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DNMT3A reads and connects histone
H3K36me2 to DNA methylation

Dear Editor,

DNA methylation at the 5-position of cytosine (5mC) is a
crucial epigenetic mark in regulating biological processes
including gene silencing, gene imprinting, and X chromo-
some inactivation (Jaenisch and Bird, 2003; Smith and
Meissner, 2013). Human genome encodes three DNA
methyltransferases, DNMT1, DNMT3A and DNMT3B to
catalyze 5mC. Although not tightly restricted, DNMT1 is
thought to maintain the established pattern of 5mC
throughout DNA replication, while DNMT3A and DNMT3B
are largely responsible for the de novo establishment of
5mC. It has long been questioned how de novo DNA 5mC
patterns are established in different genomic regions and
whether histone modifications crosstalk to the process. Until
recently, it was reported that through recognition of histone
H3K36me3 mark, DNMT3B plays a dominant role in medi-
ating DNA 5mC in the genic region undergoing active tran-
scription (Baubec et al., 2015; Neri et al., 2017). However,
5mC occurs at both intergenic and genic regions, while
H3K36me3 is largely absent in the intergenic regions, indi-
cating that the intergenic 5mC may be mediated through
different mechanisms.

Although H3K36me3 is involved in the DNMT3B medi-
ated DNA 5mC in the genic regions (Baubec et al., 2015;
Neri et al., 2017), we found that SETD2 loss in HEK293T
cells did not cause reduction of global 5mC level, which was
actually moderately increased by around 20% (Fig. S1A, left
and middle), indicating alternative mechanism in directing
DNA 5mC by histone modifications might exist. Unexpect-
edly, in the SETD2 KO HEK293T cells, we also observed an
obvious increase of H3K36me2 (Fig. S1A, right). Such gain
of H3K36me2 and increase of 5mC in the SETD2 KO
HEK293T cells raised an interesting possibility of H3K36me2
in regulating DNA 5mC. To explore this possibility, we first
compared the distribution patterns of 5mC with various well-
characterized histone modifications, including H3K36me2,
using public available datasets (Figs. 1A and S1B). Con-
sistently, we observed a strong -correlation between
H3K36me2 and 5mC (R = 0.85) in MDA-MB-231 cells, which
is even higher than that between H3K36me3 and 5mC (R =
0.63, Fig. 1A). The correlations between 5mC and
H3K36me3 in 2 other cell lines are also around the same

range (R = 0.64-0.66, Fig. S1B). Importantly, further geno-
mic distribution analyses revealed that the similarity between
5mC and H3K36me3 is restricted to genic regions as
reported previously (Baubec et al., 2015; Morselli et al.,
2015), while that between 5mC and H3K36me2 is mainly in
the intergenic regions and the immediate upstream to pro-
moter regions in MDA-MB-231 cells (Fig. 1B, compare the
blue and orange lines). Using the same approach, we found
that H3K9me3 and H3K27me3 are poorly correlated with
5mC in MDA-MB-231 (Fig. S1C), indicating that the strong
correlation between 5mC and H3K36me?2 is rather specific.

Among the three DNA methyltransferases, both DNMT3A
and DNMT3B possess a PWWP domain. As PWWP domain
was reported to be capable in recognizing H3K36me2 or
H3K36me3 (Sankaran et al., 2016), we hypothesized that
the PWWP domain of DNMT3A may be able to read
H3K36me2 and play a recruitment function for DNMT3A.
Consistent with this idea, in vitro pull-down assay readily
identified a specific interaction between H3K36me2 and the
PWWP of DNMT3A (Fig. 1C). Interestingly, we found that the
interaction was substantially stronger than that of
H3K36me3 (Fig. 1C), and such preference was not affected
by the sequence variation at the 31 position of the histone
variants H3.1/2 and H3.3, despite the interactions with H3.3
peptides were generally weaker (Fig. 1C). Consistently,
recombinant full length DNMT3A2 (isoform 2) purified from
E.coli also preferentially binds H3K36me2 compared to
H3K36me3 (Fig. 1C).

