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Abstract Evolutionary adaptation is a major source of antibiotic resistance in bacterial

pathogens. Evolution-informed therapy aims to constrain resistance by accounting for bacterial

evolvability. Sequential treatments with antibiotics that target different bacterial processes were

previously shown to limit adaptation through genetic resistance trade-offs and negative hysteresis.

Treatment with homogeneous sets of antibiotics is generally viewed to be disadvantageous as it

should rapidly lead to cross-resistance. We here challenged this assumption by determining the

evolutionary response of Pseudomonas aeruginosa to experimental sequential treatments involving

both heterogenous and homogeneous antibiotic sets. To our surprise, we found that fast switching

between only b-lactam antibiotics resulted in increased extinction of bacterial populations. We

demonstrate that extinction is favored by low rates of spontaneous resistance emergence and low

levels of spontaneous cross-resistance among the antibiotics in sequence. The uncovered principles

may help to guide the optimized use of available antibiotics in highly potent, evolution-informed

treatment designs.

Introduction
The efficacy of antibiotics for the treatment of infections is diminishing rapidly as bacteria evolve

new mechanisms to resist antibiotics (Laxminarayan et al., 2013). Resistance evolution is frequently

observed during antibiotic therapy and can happen within days (Bloemberg et al., 2015;

Hjort et al., 2020; Tueffers et al., 2019). A failure to account for such rapid bacterial adaptation is

likely a common reason for treatment failure (Woods and Read, 2015; Zhou et al., 2020). For this

reason, the field of evolutionary medicine specifically accounts for bacterial evolvability and seeks

treatment solutions that are hard to overcome by genetic adaptation (Andersson et al., 2020;

Merker et al., 2020). While an evolution-proof antibiotic remains to be found, the mechanisms that

restrict evolutionary escape are starting to be revealed (Bell and MacLean, 2018). Such evolutionary

insight may guide the design of effective and sustainable antibiotic therapy.

An effective way of reducing the amount of evolutionary solutions is to administer several antibi-

otics either simultaneously (i.e., combination therapy) or sequentially (i.e., sequential therapy). Tai-

lored combination treatments make use of physiological and evolutionary constraints (Baym et al.,

2016). The emergence of resistance is delayed by combinations, when evolutionary escape requires

multiple mutations and when drug interactions eliminate the intermediate genetic steps of single-

drug resistance (Chait et al., 2007), antibiotic tolerance (Levin-Reisman et al., 2017), and heterore-

sistance (Band et al., 2019). However, when genetic resistance to the combination is easily accessi-

ble, for example, through gene amplification of efflux pumps, then combination therapy can

accelerate resistance emergence (Pena-Miller et al., 2013). This undesired selective effect is
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potentially avoided by sequential drug application. Evolutionary escape from sequential treatments

is constrained by negative hysteresis responses induced by specific antibiotics (Roemhild et al.,

2018) and/or the emergence of genetic collateral sensitivity trade-offs (Barbosa et al., 2019;

Yoshida et al., 2017). Negative hysteresis occurs when exposure to an antibiotic induces changes to

bacterial physiology that transiently increase the killing efficacy of other antibiotics (Roemhild et al.,

2018). Collateral sensitivity is a genetic side effect of evolved resistance that too increases the effi-

cacy of other antibiotics (Szybalski and Bryson, 1952). Collateral sensitivity is prevalent among

pathogens and occurs especially between antibiotics with distinct mechanism of action (i.e., hetero-

geneous sets of antibiotics), while cross-resistance often emerges towards antibiotics with similar

mode of action (i.e., homogeneous sets of antibiotics) (Barbosa et al., 2017; Imamovic and

Sommer, 2013; Lázár et al., 2013; Maltas and Wood, 2019). Thus, conventionally, multidrug treat-

ments would avoid antibiotics from similar classes, with the rationale of limiting the overlap in the

respective sets of resistance mutations, and thus the ensuing cross-resistance.

The particular efficacy of sequential therapy has been confirmed with the help of evolution experi-

ments under controlled laboratory conditions. Different types of sequential treatments have been

tested. Some regimens involved a single switch between antibiotics, while others included multiple

switches at short time intervals. One of the main findings was that the efficacy of sequential treat-

ments depended both on the included antibiotics and the particular treatment sequence (Fuentes-

Hernandez et al., 2015; Maltas and Wood, 2019; Roemhild et al., 2015). While fast sequential

treatments did not exclude the eventual emergence of multidrug resistance, many significantly

delayed bacterial adaptation compared to monotherapy (Kim et al., 2014; Roemhild et al., 2015;

