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Abstract

The roles of different nodes within a network are often understood through centrality analy-

sis, which aims to quantify the capacity of a node to influence, or be influenced by, other

nodes via its connection topology. Many different centrality measures have been proposed,

but the degree to which they offer unique information, and whether it is advantageous to use

multiple centrality measures to define node roles, is unclear. Here we calculate correlations

between 17 different centrality measures across 212 diverse real-world networks, examine

how these correlations relate to variations in network density and global topology, and inves-

tigate whether nodes can be clustered into distinct classes according to their centrality pro-

files. We find that centrality measures are generally positively correlated to each other, the

strength of these correlations varies across networks, and network modularity plays a key

role in driving these cross-network variations. Data-driven clustering of nodes based on cen-

trality profiles can distinguish different roles, including topological cores of highly central

nodes and peripheries of less central nodes. Our findings illustrate how network topology

shapes the pattern of correlations between centrality measures and demonstrate how a

comparative approach to network centrality can inform the interpretation of nodal roles in

complex networks.

Introduction

Connections are often distributed heterogeneously across the elements of many real-world

networks, endowing each node with a specific pattern of connectivity that constrains its role in

the system. One popular way of characterizing the role of a node in a network is by using one

or more measures of centrality. These measures aim to quantify the capacity of a node to influ-

ence, or be influenced by, other system elements by virtue of its connection topology [1–4].

Accordingly, centrality measures are often used to identify highly central or topologically

important nodes, commonly referred to as hubs, that play a key role in many diverse kinds of

networks. Examples include individuals who enhance the spread of disease in a population [5],
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proteins that are indispensable for an organism’s survival [6], researchers that are frequent col-

laborators in scientific collaboration networks [7], and brain regions thought to be important

for regulating consciousness in functional brain networks [8,9].

Whether a node is ranked highly on a given centrality measure depends on the dynamical

processes that are assumed to take place on the network [1]. For instance, nodes that are

ranked as highly central according to measures that assume routing of information along

shortest paths may not be ranked as highly by measures that assume diffusive dynamics

[10,11]. Over 200 centrality measures have been proposed to date [12], each making different

assumptions about network dynamics and the topological properties that are important for

driving those dynamics. In addition, some centrality measures capture local information (e.g.,

with respect to immediate nodal neighbours), whereas others quantify how a node is situated

within the global network context [13–15]. In theory, these measures should capture different

aspects of network topology, and thus identify different kinds of node roles and, accordingly,

different highly-central hub nodes. However, theoretical and conceptual differences between

centrality measures do not always translate into empirical differences in real-world networks.

For example, two different centrality measures may behave similarly on real-world networks,

thus being practically redundant despite their distinct theoretical foundations.

The extent to which different centrality measures offer unique or redundant information

depends on the topology of the network (e.g., see Fig 1). Past empirical work has investigated

correlations between the scores assigned by different centrality measures in a number of real-

world networks, such as scientific collaboration networks, airline networks, and internet rout-

ing networks, finding that the correlations between centrality measures—while typically mod-

erate to high—can vary substantially from one network to another [16,17]. As an example,

closeness and eigenvector centrality were very highly correlated in a network of collaborations

between high-energy physicists (r = 0.91), but not in a power grid network (r = −0.04) [17].

The specific reasons for these variations in correlations between centrality measures, hereafter

referred to as centrality measure correlations (CMCs), in different networks remains unclear.

What are the topological properties that influence the CMC structure of a network? Recent

theory, developed in the analysis of social networks, has pointed to the neighbourhood inclu-
sion preorder of a network as being a major determinant of CMCs (for a more detailed descrip-

tion, see Methods) [18–20]. This property can be quantified using the majorization gap, which

measures the topological distance of a network from a threshold graph, a type of network in

which all centrality measures should rank nodes the same way [18]. Networks that have a low

majorization gap, and which are thus topologically similar to a threshold graph, exhibit higher

Fig 1. Basic properties of topological centrality. Panel A shows an example of a star network. The red node has

maximal degree (greatest number of connections), closeness (is a short distance from other nodes) and betweenness

(lies on many shortest-paths between nodes) in this network. In this case these three centrality measures are perfectly

concordant. Panel B shows a network in which centrality measures are not concordant. The red node has the highest

betweenness and closeness, but it has the lowest degree in the network.

https://doi.org/10.1371/journal.pone.0220061.g001
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correlations between centrality measures [20]. Another body of work has shown that networks

with a large spectral gap, quantified as the difference between the first and second eigenvalues

of the adjacency matrix, have very high correlations between centrality measures that quantify

walks between nodes [21–23] (for example, subgraph and eigenvector centrality). Clustered,

modular networks can reduce CMCs by dissociating measures that quantify centrality within

local neighbourhoods of nodes (e.g., degree, leverage) from those that index centrality across

the entire network (e.g., betweenness, closeness). This is because a node may have high local

centrality (highly connected with nodes in the same module) but low global centrality (uncon-

nected to nodes in other modules), or vice-versa [24]. Other studies have examined the role of

network edge density and the impact of specific node or edge removals on the network

[14,25–28].

While numerous studies have investigated how different centrality measures are related

[16,17,20,27,29–33], the extent to which any association between topology and CMC structure

generalizes beyond this past work is unclear, as these studies have typically focused only on

specific network classes (e.g., social, synthetic), used networks varying within a limited range

of sizes and densities, explored just a few types of network organization, or examined a small

subset of centrality measures. A systematic evaluation of CMCs, quantified across a broad

array of centrality metrics and in a large set of different classes of networks, has not been per-

formed. Furthermore, given the abundance of centrality measures proposed, many of which

are highly correlated to each other when applied to real-world networks, it is important to

understand whether there are benefits to using multiple centrality measures, or whether there

is a reduced, canonical set of measures for capturing nodal roles in most applications. Past

research has found that using multiple centrality measures to define multivariate profiles can

offer a better description of nodal roles in the network [34,35]. Broad, comparative studies—

such as those performed recently for time-series analysis [36]—allow us to uncover empirical

relationships between the large and interdisciplinary literature on centrality measures for net-

work data. While the selection of which centrality measure to apply to a given network analysis

task is typically done subjectively, the combination of many centrality measures together can

offer a more systematic and comprehensive framework in which the most useful measures can

be informed more objectively from the empirical structure of a given network.