Various crosstalk mechanisms between histone modifi-
cations and 5mC have been documented, and it was known
that the histone H3K4 methylations, especially H3K4me2/3,
could strongly repress DNMT3A activity through ADD
domain providing a mechanism to protect active promoters
and enhancers from DNA 5mC methylation (Zhang et al.,
2010; Li et al., 2011; Guo et al., 2015). We therefore won-
dered whether H3K36me2 binding by the PWWP domain
could also affect the enzymatic activity of DNMT3A. To
address this, we carried out in vitro methyltransferase assay
using recombinant full length DNMT3A2 protein purified from
insect cells and DNA substrate by spiking in H3K36me2
modified as well as several control histone peptides
(Fig. 1D). In support of our hypothesis, we found that while
H3K36me1 and H3K36me3 peptides only had minimal
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Figure 1. Genome-wide correlation between DNA 5mC and H3K36me2 and DNMT3A preferentially binds and is activated by
H3K36me2. (A) Scatterplots showing genome-wide correlation between H3K36me2 and 5mC (left), and H3K36me3 and 5mC (right)
in MDA-MB-231 cell. The number of reads was counted in nonoverlapping 100-kb bins spanning the human genome. The correlation
coefficient was calculated with Pearson correlation. (B) Aggregation plot showing the distribution patterns of 5mC, H3K36me2 and
H3K36me3 in the indicated genomic regions. (C) Schema of DNMT3A2 domain architecture and biotinylated peptide pull-down assay
of DNMT3A2 FL and PWWP domain with the indicated histone H3.1K36 and H3.3K36 peptides. (D) In vitro DNA methylation assay
testing the stimulation of DNMT3A activity with the indicated histone peptides (H3.1 22-44aa) (**P value < 0.01) (left, radioactivity),
and at different concentrations (right, Michaelis-Menten graph analyses, MBD2b based).

effects on DNMT3A activity, H3K36me2 peptides could sig-
nificantly activate DNMT3A at a concentration as low as
3.2 ymol/L, using two independent, radioactivity and MBD
domain-based, methylation detection methods (Fig. 1D).

In order to understand the biological impact of the axis of
histone H3K36me2 and DNA 5mC, we turned to a well-
characterized multiple myeloma model, KMS11 and
KMS11™°, KMS11 contains a chromosomal translocation
event, T(4;14), which leads to massive overexpression of
NSD2 and genome-wide gain of H3K36me2 (Kuo et al.,
2011). While in KMS11TKC, the translocation event was
specifically knocked out, resulting in monoallelic expression
of NSD2 and close to normal level of H3K36me2 (Fig. 2A).
Consistent with our in vitro results, both dot blot and quan-
titative HPLC analyses found that the extracted KMS11
genomic DNA contains around 30% more DNA 5mC com-
pared to that of KMS117KC, which is a significant alteration of
global 5mC level (Fig. 2B).