Yoshida et al., 2017). A single antibiotic switch can also delay adaptation, dependent on the drug

order, and it can additionally reverse previous resistance and resensitize bacterial populations to

specific antibiotics (Barbosa et al., 2019; Hernando-Amado et al., 2020; Imamovic and Sommer,

2013; Yen and Papin, 2017). Moreover, our group previously demonstrated that fast sequential

treatments with a heterogeneous set of three antibiotics – the fluoroquinolone ciprofloxacin (CIP),

the b-lactam carbenicillin (CAR), and the aminoglycoside gentamicin (GEN) – delayed the emergence

of multidrug resistance in the pathogen Pseudomonas aeruginosa (Roemhild et al., 2018). The

eLife digest Overuse of antibiotic drugs is leading to the appearance of antibiotic-resistant

bacteria; this is, bacteria with mutations that allow them to survive treatment with specific

antibiotics. This has made some bacterial infections difficult or impossible to treat. Learning more

about how bacteria evolve resistance to antibiotics could help scientists find ways to prevent it and

develop more effective treatments.

Changing antibiotics frequently may be one way to prevent bacteria from evolving resistance.

That way if a bacterium acquires mutations that allow it to escape one antibiotic, another antibiotic

will kill it, stopping it from dividing and preventing the appearance of descendants with resistance

to several antibiotics. In order to use this approach, testing is needed to find the best sequences of

antibiotics to apply and the optimal timings of treatment.

To find out more, Batra, Roemhild et al. grew bacteria in the laboratory and exposed them to

different sequences of antibiotics, switching antibiotics at different time intervals. This showed that

sequential treatments with different antibiotics can limit bacterial evolution, especially when

antibiotics are switched quickly. Unexpectedly, one of the most effective sequences used very

similar antibiotics. This was surprising because using similar antibiotics should lead to the evolution

of cross-resistance, which is when a drug causes changes that make the bacterium less sensitive to

other treatments. However, in the tested case, cross-resistance did not evolve when antibiotics were

switched quickly, thereby ensuring efficiency of treatment.

Batra et al. show that alternating sequences of antibiotics may be an effective strategy to prevent

drug resistance. Because the experiments were done in a laboratory setting it will be important to

verify the results in studies in animals and humans before the approach can be used in medical or

veterinary settings. If the results are confirmed, it could reduce the need to develop new antibiotics,

which is expensive and time consuming.
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observed inhibition of evolutionary escape was manifested by the occurrence of population extinc-

tion, although antibiotic concentrations were below the minimal inhibitory concentration (MIC). We

further found that negative hysteresis at antibiotic switches reduced adaptation rates because it

selected for distinct genetic changes. Several populations adapted to fast sequential treatment by

independent mutations in the histidine kinase cpxS that only mildly increased resistance, thereby

explaining the low rate of adaptation to the used antibiotics. Instead, the cpxS mutations sup-

pressed negative hysteresis, demonstrating that adaptation was specific to the selective constraint

imposed by the drug switches. Based on these findings, we assumed that the acting selective

dynamics were ultimately a consequence of antibiotic heterogeneity. However, is this so? Do selec-

tive dynamics differ for a homogenous set of drugs?

The primary aim of our current study was to assess the efficacy of sequential treatments with

either heterogeneous or homogeneous sets of three antibiotics. We focused on P. aeruginosa strain

PA14 as a tractable pathogen model system, for which comprehensive experimental reference data

is available on resistance evolution (e.g., Barbosa et al., 2019; Barbosa et al., 2018; Hernando-

Amado et al., 2020; Roemhild et al., 2018; Sanz-Garcı́a et al., 2018; Yen and Papin, 2017). We

performed similar evolution experiments as before, with three new sets of bactericidal antibiotics,

two of which included only b-lactams, and one the three previously considered modes of action (Fig-

ure 1—figure supplement 1A). The new heterogeneous drug set CIP, streptomycin (STR), and dori-

penem (DOR) involved drug synergy and was expected to contribute to collateral sensitivity

(Barbosa et al., 2018; Barbosa et al., 2017). The drug sets comprising three b-lactams, however,

had all properties that would typically be avoided for the design of multidrug treatments. The three

b-lactams CAR, cefsulodin (CEF), and DOR have the same core structure and individually inhibit the

DD-transpeptidase activity in cell-wall synthesis (Walsh, 2003). The collateral effects landscape

between CAR-CEF-DOR was expected to be dominated by cross-resistance (Barbosa et al., 2017)

and the three antibiotics showed neither synergy nor antagonism (Barbosa et al., 2018). Resistance

to these antibiotics may potentially be achieved through single mutations. The situation is replicated

by the set of ticarcillin (TIC), azlocillin (AZL), and ceftazidime (CEZ). In contrast to expectations, the

triple b-lactam sequences showed high treatment potency. Therefore, the secondary aim of our

study was to assess which characteristics constrained the ability of the bacteria to adapt to the b-lac-

tam sequential treatments. We focused on one triple b-lactam set (CAR-CEF-DOR) and specifically

tested the influence of antibiotic switching rate, switching regularity, negative hysteresis, the poten-

tial for spontaneous resistance evolution, and resulting cross-resistances on treatment efficacy.