In this article, we evaluate 17 different centrality measures across 212 networks. We exam-

ine how CMCs vary across the networks and characterize the association between global topo-

logical properties of each network and CMC variation. We also examine how multivariate

profiling of nodal centrality can be used to gain insight into the roles that different nodes play

a given network.

Methods

Centrality measures

We used 17 different centrality measures to analyse each network, focusing on centrality mea-

sures that are commonly used in the network science literature, or which have received recent

interest. Each measure used is listed in Table 1; definitions and further details are in S1 Text.

Analysis was performed in MATLAB 2017a. The code for all centrality measures were either

obtained from the Brain Connectivity Toolbox (BCT) [37], MatlabBGL library, or were written

in custom code, available at [https://github.com/BMHLab/CentralityConsistency]. All data

generated or analysed in the current study are available in the figshare repository, [https://

figshare.com/s/22c5b72b574351d03edf].

Centrality measures are often defined in relation to the different ways in which information

is thought to propagate across nodes, which can occur through: (1) walks, which follow an
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unrestricted trajectory through the network; (2) trails, which can return to a visited node but

cannot reuse an edge; and (3) paths, which cannot visit a node or edge more than once [1].

Thus, paths are a subset of trails which, in turn, are a subset of walks. We sought to include

measures based on these different propagation approaches, although most centrality measures

developed to date have focused on walks and paths.

While not typically thought of as a centrality index, the participation coefficient was also

included in our set of centrality measures for comparison, as it is frequently used as a measure

of nodal roles in networks with community structure [4,24]. The participation coefficient

quantifies the distribution of a node’s connections across different topological modules of the

Table 1. Definitions for centrality measures.

Centrality name Characteristics of a central node Equation

Degree (DC) Connected to many other nodes [3] DCi ¼ di ¼
X

j6¼i

Aij

Eigenvector (EC) Connected to many other nodes and/or to other high-degree nodes [40] ECi ¼
1

l1

X

j

Ajivj

Katz (KC) Connected to many other nodes and/or connected to other high-degree [41] KCi ¼ a
X

j

Ajivj þ b

PageRank (PR) Connected to many other nodes and connected to other high-degree nodes [42] PRi ¼ a
X

j

Aji
vj
kj
þ b

Leverage (LC) Has a higher degree than its neighbours [43] LCi ¼
1

di

X

j2hðiÞ

di � dj
diþdj

H-index (HC) Connected to many other high-degree nodes [44] HCi ¼ max
1�h�:di

minðjN �hðiÞj; hÞ

Laplacian (LAPC) Removal of this node would greatly impair the network [45,46] LAPCi ¼ d2
i þ di þ 2

X

j2N ðiÞ
dj

Shortest-path Closeness (CC) Low average shortest path length to other nodes in the network [47] CCi ¼
NP
j
lij

Subgraph (SC) Involved in many closed short-range walks [48] SCi = [eA]ii

Participation coefficient (PC) Connections distributed across different topological modules [24]
PCi ¼ 1 �

XM

m¼1

diðmÞ
dðiÞ

� �2

Total Communicability (TCC) Can be easily reached by a walk from any other node [21] TCCi ¼
X

j

½eA�ji

Random-walk Closeness (RWCC) Can be easily reached by a random-walk from any other node [49,50] RWCCi ¼
NP
j
Hji

Information (IC) Can be easily reached by paths from other nodes [51]
ICi ¼ Cii þ

P
j
Cjj � 2
P

j
Cij

N

� �� 1

Shortest-path Betweenness (BC) Lies on many shortest topological paths linking other node pairs [3] BCi ¼
X

p6¼i;p6¼q;q6¼i

gpqðiÞ
gpq

Communicability betweenness (CBC) Takes part in many walks between pairs of other nodes [52] CBCi ¼
1

C0

X

p

X

q

Gpiq
Gpq ; p 6¼ q; q 6¼ i

Random-walk Betweenness (RWBC) Takes part in many random walks between pairs of other nodes [53]
RWBCi ¼

P
p<q

IðpqÞi
1
2
N N� 1ð Þ

Bridging (BridC) Forms key links between high degree nodes [54] BridCi = BCi×Bci

A = adjacency matrix; di = degree of node i; λ1 = leading eigenvalue of A; v = leading eigenvector of A; α = penalty on distant connections to a node’s centrality score;

β = preassigned centrality constant; h(i) = the neighbours of node i; N �hðiÞ = neighbours of node i which have at least a degree of h; N = number of nodes in a network;

lij = length of the shortest between nodes i and j; eA = matrix exponential of A; M = number of modules in a network; di(m) = neighbours of node i which are part of

module m; H = the matrix of mean-first passage times between nodes in a network; C = (L+J)−1 where L is the Laplacian of A and J is a N×N matrix with all elements

equal to one; gpq = the number of shortest-paths between nodes p and q; gpq(i) = the number of shortest-paths between nodes p and q which pass through i; Gpq =

number of walks between nodes p and q; Gpiq = number of walks between nodes p and q involving node i; Ć = (N−1)2−(N−1) which is a normalisation term; IðpqÞi =

current flowing through nodes p and q which passes through node i; Bci ¼ d� 1
i =
P

j2N ðiÞd� 1
j . All measures here are defined for unweighted networks, see S1 Text for

information on weighted versions.

https://doi.org/10.1371/journal.pone.0220061.t001
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network, where the modules are defined using a specific community detection algorithm (for a

review of community detection algorithms see [38]). The participation coefficient was first

introduced to distinguish between different types of network hubs [24] and has been proposed

as a singular measure for defining hubs in some classes of networks, such as those based on

correlations [39].

Network data

Nearly all networks were obtained from freely-available sources. We examined 107 networks

compiled by Ghasemian and colleagues [55] from the Index of Complex Networks (ICON) [56],

together with a further 104 networks sourced by searching ICON for networks of varying sizes

and domains. An additional network, the human structural brain network, was generated from

diffusion-weighted magnetic resonance imaging data from the Human Connectome Project [57]

(see S1 Text for details). Thus, we considered a total of 212 networks. Each network, comprising

N nodes and E edges, was represented as an N×N adjacency matrix. For the main analysis, each

network was treated as unweighted (any edge weight information was removed) and undirected

(any unidirectional edges were made bi-directional). If the network was comprised of multiple

components, only the largest connected component was considered. In addition, weighted analy-

sis was performed for 39 networks for which edge-weight information was available.