© The Author(s) 2019

Through MeDIP-seq and H3K36me2 ChlP-seq approa-
ches in KMS11 and KMS11™¢© cells, we again observed
strong correlations between H3K36me2 and DNA methyla-
tion genome-wide (Fig. 2C). Interestingly, the correlation is
significantly higher in KMS11™° compared to KMS11
(Fig. 2C), indicating the abnormal hyper H3K36me2 signifi-
cantly impaired proper 5mC establishment in KMS11. Close
examination of mapped H3K36me2 and 5mC genome tracks
found that the both marks are more dispersedly distributed in
KMS11 genome due to genome-wide hyper H3K36me2
(Fig. 2D). While in KMS11T® cells, we found that most
intergenic H3K36me2 signals were lost as the result of loss
of NSD2 overexpression, and the remaining H3K36me2
signals were generally retained in the genic and surrounding
regions, exemplified by ARHGAP44 and COX10 in Fig. 2D.
Consistent with our hypothesis, we also observed significant
reduction of the intergenic 5mC in KMS11™€° (Fig. 2D,
shadowed regions). Notably, genic 5mC signals were largely
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retained and in certain cases, such as COX70, even
increased in KMS117%© (Fig. 2D), likely due to the effect of
relatively enriched focal H3K36me2. We also noticed that, in
KMS11™C, not all genic 5mC signals matched H3K36me2
patterns (for examples, HS3ST3A71 and HS3ST3B1 in
Fig. 2D), and we speculated that H3K36me3 might play a
recruitment role in these regions. Consistent with the
observations in Fig. 2D, the genomic distributions of KMS11-
specific H3K36me2 and 5mC peaks are similar as average
genome proportion (genic 45.3% and intergenic 54.7%),
while KMS11™®_specific peaks are more enriched in genic
regions (Fig. 2E).

To further explore the functional importance on gene
expression by the H3K36me2 and DNA 5mC axis, we car-
ried out RNA-seq analyses in KMS11 and KMS117¢° cells
(Fig. S2A). As revealed by other studies (Kuo et al., 2011),
we identified hundreds of differentially expressed genes
(DEGs). Among these DEGs, we found that the up-regulated
genes in KMS11 are significantly enriched for pathways in
cancer (Fig. S2B), and the altered expression of several
oncogenes in myeloma, such as HSPG2, TREML2 and
NCAM1 were validated by RT-gPCR (Fig. S2C). We also
found that the upregulated genes in KMS11 showed higher
upstream DNA 5mC which tended to be lost in KMS117K°,
compared to the downregulated genes (Fig. S2D, left). While
the 5mC levels of the CpG islands at the transcription start
sites (TSSs) of the up- and down- regulated genes were
generally low and similar, although statistically significant
(Fig. S2D, right). This observation raises an intriguing pos-
sibility of the upstream hyper 5mC in KMS11 being func-
tionally involved in the downstream gene transcription, which
certainly needs future investigation.

As NSD2 overexpression was demonstrated as the driver
mutation for multiple myeloma bearing T(4;14) translocation
(Keats et al., 2003; Santra et al., 2003; Kuo et al., 2011), we
therefore speculated that the gain of 5mC as the conse-
quence of NSD2 overexpression may also functionally
involved in the tumorigenic processes. Supporting this idea,
we found that the application of DNA methylation inhibitor,
5-Aza, effectively suppressed the proliferation of KMS11
cells at 0.25 ymol/L in 4 days (Fig. 2F). While under same
condition, even at 1 pymol/L concentration, 5-Aza showed no
effect on the proliferation of KMS11™©, indicating that the
global hypermethylation of 5mC is required for cancerous
growth driven by NSD2 overexpression in KMS11.

Our findings revealed a previously under-appreciated
function of H3K36me?2 in regulating DNMT3A mediated DNA
5mC. Although partially overlapped in genic regions with
H3K36me3, H3K36me2 also demarcates many intergenic
regions. Together with the fact that H3K36me3 directs genic
DNA 5mC methylation through DNMT3B (Baubec et al.,
2015), H3K36 methylations play critical role in guiding

© The Author(s) 2019

DNMT3A and DNMT3B to keep the proper level of DNA
5mC methylation genome-wide. Interestingly, both
H3K36me2 and H3K36me3 are absent in the promoter
regions, consistently with and perhaps also mechanistically
contribute to the 5mC hypomethylation at the active pro-
moters. Furthermore, as NSD family members frequently
undergo gain-of-function mutations in MM, AML, lung and
breast cancers (Rosati et al., 2002; Wang et al., 2007; Oyer
et al., 2014), our findings also support therapeutic opportu-
nities for DNA methylation inhibitors in treating these tumors.
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