Results

Triple b-lactam sequential treatments favor extinction of bacterial
populations
We challenged a total of 756 replicate P. aeruginosa populations with sequential treatments across

three fully independent evolution experiments, each focused on a different set of three antibiotics

(Figure 1, Figure 1—figure supplement 1, Supplementary file 1A, Materials and methods). The

antibiotic concentrations were calibrated to an inhibitory concentration of 75% (IC75), allowing bac-

teria to adapt to the imposed selection pressure. We used a serial dilution protocol for experimental

evolution, with 2% culture transfer after 12 hr (one transfer) across a total of 96 transfers, equivalent

to approximately 500 bacterial generations. Following the previous setup (Roemhild et al., 2018),

we recorded the evolutionary dynamics in response to 16 different treatments, belonging to four

main treatment types: monotherapy, fast-regular, slow-regular, and random sequential therapy

(Figure 1).

Extinction of experimental populations differed considerably between the antibiotic sets. The two

b-lactam sets produced a surprisingly high degree of extinction (CAR-CEF-DOR and TIC-AZL-CEZ;

extinct fraction 27.2 and 13.3%, respectively, Figure 1C). The observed extinction frequency was

comparable to that observed in the previous experiment with CAR-CIP-GEN (extinct fraction 15%,

Figure 1C). CIP-DOR-STR caused no extinction, indicating that extinction was not explained by

applying heterogeneous sets of antibiotics. Within the b-lactam sequential treatments, we observed

that treatments that switched between antibiotics fast (every transfer) produced much higher extinc-

tion levels than those that switched slowly (every four transfers) or not at all (Figure 1D). Most of the
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Figure 1. Probability of evolutionary rescue depends on drug triplets and treatment type. (A) The evaluated

antibiotic combinations comprise different types of antibiotic targets. Fluoroquinolone antibiotics (FQ) target DNA

gyrase, aminoglycosides (AG) inhibit translation, and b-lactams (BL) inhibit cell-wall synthesis. (B) The evaluated

treatment protocols test the effects of switching rate and temporal regularity. (C) A fraction of lineages is

eradicated by the sublethal dosage sequential treatments. Lineage extinction is high for combinations of cell-wall

targeting b-lactams. (D) Variation in extinction for the b-lactam combinations by treatment type (n = 3–6 protocols

per treatment type). (E) The distribution of evolutionary trajectories for Exp. 3 with CAR-DOR-CEF shows that the

majority of extinction events occur within the first 12 serial transfers (n = 180 lineages). Growth of evolving lineages

is quantified relative to untreated reference populations using the relative area under the growth curve (AUC).

AZL: azlocillin; CAR: carbenicillin; CEF: cefsulodin; CEZ: ceftazidime; CIP: ciprofloxacin; DOR: doripenem; GEN:

gentamicin; STR: streptomycin; TIC: ticarcillin. The following supplementary material is available for Figure 1:

Figure 1—figure supplement 1, Figure 1—source data 1, Figure 1—figure supplement 1—source data 1,

Supplementary file 1A.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure 1 continued on next page
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extinction events happened early in the experiment (Figure 1E), indicating that the initial treatment

steps are critical for adaptation of populations. We conclude that fast sequential b-lactam treatments

showed a surprising ability to restrict bacterial adaptation. As this result was unexpected, we

decided to research the mechanisms that constrain resistance emergence in b-lactam sequences.

Given that the experiment involving CAR-CEF-DOR produced the highest fraction of extinct popula-

tions, we decided to focus further analyses on this set.

Resistance to doripenem was constrained in both monotherapy and
switching treatments in the CAR-CEF-DOR triple b-lactam experiment
The CAR-CEF-DOR triple b-lactam experiment was characterized in detail for changes in growth,

evolved resistance, and whole-genome sequences in order to assess the selection dynamics

involved. We calculated the relative growth yield (see Materials and methods) at the end of each

transfer and found growth dynamics to be divided into three phases: an early phase of rapid adapta-

tion (transfers 1–12), followed by a phase of gradual growth yield convergence (transfers 13–48), and

a final plateau phase (transfers 49–96) (Figure 2A; the growth phases are separated by vertical dot-

ted lines). We compared the main treatment types using general linear models (GLM) for each phase

separately (this fulfills the model assumption of response linearity). The early phase dynamics were

characterized by significantly decelerated adaptation dynamics of the fast-regular group compared