To examine the extent to which simple network properties—such as number of nodes,

edges, and degree/strength distribution—contribute to the CMCs for a network, we compared

the empirical networks to a set of matched surrogate networks. For each empirical network,

we generated 100 unconstrained and 100 constrained surrogate networks. Unconstrained sur-

rogate networks were created using a variant of the Erdős-Rényi generative model [58] which

guaranteed the network would be non-fragmented, while preserving the number of nodes,

number of edges, and the distribution of edge weights of the original network. Constrained

surrogate networks were generated using the Maslov-Sneppen algorithm [59] for unweighted

networks and a modified version for weighted networks [37]. The constrained surrogates pre-

serve the number of nodes and edges, in addition to the degree sequence and approximate

node strength (weighted degree) distributions. See S1 Text for more on the surrogate genera-

tion algorithms. Due to the computational complexity of calculating random-walk between-

ness centrality and communicability betweenness centrality, we did not compute these

measures for the surrogate networks.

Centrality Measure Correlations (CMCs)

We used Spearman’s ρ to calculate the correlation between the nodal scores assigned by any

two centrality measures. This statistic was used to quantify CMCs because many such relation-

ships were nonlinear yet almost always monotonic, and many centrality metrics have a non-

Gaussian distribution [20]. CMCs were computed in every network for all pairs of centrality

metrics. To find which centrality measures were consistently highly correlated across networks

(indicating redundancy), we took the mean CMC for each pair of metrics across all networks,

which we term the mean between-network CMC. We also quantified the variability of CMCs

across networks as the between-network CMC standard deviation.

As an additional supporting analysis, we conducted a Principal Component Analysis (PCA)

on the centrality data. While centrality measures often have non-linear relationships and con-

tain outliers–properties not ideally suited to PCA [60,61]–we conducted this analysis to evalu-

ate, in a preliminary way, how the different measures grouped together based on linear

covariance. In line with previous work, a PCA was run separately for each network on the z-

scored centrality measures [13].

Consistency of centrality measures across networks
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Assessing the relationship between network topology and CMCs

Given the assumed relationship between network topology and CMCs (e.g., Fig 1), we exam-

ined how CMCs vary as a function of eight different global network properties: connection

density, assortativity, clustering, connection density, global efficiency, diffusion efficiency,

modularity, majorization gap, and spectral gap. Further details on how these global topological

properties were calculated can be found in S1 Text. Briefly, the connection density of a net-

work, κ, is the proportion of connections that are present in a network relative to the total

number of possible connections. Previous work has shown that networks with higher density

show higher CMCs [27]. In the limit of κ = 1, the network is fully connected and all nodes are

identical. As the density decreases, there is more variability in how the connections in the net-

work can be arranged, and this is likely to result in centrality measures diverging and thus

becoming less correlated.

Assortativity, clustering and global efficiency are commonly used descriptors of global net-

work topology. Assortativity measures the extent to which nodes preferentially connect to

other nodes with similar degree [62]. Clustering measures the proportion of closed triangles

present in the network and is often taken as a measure of cliquish connectivity [63]. Global

efficiency is inversely related to the characteristic path length of a network and is thus a useful

descriptor for networks characterized by shortest-path routing [64]. Diffusion efficiency is an

analogous measure that captures the efficiency of a network in supporting communication

governed by a diffusion process [11].

Modularity is the extent to which a network contains groups of nodes that are densely inter-

connected with each other but sparsely connected to nodes outside the group [62]. Prior work

has indicated that networks with stronger modularity show weaker CMCs [24]. Modules can

enhance topological heterogeneity in a network, dissociating centrality metrics that favour

high within-module connectivity (high local neighbourhood connectivity) from high between-

module connectivity (globally integrative connectivity). We quantified modularity using the

widely-used Q metric [65], and modules were identified using the Louvain algorithm [66]

combined with a consensus clustering procedure (50 iterations with τ = 0.4) [67,68] to address

algorithmic degeneracy [69] (see S1 Text).

The majorization gap quantifies the distance between an empirical network and an ideal-

ized network, called a threshold graph [20]. Threshold graphs are formed by adding nodes to a

network, one at a time, such that the new node either connects to all existing nodes or connects

to no other nodes (see S1 Fig for an example). Threshold graphs preserve a property known as

the neighbourhood-inclusion preorder, which is argued to form the basis of centrality rank-

ings [18,19]. If the neighbours of node j are a subset of the neighbors of node i, then node i is

said to dominate node j, and must have a greater or equivalent level of centrality. The neigh-

bourhood inclusion preorder is the rank ordering of nodes in terms of these dominance rela-

tionships, such that nodes that are not dominated by any others are ranked first and are thus

more central. Nodes that are dominated by many others are ranked last, and are thus least cen-

tral (e.g., S2 Fig). As this preorder is complete in threshold graphs––i.e., a dominance relation-

ship can be established for every pair of nodes––the centrality rankings of all nodes across

different measures in these networks is perfectly concordant. Thus, networks with a larger

majorization gap will be more topologically distant from a threshold graph and should have

lower CMCs.

The final property investigated was the spectral gap. This property quantifies the quality of

a network’s ‘expansion properties’; namely, whether a network is simultaneously sparse and

well-connected. A large spectral gap is indicative of a network being a good expander. Such

networks lack bottlenecks––nodes/edges that, if removed, will fragment the network. A larger

Consistency of centrality measures across networks
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spectral gap has been associated with higher correlations between walk-based centrality mea-

sures [21–23].

To combine the overall similarity of all pairs of centrality measures into a single value for a

network, we took the mean of every CMC within each network to obtain the mean within-net-
work CMC. A higher mean within-network CMC indicates that, on average, centrality measures

are highly correlated in a network. This value was then correlated with each global topological

descriptor. To determine which specific topological descriptor was the best predictor of variations

in mean CMC across networks, we used multiple linear regression. In secondary analyses, we

examined whether specific CMCs correlated with variations in global topology across networks.

As simple network properties like edge density and the degree/strength distribution can

account for many higher-order features network topology, we compared the CMCs of empiri-

cal networks to matched surrogate networks. The unconstrained model can be used to deter-

mine whether the relationship is explained simply by variations in size and density across

networks, while the constrained surrogates can be used to examine the impact of degree

sequence and strength distribution in driving this relationship. To allow comparison between

different networks and their associated surrogates, we calculated the difference of the empirical

network properties/mean within-network CMCs compared to the mean value obtained in

each of the surrogates.

