catalytic 
activity of AuNPs, which was demonstrated with a glucose oxidation reaction as a proof-of-concept 
study. Different from the reversible ligand coordination approaches used mostly for enzymes and orga-
nometallic catalysts, this conceptually new strategy demonstrated the possibility of implementing DNA 
nanomachines for regulating the catalytic activity of metal nanoparticles. Importantly, the idea used here 
was based on the fact that the conformational change of DNA nanomachines on surface could lead to a 
reversible nano-shield48,49, a phenomenon which has the advantages of fast response, structural robust-
ness and easy control, and has not been applied to catalysis regulation before. Beside AuNPs, it is believed 
that this strategy is also feasible for other metal nanopartiles, even other catalysts such as enzymes. Since 
the regulation is driven by surface-attached DNA strands, the conformational switch of catalyst itself 
could be avoided and the potential harm for irreversible deactivation could be diminished. Given these 
advantages, it is expected that this strategy will bring new ideas to traditional catalysis and, with further 
qualitative and quantitative studies, will promote the production of new materials.

Methods
Materials.  All chemicals and enzymes were purchased from Sigma-Aldrich and used as received. 
Colloidal solution of 10 nm AuNPs was purchased from BBInternational. DNA sequences were synthe-
sized by Takara Biotechnology Co. and purified with HPLC.

G-rich DNA G4: 5′ HS-TTTTTGGGTAGGGCGGGTTGGGTTCGACAGCT-3′ 
4T: 5′ HS-TTTTTGTGTAGTGCGTGTTGTGTTCGACAGCT-3′ 
3T: 5′ HS-TTTTTGTGTAGTGCGTGTTGGGTTCGACAGCT-3′ 
2Ta: 5′ HS-TTTTTGGGTAGTGCGTGTTGGGTTCGACAGCT-3′ 
2Tb: 5′ HS-TTTTTGTGTAGGGCGGGTTGTGTTCGACAGCT-3′ 
Random control: 5′ -GCGTTGCGGAGTGACTGCATTAGAGTCTTTTT-3′ SH

BSPP capping on AuNPs.  BSPP (15 mg) was added to the colloidal nanoparticles solution (50 mL) 
and the mixture was shaken overnight at room temperature. Sodium chloride (solid) was added slowly 
to this mixture while stirring until the color changed from deep burgundy to light purple. The result-
ing mixture was centrifuged at 3000 rpm for 30 min and the supernatant was carefully removed with 
a pipette. AuNPs were then resuspended in 1 mL solution of BSPP (2.5 mM). Upon mixing with 1 mL 
methanol, the mixture was centrifuged, the supernatant was removed and the product was resuspended 
in 1 mL BSPP solution (2.5 mM). The concentration of the AuNPs was estimated from the optical absorb-
ance at 520 nm.

Preparation of AuNPs-DNA conjugates with thiol-modified DNA.  The thiolated DNA strands 
were first reduced by tris(2-carboxyethyl)-phosphine (TCEP) in water and subsequently purified using 
a G-25 column (GE Healthcare) to remove small molecules. Then thiol-modified oligonucleotides were 
mixed with BSPP-AuNPs at certain ratio in 0.5 ×  TBE buffer containing NaCl (50 mM) for 40 h at room 
temperature. AuNPs-DNA conjugates were washed with 0.5 ×  TBE buffer using centrifuge filters with a 
100 kDa MWCO to remove the extra oligonucleotides. The concentration of conjugates was estimated 
from the optical absorbance at approximately 520 nm. AuNP-DNA conjugates with discrete numbers of 
oligonucleotides were characterized by 1% agarose gel (running buffer 0.5 ×  TBE, loading buffer 50% 
glycerol, 15 V/cm).

Glucose oxidation reaction and colorimetric measurements.  10 nM AuNPs-DNA conjugates 
in different ratio were first incubated with 100 mM glucose (in 10 mM Tris-HCl, pH 7.4) at 37 °C for 
30 min. Then the mixture was centrifugated at 14,000 rpm for 30 min at 4 °C to remove AuNPs, avoiding 
the interference of AuNPs in colorimetric reaction. Then horseradish peroxidase (HRP) and 2,2′ -azi
nobis(3-ethylbenzthiazoline-6-sulfonate acid) (ABTS2−) were added to the solution to final concentra-
tions of 20 nM and 0.5 mM, respectively. The resulting mixture was further incubated for another 5 min 
at room temperature and the catalytic oxidation of ABTS2− was monitored at λ  =  420 nm with a Hitachi 
U-3010 UV-Vis spectrophotometer.

In order to regulate the catalytic activity with K+ , concentrated KCl solution was added into the 
mixture to a final concentration of 10 mM. To remove K+  , the mixture was centrifugated at 14,000 rpm 
for 30 min at 4 °C and then washed with deionized water for 3 times. The product was resuspended in 
glucose solution for the next catalysis. For size distribution measurements, a Zetasizer μ V (Malvern 
Instruments Ltd.) was used.
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