with monotherapy and slow-regular (GLM, post hoc test, p<0.037, Supplementary file 1B), but not

random treatments. The slow-regular treatment did not differ significantly from monotherapy or ran-

dom treatments (GLM, post hoc test, p=0.469, Supplementary file 1B). In the subsequent phase,

growth yields of the groups converged to a plateau of roughly 90% relative yield, indicating similar

final levels of adaptation (the growth yields of main treatment groups showed no statistical differen-

ces in phases 2 and 3, Supplementary file 1B). Alternating between the b-lactams fast and in a regu-

lar order therefore significantly constrained the growth of the bacterial populations. Intriguingly, in

these fast sequential treatments, bacterial growth in the transfers with DOR was lower than in the

transfers with the other two antibiotics (Figure 2—figure supplement 1), indicating an evolutionary

constraint associated with the antibiotic DOR. We can rule out the alternative hypotheses that the

reduced growth is explained by a stronger initial reduction in bacterial population size by DOR in

comparison to the other two drugs or increased stochastic variation in dosage effects. All treatments

were initiated using specifically standardized IC75 dosage (see Materials and methods) and at the

IC75, DOR showed very little variation (Figure 1—figure supplement 1). We thus hypothesize that

the observed evolutionary constraint may be due to lower rate of DOR resistance emergence.

To understand the dynamics of early adaptation in more detail, we measured the resistance pro-

files of 16 evolved populations after transfers 12 and 48 from the different antibiotic treatments (rep-

resenting the end of phases 1 and 2, respectively; Figure 2B, C, Figure 2—figure supplements 2–

5, Supplementary file 1B–F; see Materials and methods). We randomly sampled 20 bacterial colo-

nies from each population and characterized their resistance profile by broth microdilution. Resis-

tance was measured for the three antibiotics of the evolution experiment and two additional

clinically relevant antibiotics from different classes, ciprofloxacin and gentamicin. The resistance pro-

files in the early and the mid phases were found to be distinctly different. Resistance to the used b-

lactams increased across the two time points only in some treatments, but not all (Figure 2B, C, Fig-

ure 2—figure supplement 4, Figure 2—figure supplement 5, Supplementary file 1F), suggesting

treatment-dependent evolutionary responses to the antibiotics. We assessed how the main treat-

ment types varied in their b-lactam resistance using a GLM for each phase separately. Most treat-

ment types varied significantly from each other in their multidrug b-lactam resistance in both phases

(Supplementary file 1C, D). The multidrug resistance in the early phase was in most cases con-

strained by the susceptibility to DOR (e.g., in the switching and monotherapy treatments). We addi-

tionally observed collateral responses of the treatment to the two non-b-lactams, which increased

Figure 1 continued

Source data 1. Source data for the panels of Figure 1.

Figure supplement 1. Antibiotic dose-response curves for PA14 (mean ± s.d.; n = 6 biological replicates).

Figure supplement 1—source data 1. Source data for Figure 1—figure supplement 1.
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Figure 2. Resistance to doripenem is constrained in the CAR-CEF-DOR triple b-lactam experiment. (A) Rapid

adaptive increase of biomass yields relative to the untreated reference populations (mean ± CI95; n = 3–6

protocols per treatment type and 12 biological replicates per sequence; extinct lineages excluded). Vertical dotted

lines separate the three growth phases. Evolved changes in the susceptibility to the treatment antibiotics CAR,

DOR, and CEF and the non-treatment antibiotics CIP and GEN after transfer 12 (B) or transfer 48 (C), evaluated

with 20 isolates each for the 16 representative adapting populations at each time point. Mono 1 is monotherapy

with CAR, mono 2 is monotherapy with DOR, and mono 3 is monotherapy with CEF. The evolution of resistance

and hypersensitivity is indicated by red and blue colors, respectively, given for the considered isolates as

horizontal lines (total of 640 isolates), sorted according to evolution treatment (main rows in the figures) and tested

antibiotics (main columns; antibiotics given at the bottom). Pie charts on the right show phenotypic within-

population diversity, where different colors indicate subpopulations inferred from hierarchical clustering of

resistance phenotypes. CAR: carbenicillin; CEF: cefsulodin; CIP: ciprofloxacin; DOR: doripenem; GEN:

gentamicin. The following supplementary material is available for Figure 2: Figure 2—figure supplement 1,

Figure 2—figure supplement 2, Figure 2—figure supplement 3, Figure 2—figure supplement 4, Figure 2—

figure supplement 5, Figure 2—source data 1, Figure 2—figure supplement 1—source data 1, Figure 2—

figure supplement 2—source data 1, Figure 2—figure supplement 3—source data 1, Figure 2—figure

supplement 5—source data 1, Supplementary file 1B.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Source data for the panels of Figure 2.