Clustering nodes based on their centrality profiles. Finally, we investigated whether

combining multiple centrality measures into a multivariate ‘centrality profile’ for each node

could be used to meaningfully cluster nodes into groups with distinct topological roles. Cen-

trality scores were converted to ranks and hierarchical clustering was performed using Ward’s

minimum variance method [70] for Euclidean distances between pairs of ranked centrality

metrics. For visualization, the Davies-Bouldin (DB) index [71] was used to determine a specific

resolution to cut the dendrogram and investigate the resulting clusters. The DB index is a ratio

of intra-cluster similarity to inter-cluster differences for a given clustering solution; lower val-

ues of the DB indicate a better clustering solution. We note that there are many different algo-

rithms for clustering data (including alternative heuristics for forming clusters from a

dendrogram) and for dendrogram cutting [72]. Our goal is not to determine any particular

clustering solution or approach as robust or optimal, but rather to demonstrate how clustering

of centrality profiles may aid in identifying subsets of nodes with distinct topological roles. A

forced-directed algorithm was used to visualize node roles in the context of the broader topol-

ogy of the network [73].

Results

Correlations between centrality measures

First, to examine the similarity of centrality measures across different networks, we calculated

Spearman correlations between each of the 17 measures listed in Table 1 across each of the 212

networks. All 212 networks were analysed in unweighted form. A separate weighted centrality

analysis was performed for 39 of these networks with edge-weight information.

Fig 2 shows the distribution of CMCs of five example unweighted and weighted networks.

The distributions of CMCs for all networks are shown in S3 Fig. These results indicate that,

despite a general trend for most networks to have high and mostly positive CMCs, there is con-

siderable heterogeneity in CMC patterns across different networks, as previously reported

[16,17]. This variability did not clearly map on to the natural class of the network (i.e., whether

the network is social, biological technological, etc; S3 Fig).

To determine which pairs of centrality measures were consistently correlated across net-

works, we calculated the mean between-network CMC (the mean CMC for each pair of

Consistency of centrality measures across networks
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measures across all networks) and standard deviation (standard deviation of CMCs across net-

works) for each pair of metrics in unweighted (Fig 3A and 3C) and weighted (Fig 3B and 3D)

networks. Most measures show moderate-to-high correlations across all networks, with 97%

of all mean CMCs exceeding 0.5 in unweighted networks and 80% in weighted networks.

Weighted CMCs were slightly weaker than their unweighted counterparts. The PCA also indi-

cated that centrality measures are highly interrelated, with the first principal component

(PC1)–on which nearly all measures uniformly loaded–explaining 45–93% of the variance

across different networks. More heterogeneous loadings were observed for the second and

third components (see S1 Text; S4 Fig). For the 39 networks with edge weight information, we

compared the unweighted and weighted centrality measures. Individual unweighted and

Fig 2. Distributions of Centrality Measure Correlations (CMCs) for example unweighted and weighted networks. Distributions of CMCs for every pair of centrality

measures for five example unweighted (panel A); and weighted networks (panel B). Networks have been ordered from highest (left) to lowest (right) median CMC.

https://doi.org/10.1371/journal.pone.0220061.g002

Fig 3. Mean and standard deviation of between-network CMCs. Panels A and B show the between-network CMC mean and standard deviation for unweighted

measures, respectively. Panels C and D show the between-network CMCs mean and standard deviation for weighted measures, respectively.

https://doi.org/10.1371/journal.pone.0220061.g003
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weighted measures were highly correlated (S5 Fig), as were the weighted and unweighted

mean within-network CMCs for each network (S6 Fig).

Several pairs of centrality measures displayed notable relationships. First, random-walk

closeness centrality (RWCC) and information centrality (IC) were very highly correlated

across networks (ranging from 0.88–1 with a mean correlation of 0.998 in unweighted net-

works and ranging from 0.937–1 with a mean correlation of 0.996 in weighted networks).

Thus, these two theoretically-related measures [74] are practically redundant in most real-

world scenarios. Other pairs, like Katz centrality (KC) and total communicability centrality

(TCC), were also highly correlated across the wide range of unweighted networks analysed (all

ρ> 0.98). The participation coefficient and bridging centrality generally had the lowest aver-

age correlation with other measures, likely because they are conceptually distinct, and in the

case of the participation coefficient, depend on a modular decomposition of the network. Sub-

graph centrality in weighted networks showed low correlations with other measures, suggest-

ing it may be capturing a unique aspect of node centrality.

Network topology and CMCs

We now examine how variations in CMCs across different networks relate to differences in

the global topological properties of those networks. Specifically, we consider how the mean

within-network CMC (the average of all pairwise CMCs within a network) relates to the fol-

lowing eight global network properties: connection density, assortativity, clustering, global

efficiency, diffusion efficiency, modularity, majorization gap, and spectral gap.

In unweighted networks, higher mean within-network CMC was correlated with lower val-

ues of assortativity, majorization gap, and modularity, and higher values of clustering, density,

diffusion efficiency, global efficiency, and spectral gap (Fig 4). Similar results were obtained

for weighted networks (S7 Fig), with some exceptions. First, the correlation between global

efficiency and mean within-network CMC was among the strongest for unweighted networks

but among the weakest for weighted networks. Conversely, the correlation between assortativ-

ity and mean within-network CMC was strong for weighted networks, but weak for

unweighted networks. Weighted clustering showed no relationship with CMCs once outliers

were removed. Post-hoc analyses indicated that many individual pairs of CMCs correlated

with network properties, showing that the relationship between network properties and mean

CMCs is representative of a general trend across most pairs of centrality measures, and not

driven by a small subset of CMCs (S8 Fig for unweighted and S9 Fig for weighted). However,

CMCs involving bridging centrality or the participation coefficient had weak correlations with

nearly all global properties in both unweighted and weighted networks, further suggesting that

these measures may capture a unique aspect of nodal centrality. We also compared the amount

of variance explained by PC1 (as a proxy for the unidimensional nature of centrality) in each

network to each network property. These results were highly similar to those observed when

using the mean within-network CMCs (S10 and S11 Figs).

We used multiple linear regression to quantify the unique contributions of each topological

descriptor to CMC variability across networks (note: network density and diffusion efficiency

were excluded due to strong non-linear associations with CMCs). In unweighted networks,

modularity was the only significant predictor of mean within-network CMCs (Table 1 in S1

Text). As modularity and the majorization gap were highly correlated (S12 Fig), we reran the

model excluding one of these properties each time, and found that only modularity was a sig-

nificant predictor of network CMCs (Table 1 in S1 Text). In weighted networks, weighted

assortativity explained the most variance in network CMCs. Due to collinearity, modularity

and majorization gap were included in separate models. Both were significant predictors in
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these models, with the former accounting for slightly less variance than the latter (49% vs 55%)

(Table 2 in S1 Text).

To ensure that the associations between the mean within-network CMC and global topol-

ogy could not be explained by lower-order features (e.g., density of the network or degree

sequence), we examined these associations in surrogate networks matched for number of

nodes, number of edges, edge weight distribution (unconstrained surrogate), and degree

sequence and strength distribution (constrained surrogate). We compared the mean within-

network CMCs and each network property in empirical networks to those obtained in the sur-

rogates. Specifically, we calculated the difference between the mean within-network CMC

/network property in the empirical network and the corresponding mean values of the surro-

gates. A difference greater than zero means the property was higher in the empirical network

than the surrogates; conversely, if it was less than zero it was higher in the surrogate networks.

A difference close to zero indicates the property is simply a side-effect of the network’s density

(for unconstrained surrogates) or degree/strength distribution (for constrained surrogates).

These results are shown in Figs 5 and 6 for unweighted network while results for weighted net-

works surrogates are presented in S12 and S13 Figs respectively.

There are three major results from this comparison to the surrogates. First, for most net-

works, the mean within-network CMC of the surrogate networks (both constrained and

unconstrained) was higher or equivalent to the respective matched empirical network (Figs 5

and 6). Second, unconstrained surrogates also had a higher majorization gap than the empiri-

cal networks. Finally, despite the empirical networks and constrained surrogates having the

exact same majorization gap (due to the majorization gap being solely determined by the

Fig 4. Association between mean within-network CMC and network properties in unweighted networks. The association between the mean within-network CMC

(the average of all CMCs within a single network) and each of the global topological properties. Networks are coloured by their natural category (blue = social,

grey = technological, brown = biological, orange = informational, purple = transportation; green = economic).

https://doi.org/10.1371/journal.pone.0220061.g004
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degree sequence of a network), empirical networks often had lower CMCs. Together, these

results counter theoretical expectations that a higher majorization gap should be associated

with lower CMCs.

Centrality-based clustering of nodes

We now use hierarchical clustering to investigate whether multiple centrality measures can be

used in combination to identify distinct roles for nodes. Due to the consistent high correlations

(ρ> 0.99) between random-walk closeness and information centrality, we excluded random-

walk closeness from this analysis.

In most networks, the Davies-Bouldin (DB) criterion, a measure of the quality of a given

clustering solution, suggested a two-cluster solution. Nearly all networks contained a subset of

nodes with high scores across most measures, and another subset with low scores across most

measures. The two-cluster solution often favoured one of these groups, such that either all

nodes with low centrality were grouped in one cluster and the remaining nodes in the other

(e.g., Fig 7), or vice-versa (e.g., Fig 8). Such subsets were also apparent when examining finer-

grained clustering solutions.

While a putative core of high-scoring nodes and a periphery of low-scoring nodes was con-

sistently found across nodes and clustering resolutions, distinct patterns were found for nodes

interposed between these two subsets across different networks. Broadly these patterns can be

Fig 5. Difference between unweighted empirical and unconstrained surrogates in mean within-network CMC and network properties. The y-axis of each plot shows

the difference between the empirical networks and unconstrained surrogates mean within-network CMC. The x-axis shows the difference between the empirical

networks and unconstrained surrogates on a particular property (except for panel C as the unconstrained surrogates have the same density as the empirical network). On

both axis, except for the x-axis in panel C, a negative value indicates the empirical network had a lower value than the mean value of the surrogates, while a positive value

indicates the empirical networks had a larger value. Points are coloured by the natural category of the empirical network (blue = social, grey = technological,

brown = biological, orange = informational, purple = transportation; green = economic).

https://doi.org/10.1371/journal.pone.0220061.g005
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classified into two types, characterized by either (a) a gradual progression from high-scoring

core nodes to low-scoring periphery nodes (Fig 8A, see also S15–S17 Figs), or (b) a semi-dis-

crete cluster structure observable at different resolutions (Fig 7A, see also S15–S17 Figs), in

which each cluster has a distinctive profile of scores across different centrality measures. An

example of one such intermediate cluster present in several networks comprises nodes that

score highly on closeness (e.g., shortest-path closeness, total communicability, subgraph, infor-

mation) and eigenvector-like (e.g., eigenvector, Katz) measures of centrality, but low on

betweenness-based (shortest-path, random-walk, communicability) measures (e.g. Fig 7 blue

cluster; S16 Fig purple cluster). These nodes were thus topologically positioned within a central

core of the network (accounting for their high closeness) and were connected to other nodes

with high degree (accounting for their high eigenvector values), yet lacked connections to

nodes outside of the main cluster (thus having low betweenness and participation coefficient

scores). Other intermediate clusters varied depending on the network and may thus define

nodes serving unique roles within each specific system.

Discussion

We evaluated CMCs between 17 different centrality measures in 212 networks to determine

how variation in the strength of CMCs across networks tracks differences in global topological

properties. We also investigated whether subsets of nodes with consistent topological roles,

Fig 6. Difference between unweighted empirical and constrained surrogates in mean within-network CMC and network properties. The y-axis of each plot shows

the difference between the empirical networks and constrained surrogates mean within-network CMC. The x-axis shows the difference between the empirical networks

and constrained surrogates on a particular property (except for panels C and F as the constrained surrogates have the same density and majorization gap as the empirical

network). On both axis, except for the x-axis in panels C and F, a negative value indicates the empirical network had a lower value than the mean value of the surrogates,

while a positive value indicates the empirical networks had a larger value. Points are coloured by the natural category of the empirical network (blue = social,

grey = technological, brown = biological, orange = informational, purple = transportation; green = economic).

https://doi.org/10.1371/journal.pone.0220061.g006
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including network hubs, could be identified based on their multivariate centrality profiles. We

found that centrality measures show moderate-to-high positive correlations across most net-

works; modularity is the strongest predictor of mean CMC variability across unweighted net-

works; and most networks contain a subset of nodes with consistently high scores across

nearly all centrality measures and another subset with consistently low scores.