Figure supplement 1. Growth dynamics in fast sequential protocols.

Figure 2 continued on next page
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over time. We further used hierarchical clustering of the resistance profiles to assess the presence of

subpopulations, followed by calculation of Shannon diversity for each population at both transfers.

We found population diversity to be significantly higher at transfer 48 as compared to transfer 12

(ANOVA, F = 6.2060, p=0.01893, Supplementary file 1E), indicating a diversification of the evolving

lineages over time. Taken together, the population analysis of resistance profiles indicates that resis-

tance evolution depends on the exact treatment protocol and that the dynamics of resistance emer-

gence to DOR may be key for the observed deceleration of b-lactam adaptation in the fast-regular

treatments.

To identify the genomic changes underlying the first steps of b-lactam adaptation, we sequenced

33 whole genomes of the evolved and characterized isolates from the monotherapy, fast-regular,

and slow-regular treatment types. Specifically, we sequenced three isolates from each population

representing the distinct phenotypic subpopulations, assessed above. We found that all isolates,

except those that received DOR monotherapy, had mutations in known resistance genes by the end

of the early phase (Table 1). This agreed with the inferred resistance profiles where isolates from the

Figure 2 continued

Figure supplement 1—source data 1. Source data for Figure 2—figure supplement 1.

Figure supplement 2. Dose-response curve distributions for Exp. 3 with CAR-DOR-CEF, underlying Figure 2B
and C.

Figure supplement 2—source data 1. Source data for Figure 2—figure supplement 2.

Figure supplement 3. Relation between the resistance values and the fold-change of the minimal inhibitory
concentrations (MIC) approximated by IC90.

Figure supplement 3—source data 1. Source data for Figure 2—figure supplement 3.

Figure supplement 4. Change of population antibiotic resistance between transfer 12 (indicated in gray) and
transfer 48 (indicated in red).

Figure supplement 5. Population multidrug resistance after (A) transfer 12 and (B) transfer 48.

Figure supplement 5—source data 1. Source data for Figure 2—figure supplement 5.

Table 1. Evolved genetic changes inferred from whole-genome sequencing.

Treatment type ID* AA change† Gene name Annotation Freq‡

Monotherapy 1 V471G ftsI Peptidoglycan synthesis 3/3

2§ N242S ftsI Peptidoglycan synthesis 3/3

3 T157P pepA Virulence 3/3

Fast-rgular 5 V471G ftsI Peptidoglycan synthesis 3/3

6 K26 nalD Efflux 3/3

S379ISR rmcA Biofilm maintenance 1/3

7 R220C phoQ Two-component 3/3

- PA14_55631 23srRNA, translation 1/3

Slow-rgular 8 V471G ftsI Peptidoglycan synthesis 3/3

9 D357N pepA Virulence 3/3

10 T157P pepA Virulence 3/3

E115VAAWIPK PA14_21540 Lipid metabolism (3-exoacyl ACP synthase) 1/3

Q117AEEQ PA14_21540 Lipid metabolism (3-exoacyl ACP synthase) 1/3

R178C zipA Cell division 2/3

P483PEP dnaX Cell division 1/3

* Individual treatment of evolution experiment.
† Amino acid change.
‡ Occurrence frequency of the identified variant (before slash) out of the total number of isolates sequenced (behind slash).
§ Mutations listed are from isolates obtained from the populations frozen at transfer 48, no variants were found in the isolates from transfer 12.

The online version of this article includes the following source data for Table 1:

Source data 1. Source data for the summary of the genome sequencing analysis shown in Table 1.
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DOR monotherapy did not show a noticeable amount of resistance at that stage (Figure 2B). DOR

resistance was, however, found at the end of the middle phase (Figure 2C), and this was mirrored in

the genomics with a non-synonymous mutation in the gene ftsI. This gene codes for the penicillin

binding protein 3 (PBP3) (Liao and Hancock, 1995), a common target of the three b-lactams

(Davies et al., 2008; Fontana et al., 2000; Rodriguez-Tebár et al., 1982; Rodrı́guez-Tebar et al.,

1982; Zimmermann, 1980). ftsI was also found to be mutated in isolates from CAR monotherapy,

although at a different site within the gene and associated with a different resistance profile than the

DOR-associated ftsI variant (Figure 2B). Isolates from CEF monotherapy contained mutations in

pepA. This gene is responsible for the production of a protein required for cytotoxicity and virulence

in P. aeruginosa (Hauser et al., 1998). Although its role in antimicrobial resistance remains to be

studied in detail, it was previously found to be mutated in P. aeruginosa strains resistant to certain

b-lactams (Cabot et al., 2018; Sanz-Garcı́a et al., 2018). The switching treatments selected for

mutations in the above-listed and also in some additional genes. In particular, we identified muta-

tions in nalD and phoQ, a negative regulator of the MexAB-OprM efflux pump and a two-compo-

nent system, respectively. Mutations in these genes account for resistance to a variety of drugs in P.