Consistent with past findings [13,16,17], most CMCs were high, although there was consid-

erable variability across networks (Fig 1 and S3 Fig). This finding is also supported by the PCA

results, which showed that the dimensionality of centrality correlations varies from one net-

work to another. CMCs in weighted networks were only slightly weaker than their unweighted

forms. Notably, the simplest and most popular measure of centrality, node degree, showed

high correlations with most other centrality metrics, likely because a highly connected node is

likely to be rated as central by other metrics. Degree may thus act as a useful first approxima-

tion of node centrality. Despite generally high CMCs, some measures showed low correlations

with other metrics. For instance, Leverage and PageRank centrality were both highly corre-

lated with each other but less so with other measures in both weighted and unweighted net-

works, possibly because these measures scale a node’s importance in relation to the

importance of its immediate neighbours, unlike other centrality measures. Bridging centrality

and the participation coefficient also demonstrated weaker correlations with other measures,

likely because these metrics are conceptually different to standard centrality measures.

Fig 7. Multivariate centrality profiling of the network science author collaboration network. Panel A shows the dendrogram projected alongside the distance matrix

of node pairs (ranks scores were normalised to be in the range 0–1 with 1 indicating the highest rank). The black and grey boxes and indicate the clusters when a two-

cluster and eight-cluster solution is used, respectively. Panel B displays the results for the Davies-Bouldin (DB) criterion. A lower DB value represents a better clustering

solution. The solution shown in panels D and E is labelled in red. Only the first 50 clustering solutions are shown for ease of visibility. Panel C shows the matrix of nodal

centrality scores (each row is a node and each column is a measure) and how these are clustered in a two-cluster solution (the black and grey represent the two different

clusters). Panel D shows the matrix of nodal centrality scores as well as the clusters each node was assigned to. Panel E shows a topological representation of the network,

produced using the force-directed layout algorithm, where each node is coloured according to the cluster it was allocated to in panel D.

https://doi.org/10.1371/journal.pone.0220061.g007
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We found density, global efficiency, modularity, majorization gap, and spectral gap were

correlated with CMCs, which is in line with past findings [20,21,23,27]. Of these, the majoriza-

tion has been most clearly linked to CMCs by theory [18–20]. However, our regression analy-

sis revealed that the majorization gap was not a significant predictor of the unweighted mean

within-network CMCs. The weak association between majorization gap and CMCs was con-

firmed by the analysis of surrogate data––while we predicted that a lower gap should be associ-

ated with higher CMCs, our surrogates were characterized by higher CMCs despite having a

comparable or larger gap relative to the observed networks. Recent work has noted that in net-

works where there are fewer dominance relationships (i.e. the neighbourhood inclusion preor-

der is less complete), there is more freedom in how different centrality measures can rank

nodes. Our findings fit within this interpretation, namely that a larger majorization gap

(which is indicative of a less complete neighbourhood inclusion preorder) does not necessarily

mean centrality measures must be discordant (where nodes will be ranked differently on dif-

ferent measures), but rather there is more variability in the possible ranks a node can achieve

on different centrality measures [19,20]. Our regression analysis also indicated that modularity

was the only topological property to make a significant, unique contribution to mean CMC

variation across networks. Networks with higher modularity than their matched surrogates

also had weaker CMCs (and vice-versa). Modular networks provide greater opportunities to

decouple local from global measures of centrality; they can also result in bottlenecks that can

Fig 8. Multivariate centrality profiling of trophic-level species interactions in a New Zealand stream. Panel A shows the dendrogram projected alongside the

distance matrix of node pairs (ranks scores were normalised to be in the range 0–1 with 1 indicating the highest rank). The black and grey boxes and indicate the clusters

when a two-cluster and three-cluster solution is used, respectively. Panel B displays the results for the Davies-Bouldin (DB) criterion. A lower DB value represents a

better clustering solution. The solution shown in panels D and E is labelled in red. Only the first 50 clustering solutions are shown for ease of visibility. Panel C shows

the matrix of nodal centrality scores (each row is a node and each column is a measure) and how these are clustered in a two-cluster solution (the black and grey

represent the two different clusters). Panel D shows the matrix of nodal centrality scores as well as the clusters each node was assigned to. Panel E shows a topological

representation of the network, produced using the force-directed layout algorithm, where each node is coloured according to the cluster it was allocated to in panel D.

https://doi.org/10.1371/journal.pone.0220061.g008
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dissociate path-based from degree-based measures (e.g., Fig 1B). The net effect will be a reduc-

tion in mean CMCs.

We note that our empirical analysis measured global properties of network topology using

methods that may only approximate the actual topology. For example the modularity of a net-

work is highly dependent on the decomposition algorithm used [55], it is not clear how large

the spectral gap needs to be for a network to be a good expander [21,23], and the majorization

gap is a heuristic for quantifying the distance of a network from a threshold graph, which itself

is itself a heuristic to generate a network with perfect neighbourhood-inclusion preorder [20].

Thus, these approximations may partially obscure the relationship between topology and

centrality.

Hierarchical clustering of multivariate nodal centrality profiles indicated that two general

clusters are present in nearly all networks: a subset of nodes scoring highly on nearly all cen-

trality measures, representing a putative core, and a subset of nodes with low scores on nearly

all measures, representing a putative periphery. Beyond these clusters, networks fell into one

of two classes, such that they either shows a gradual progression moving from highly central

core nodes to peripheral nodes, or a more clustered structure in which subsets of nodes had

distinct centrality profiles. These intermediate clusters may define distinct nodes roles that

cannot be identified through reliance on a single centrality measure. Networks with this struc-

ture tended to have higher modularity or formed a ring with “tendrils” of nodes (i.e. S15 Fig).

Together, these results suggest that multivariate centrality profiles may be particularly useful in

characterizing nodes roles in networks with modular structure.

An unresolved question concerns the optimal set of centrality measures for such centrality

profiling. We focused on a small subset of the>200 metrics that have been proposed, and a

wider investigation of this issue is required. We note however, that a limitation of using hierar-

chical clustering to group nodes is that this approach is unlikely to place individual nodes (or

small subsets of nodes) with a distinctive centrality profile within a separate cluster. Indeed, we

did find that some networks do contain a small number of nodes with highly discrepant scores

across centrality measures (e.g., Fig 7 and S15–S17 Figs). Alternative clustering approaches

may be better placed to delineate such nodes, which may play an important role in shaping

network dynamics. Nonetheless, our basic approach demonstrates how a comparative

approach to centrality analysis, as has been employed in other domains [36], can yield useful

insights into the roles of different nodes within a network.

Supporting information

S1 Fig. A threshold graph. A threshold graph is formed by adding in nodes one at a time in

one of two ways: a node can either be added in forming no connections (blue nodes) or a node

can be added forming connections to all existing nodes (red nodes). The number in each node

is the order in which it was added into the network.

(TIF)

S2 Fig. The neighbourhood-inclusion pre-order and centrality ranks. Panels A and D

shows a network which demonstrates the neighbourhood-inclusion pre-order and panels B

and E shows the dominance relation between nodes (a directed edge indicates that the source

node is dominated by the target, that is all the neighbours of the source node are a subset of

the neighbours of the target node) for the respective network. The network in panel A has no

dominance relationship thus has an inconsistent ranking of nodes by four different centrality

measures: degree (DC), closeness (CC), eigenvector (EC), and betweenness (BC), as shown in

panel C. Conversely the network in panel D has a complete neighbourhood-inclusion pre-

order (each node either dominates or is dominated any other node in the network) and thus
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all centrality measures will give the same ranking to a node, as shown in panel F. Note that the

network in panel D is a threshold graph. A similar figure is presented in Schoch and Brandes

[18].

(TIF)

S3 Fig. Distributions of Centrality Measure Correlations (CMCs) in each network. The dis-

tribution of Spearman correlation coefficient between every pair of centrality measures,

CMCs, in each network is represented as a boxplot. Distributions for unweighted networks are

split across panels A and B, while distributions for weighted networks are shown in panel C.

Networks are coloured by their natural category (blue = social, grey = technological, brown =

biological, orange = informational, purple = transportation; green = economic). Networks

have been ordered from highest (left) to lowest (right) median CMC.

(TIF)

S4 Fig. PCA loadings on the first three principal components for several example net-

works. A PCA was run on the (z-scored) centrality scores for each node in each network. The

proportion of variance explained by each component is given in the brackets. Nearly all cen-

trality measures loaded onto the first component. In PC2 and PC3 we could observe other

types of structure including betweenness measures loading together (panel D-E), bridging cen-

trality/participant coefficient loading together/uniquely on a component (panel A-C), PageR-

ank and leverage loading together (panel D-E), and closeness measures loading with bridging

centrality and the participation coefficient (panel F).

(TIF)

S5 Fig. Mean and standard deviation of between-network CMCs for unweighted and

weighted measures. This figure shows the between-network CMC mean (panel A) and stan-

dard deviation (panel B) for unweighted and weighted measures, as calculated on the 40

weighted networks. Both weighted and unweighted measures were generally highly correlated

with each other, and unweighted measures were more highly intercorrelated than weighted

measures. DC = Degree centrality; EC = Eigenvector centrality; KC = Katz centrality; PR =

PageRank centrality; LC = Leverage Centrality; HC = H-index centrality; CC = Shortest-path

closeness centrality; SC = Subgraph centrality; PC = Participation coefficient; TCC = Total

communicability centrality; RWCC = Random-walk closeness centrality; BC = Shortest-path

betweenness centrality; CBC = Communicability betweenness centrality; RWBC = Random-

walk betweenness centrality; LAPC = Laplacian centrality; BridC = Bridging centrality. A “w”

next to the abbreviated name for the centrality measure indicates it is the weighted version.

(TIF)

S6 Fig. Scatter plot of the mean within-network CMCs for unweighted and weighted mea-

sures. For the 40 networks with edge weights the mean within-network CMC was calculated

separately for unweighted and weighted measures, and then these values were plotted against

each other. There is a strong relationship between the two indicating higher correlations

between unweighted measures is mirrored by higher correlations in weighted measures.

(TIF)

S7 Fig. Association between mean within-network CMC and network properties in

weighted networks. The association between the mean within-network CMC (the average of

all CMCs within a single network) and each of the global topological properties. Networks are

coloured by their natural category (blue = social, grey = technological, brown = biological,

orange = informational, purple = transportation; green = economic).

(TIF)

Consistency of centrality measures across networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0220061 July 26, 2019 16 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220061.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220061.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220061.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220061.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0220061.s007
https://doi.org/10.1371/journal.pone.0220061


S8 Fig. Association between each CMC and global topology in unweighted networks. The

lower matrix indicates the value of the Spearman correlation between a CMC and a network

property. The upper matrix indicates if this correlation was significant (grey) or not (white)

when Bonferroni corrected for 136 combinations of centrality measures. This result shows the

strength of individual CMCs was correlated with specific network properties.

(TIF)

S9 Fig. Association between each CMC and global topology in weighted networks. The

lower matrix indicates the value of the Spearman correlation between a CMC and a network

property. The upper matrix indicates if this correlation was significant (grey) or not (white)

when Bonferroni corrected for 136 combinations of centrality measures. This result shows the

strength of individual CMCs was correlated with specific network properties.

(TIF)

S10 Fig. Association between variance explained by PC1and network properties in

unweighted networks. The association between the variance explained by PC1 and each of the

global topological properties. Networks are coloured by their natural category (blue = social,

grey = technological, brown = biological, orange = informational, purple = transportation;

green = economic).

(TIF)

S11 Fig. Association between variance explained by PC1and network properties in

weighted networks. The association between the variance explained by PC1 and each of the

global topological properties. Networks are coloured by their natural category (blue = social,

grey = technological, brown = biological, orange = informational, purple = transportation;

green = economic).

(TIF)

S12 Fig. Correlations between network properties in unweighted and weighted networks.

Panel A shows the Spearman correlations between each network property in the unweighted

networks, while panel B shows the Spearman correlations between each network property in

the weighted networks.

(TIF)

S13 Fig. Difference between weighted empirical and unconstrained surrogates in mean

within-network CMC and network properties. The y-axis of each plot shows the difference

between the empirical networks and unconstrained surrogates mean within-network CMC.

The x-axis shows the difference between the empirical networks and unconstrained surrogates

on a particular property (except for panel C as the unconstrained surrogates have the same

density as the empirical network). On both axis, except for the x-axis in panel C, a negative

value indicates the empirical network had a lower value than the mean value of the surrogates,

while a positive value indicates the empirical networks had a larger value. Points are colored

by the natural category of the empirical network (blue = social, grey = technological, brown =

biological, orange = informational, purple = transportation; green = economic).