aeruginosa (Barbosa et al., 2021; Sobel et al., 2005). Further mutations were identified in some

non-canonical b-lactam resistance genes such as rmcA, 23srRNA, 3-oxoacyl synthase, dnaX, and zipA

(Table 1). Taken together, mutations in both canonical and non-canonical targets of b-lactam selec-

tion were identified in our experiment, and among these, DOR resistance mutations were found only

later in the experiment, consistent with the obtained resistance profiles (Figure 2B, C).

Based on our detailed characterization of the CAR-CEF-DOR triple b-lactam experiment, we con-

clude that DOR has a key role in restricting evolutionary rescue as evidenced by the delayed acquisi-

tion of genetic resistance to it.

Figure 3. Negative hysteresis is common among the tested b-lactam antibiotics. (A) Hysteresis effects were measured using the previously established

experimental approach (see Materials and methods). (B) Bacterial counts were plotted over time after the pretreatment to obtain time-kill curves (mean

± sem, n = 3). Level of hysteresis was quantified as the difference between the antibiotic switch and the only main curves. Negative values indicate

negative hysteresis and positive values indicate positive hysteresis. (C) Heatmap of hysteresis levels between all nine combinations of the three b-

lactams. DOR and CAR show asymmetric bidirectional negative hysteresis. Negative hysteresis is also observed in switches from CEF to CEF and CAR

to CEF. Weak positive hysteresis is found for the switch from CEF to CAR. The following supplementary material is available for Figure 3: Figure 3—

figure supplement 1, Figure 3—figure supplement 2, Figure 3—source data 1, Figure 3—figure supplement 1—source data 1. CAR:

carbenicillin; CEF: cefsulodin; DOR: doripenem.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Source data for the panels of Figure 3.

Figure supplement 1. Time-kill curves of hysteresis experiments for the combinations not presented in Figure 3 (mean ± sem, n = 3).

Figure supplement 1—source data 1. Source data for Figure 3—figure supplement 1.

Figure supplement 2. Hysteresis effects quantified as area under the curve (AUC) difference between the ‘only main’ and ‘antibiotic switch’ curves from
the time-kill dynamics.
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Asymmetric bidirectional hysteresis was identified between doripenem
and carbenicillin
As extinction was associated with antibiotic switches, we next focused on selective events that can

occur at drug switches, such as hysteresis, an inducible physiological change. We characterized the

complete hysteresis landscape between the three b-lactams: CAR, DOR, and CEF. We pretreated

exponential phase cells with an antibiotic for only 15 min to ensure that cells are physiologically chal-

lenged but not subject to differential killing or replication. The pretreatment was followed by a

change to fresh medium containing a second antibiotic as main treatment. We included controls of

no pretreatment, or no main treatment (Figure 3A). We found that negative hysteresis existed for

several switches between the b-lactams (Figure 3B, C, Figure 3—figure supplement 1, Figure 3—

figure supplement 2). DOR and CAR displayed asymmetric bidirectional negative hysteresis with

the switch from DOR to CAR, resulting in stronger negative hysteresis than the reverse. Negative

hysteresis was also observed in the switch from CAR to CEF and CEF to CEF. To our surprise, only a

single case of weak positive hysteresis was observed, although we generally anticipated it given that

P. aeruginosa produces the AmpC b-lactamase (Livermore, 1995). We conclude that negative hys-

teresis is abundant between the studied b-lactams and is a potential predictor of treatment potency

in the sequential b-lactam treatments.

Probability of direct and indirect resistance was the least for
doripenem
Since resistance to DOR was constrained in both the monotherapy and the switching treatments

(Figure 2B), we hypothesized that DOR resistance was difficult to achieve compared to the other

two b-lactams. Resistance against a given drug can arise because of spontaneous direct resistance

and/or because of collateral resistance from the preceding antibiotics in the sequence. As a first

step, we thus measured the spontaneous direct resistance rate with the classic fluctuation assay

using identical inhibitory concentrations of the three antibiotics (Luria and Delbrück, 1943;

Figure 4A, Supplementary file 1G). To determine the probability of indirect resistance in a second

step, we isolated the obtained single-step mutants and quantified the fraction of cross-resistance

towards the other two b-lactams with a patching assay (Figure 4A). We used a comparatively large

number of spontaneous mutants for this analysis (n = 60 per antibiotic) to capture the stochastic

nature of evolution and, in this context, the potential importance of collateral effects for bacterial

adaptation, as previously emphasized (Nichol et al., 2019). We found that the spontaneous resis-

tance rate was significantly lower for DOR than for CAR and CEF (likelihood ratio test, p<0.0001 and

p<0.01, respectively; Supplementary file 1H, Figure 4B). Moreover, the resulting cross-resistance

effects (Figure 4C) were particularly common towards CAR (93% of clones with spontaneous CEF

resistance and 71% with DOR resistance) and CEF (73% of originally CAR-resistant clones and 67%

DOR-resistant clones). By contrast, the smallest levels of cross-resistance were expressed towards

DOR (36% of originally CAR-resistant clones and 50% CEF-resistant clones). The overall fraction of

cross-resistant clones was significantly smaller towards DOR than either CEF or CAR (Fisher’s exact

test, p<0.0004; Supplementary file 1I). We conclude that of the three b-lactams DOR had the low-

est probability for both direct and indirect resistance, thereby providing experimental support to the

indication of constrained DOR resistance evolution obtained from the detailed phenotypic and

genomic characterization of the evolved bacteria (Figure 2, Table 1).

The rate of spontaneous resistance and resulting cross-resistance
determine treatment efficacy
We used the collected information to identify the critical determinant(s) of treatment efficacy in the

CAR-CEF-DOR triple b-lactam experiment. We assessed the influence of either the two experimental

predictors (switching rate, temporal irregularity) or the three biological predictors (hysteresis, proba-

bility of spontaneous resistance, and resulting cross-resistance) on each of the evolutionary

responses extinction, rate of growth adaptation, and multidrug resistance, using separate GLM-

based analyses (see Materials and methods; Supplementary file 1J–O). For the biological predic-

tors, we calculated the levels of cumulative hysteresis, cumulative probability of spontaneous resis-

tance, and the cumulative levels of cross-resistance in each of the 16 individual treatments up to

transfer 12 (see Materials and methods). We focused our analysis on the early phase of evolution up
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to transfer 12 as it appeared most critical for treatment efficacy, especially for population extinctions

that usually occurred early (Figure 1E). Our analysis revealed that extinction was significantly associ-

ated with both the experimental predictors, switching rate (GLM, F = 14.44, p=0.0042, Figure 5B,

Supplementary file 1J–M) and temporal irregularity (GLM, F = 10.53, p=0.0101,

Supplementary file 1M). Temporal irregularity further showed a statistical trend with multidrug

resistance (GLM, F = 4.19, p=0.0711, Supplementary file 1M). From our biological predictors, the

cumulative cross-resistant fraction showed a significant association with extinction (GLM, F = 10.42,

p=0.0121, Supplementary file 1O), while cumulative probability of spontaneous resistance showed

a statistical trend (GLM, F = 4.14, p=0.0763, Supplementary file 1O). Indeed, the cumulative cross-

resistant fraction and also the cumulative probability of spontaneous resistance are strongly

Figure 4. Doripenem has the lowest rates of direct and indirect resistance. (A) Schematic of the experimental

protocol to determine spontaneous rates of resistance on each of the three b-lactams and the resulting collateral

landscape. Briefly, an overnight culture was taken and split into 30 parallel cultures where bacteria were allowed to

divide in the absence of an antibiotic and any other constraint. Spontaneous resistant mutants were selected on

minimal inhibitory concentration (MIC) plates and restreaked to ensure genetic resistance. These mutants were

then patched on MIC plates of the other two b-lactams to test for cross-resistance. (B) Comparison of rates of

spontaneous resistance on the three b-lactams on a Log10 scale. Error bars depict CI95. All comparisons were

found to be significantly different from each other (likelihood ratio test; CAR vs. CEF p<0.0001, CAR vs. DOR

p<0.0001, and DOR vs. CEF p<0.01). (C) Landscape of collateral effects between the three b-lactams. Fraction of

cross-resistant mutants per antibiotic combination is plotted. DOR has the least cases of cross-resistance of the

three. A total of 60 mutants per antibiotic were used for collateral effect testing. The following supplementary

material is available for Figure 4: Figure 4—source data 1, Supplementary file 1G–I. CAR: carbenicillin; CEF:

cefsulodin; DOR: doripenem.

The online version of this article includes the following source data for figure 4:

Source data 1. Source data for Figure 4.
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correlated with extinction (Figure 5B). The cumulative cross-resistant fraction is also strongly corre-

lated with switching rate (Figure 5—figure supplement 1), most likely explaining the latter impact

on extinction. By contrast, cumulative hysteresis levels did not have a significant influence on any of

the evolutionary responses (GLM, F = 0.16, p=0.7015, Supplementary file 1O). Taken together, our

results suggest that in our sequential CAR-CEF-DOR treatments the switching rate, temporal irregu-

larity of antibiotics, the probability of spontaneous resistance, and especially the resulting collateral

effects (maximized by switching rate) determine treatment efficacy through their effect on bacterial

extinction. The limiting factor appears to be constrained evolution of resistance and low levels of

cross-resistance to DOR.