(TIF)

S14 Fig. Difference between weighted empirical and constrained surrogates in mean

within-network CMC and network properties. The y-axis of each plot shows the difference

between the empirical networks and constrained surrogates mean within-network CMC. The

x-axis shows the difference between the empirical networks and constrained surrogates on a

particular property (except for panels C and F as the constrained surrogates have the same

density and majorization gap as the empirical network). On both axis, except for the x-axis in
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panels C and F, a negative value indicates the empirical network had a lower value than the

mean value of the surrogates, while a positive value indicates the empirical networks had a

larger value. Points are colored by the natural category of the empirical network (blue = social,

grey = technological, brown = biological, orange = informational, purple = transportation;

green = economic).

(TIF)

S15 Fig. Multivariate centrality profiling of the Berlin subway network. Panel A shows the

dendrogram projected alongside the distance matrix of node pairs (ranks scores were normal-

ised to be in the range 0–1 with 1 indicating the highest rank). The black and grey boxes and

indicate the clusters when a two-cluster and six-cluster solution is used, respectively. Panel B

displays the results for the Davies-Bouldin (DB) criterion. A lower DB value represents a better

clustering solution. The solution shown in panels D and E is labelled in red. Only the first 50

clustering solutions are shown for ease of visibility. Panel C shows the matrix of nodal central-

ity scores (each row is a node and each column is a measure) and how these are clustered in a

two-cluster solution (the black and grey represent the two different clusters). Panel D shows

the matrix of nodal centrality scores as well as the clusters each node was assigned to. Panel E

shows a topological representation of the network, produced using the force-directed layout

algorithm, where each node is coloured according to the cluster it was allocated to in panel D.

(TIF)

S16 Fig. Multivariate centrality profiling of the network of drug user acquaintanceships in

Hartford, UK. Panel A shows the dendrogram projected alongside the distance matrix of

node pairs (ranks scores were normalised to be in the range 0–1 with 1 indicating the highest

rank). The black and grey boxes and indicate the clusters when a two-cluster and nine-cluster

solution is used, respectively. Panel B displays the results for the Davies-Bouldin (DB) crite-

rion. A lower DB value represents a better clustering solution. The solution shown in panels D

and E is labelled in red. Only the first 50 clustering solutions are shown for ease of visibility.

Panel C shows the matrix of nodal centrality scores (each row is a node and each column is a

measure) and how these are clustered in a two-cluster solution (the black and grey represent

the two different clusters). Panel D shows the matrix of nodal centrality scores as well as the

clusters each node was assigned to. Panel E shows a topological representation of the network,

produced using the force-directed layout algorithm, where each node is coloured according to

the cluster it was allocated to in panel D.

(TIF)

S17 Fig. Multivariate centrality profiling of the Balerma irrigation water distribution net-

work. Panel A shows the dendrogram projected alongside the distance matrix of node pairs

(ranks scores were normalised to be in the range 0–1 with 1 indicating the highest rank). The

black and grey boxes and indicate the clusters when a two-cluster and seven-cluster solution is

used, respectively. Panel B displays the results for the Davies-Bouldin (DB) criterion. A lower

DB value represents a better clustering solution. The solution shown in panels D and E is

labelled in red. Only the first 50 clustering solutions are shown for ease of visibility. Panel C

shows the matrix of nodal centrality scores (each row is a node and each column is a measure)

and how these are clustered in a two-cluster solution (the black and grey represent the two dif-

ferent clusters). Panel D shows the matrix of nodal centrality scores as well as the clusters each

node was assigned to. Panel E shows a topological representation of the network, produced

using the force-directed layout algorithm, where each node is coloured according to the cluster

it was allocated to in panel D.

(TIF)
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S18 Fig. Multivariate centrality profiling of the network of noun phrases (places and

names) in the King James Version of the Bible. Panel A shows the dendrogram projected

alongside the distance matrix of node pairs (ranks scores were normalised to be in the range

0–1 with 1 indicating the highest rank). The black and grey boxes and indicate the clusters

when a two-cluster and three-cluster solution is used, respectively. Panel B displays the results

for the Davies-Bouldin (DB) criterion. A lower DB value represents a better clustering solu-

tion. The solution shown in panels D and E is labelled in red. Only the first 50 clustering solu-

tions are shown for ease of visibility. Panel C shows the matrix of nodal centrality scores (each

row is a node and each column is a measure) and how these are clustered in a two-cluster solu-

tion (the black and grey represent the two different clusters). Panel D shows the matrix of

nodal centrality scores as well as the clusters each node was assigned to. Panel E shows a topo-

logical representation of the network, produced using the force-directed layout algorithm,

where each node is coloured according to the cluster it was allocated to in panel D.

(TIF)

S19 Fig. Multivariate centrality profiling of the network of adjacent adjective and nouns in

David Copperfield. Panel A shows the dendrogram projected alongside the distance matrix of

node pairs (ranks scores were normalised to be in the range 0–1 with 1 indicating the highest

rank). The black and grey boxes and indicate the clusters when a two-cluster and three-cluster

solution is used, respectively. Panel B displays the results for the Davies-Bouldin (DB) crite-

rion. A lower DB value represents a better clustering solution. The solution shown in panels D

and E is labelled in red. Only the first 50 clustering solutions are shown for ease of visibility.

Panel C shows the matrix of nodal centrality scores (each row is a node and each column is a

measure) and how these are clustered in a two-cluster solution (the black and grey represent

the two different clusters). Panel D shows the matrix of nodal centrality scores as well as the

clusters each node was assigned to. Panel E shows a topological representation of the network,

produced using the force-directed layout algorithm, where each node is coloured according to

the cluster it was allocated to in panel D.

(TIF)

S20 Fig. Multivariate centrality profiling of the network of food ingredients and flavours.

Panel A shows the dendrogram projected alongside the distance matrix of node pairs (ranks

scores were normalised to be in the range 0–1 with 1 indicating the highest rank). The black and

grey boxes and indicate the clusters when a two-cluster and three-cluster solution is used, respec-

tively. Panel B displays the results for the Davies-Bouldin (DB) criterion. A lower DB value repre-

sents a better clustering solution. The solution shown in panels D and E is labelled in red. Only

the first 50 clustering solutions are shown for ease of visibility. Panel C shows the matrix of nodal

centrality scores (each row is a node and each column is a measure) and how these are clustered

in a two-cluster solution (the black and grey represent the two different clusters). Panel D shows

the matrix of nodal centrality scores as well as the clusters each node was assigned to. Panel E

shows a topological representation of the network, produced using the force-directed layout algo-

rithm, where each node is coloured according to the cluster it was allocated to in panel D.

(TIF)
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