Figure 5. Bacterial extinction is correlated to switching rate, spontaneous rate of resistance, and spontaneous

cross-resistance. (A) Variation in experimental parameters, potential biological predictors, and the measured traits

up to transfer 12. The experimental parameters include switching rate and regularity of change (high irregularity in

dark). Potential biological predictors are cumulative levels of hysteresis (dark indicates protective effects),

cumulative probabilities of spontaneous resistance (Spont. res., dark indicates higher probability), and cumulative

level of collateral effects (Cross-res., dark indicates high fraction of cross-resistance). The evolutionary response

was measured for population survival (max = 12), adaptation rate (Adapt. rate, n � 12, extinct lineages excluded),

evolved multidrug resistance (MDR) to treatment antibiotics CAR, DOR, and CEF (MDR, n = 16). (B) Variation in

extinction was best explained by collateral effects between the antibiotics (for illustrative purposes, the red line

depicts linear regression and �S the Spearman’s rank correlation coefficient). The following supplementary material

is available for Figure 5: Figure 5—figure supplement 1, Figure 5—source data 1, Supplementary file 1J–

O. CAR: carbenicillin; CEF: cefsulodin; DOR: doripenem.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Source data for Figure 5.

Figure supplement 1. Correlation of switching rate with cumulative levels of collateral effects.
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Discussion
Treatment with multiple b-lactam antibiotics is generally avoided due to the perceived fear of ther-

apy failure from cross-resistance. Our work now challenges this widespread belief. We characterized

the ability of replicate P. aeruginosa populations to evolve de novo resistance to sequential treat-

ments with different drug sets. To our surprise, we found that sets of three b-lactams constrained

bacterial adaptation by reducing bacterial survival. We demonstrate that treatment potency was

determined by variation in the spontaneous rate of resistance to the b-lactams and the resulting col-

lateral effects across sequential treatment protocols.

Our initial screen of sequential protocols with different antibiotic triplets revealed that the triple

b-lactam sequences are at least as effective at causing extinction as sequences of antibiotics with dis-

tinct modes of actions. This finding is at first sight counterintuitive, but at second sight not

completely unexpected. The joint application of two b-lactam drugs was in fact tested and found

effective in a few previous studies (Rahme et al., 2014). For example, the b-lactam aztreonam was

shown to interact synergistically with four other b-lactam drugs against multiple resistant isolates of

Enterobacteriaceae and P. aeruginosa in vitro (Buesing and Jorgensen, 1984). A combination of

ticarcillin with ceftazidime produced high efficacy in a rat peritonitis model (Shyu et al., 1987). In a

treatment of bacterial soft tissue infections, the combination of cefotaxime and mecillinam led to

higher clinical response rates than the tested monotherapy (File and Tan, 1983). Further, the dual b-

lactam combination of ceftazidime plus piperacillin was as effective as the combination of ceftazi-

dime and tobramycin in granulocytopenic cancer patients (Joshi et al., 1993). More recent studies

demonstrated that a triple combination of meropenem, piperacillin, and tazobactam successfully

constrained resistance evolution in Methicillin-resistant Staphylococcus aureus (MRSA), both in vitro

and in a mouse model (Gonzales et al., 2015). In addition, the combination of cefotaxime and

mecillinam was effective against Salmonella enterica harboring a mutant b-lactamase in a mouse

model (Rosenkilde et al., 2019). Our findings add to the high potency of treatments with multiple

b-lactams. We conclude that the use of multiple b-lactams, either as a combination or sequentially, is

a commonly underappreciated form of therapy and its use opens new avenues to better utilize our

existing antibiotic armamentarium.

Spontaneous rate of antibiotic resistance was found to play a critical role in the success of the

CAR-CEF-DOR sequential treatment. The probability of spontaneous resistance on all three b-lac-

tams was significantly different, with the rate of DOR resistance being the lowest. These rates deter-

mined the overall probability of acquiring direct resistance in treatment, which significantly

correlated with the frequency of population extinction (Figure 5B). Resistance rates were previously

shown to vary towards different antibiotics, for example, in Escherichia coli (El Meouche and Dun-

lop, 2018) and P. aeruginosa (Oliver et al., 2004). This variation can arise from genetic factors such

as mutational target space and physiological factors like activation of the bacterial SOS response

(Martinez and Baquero, 2000). Such information on resistance rates has so far been used for pre-

dicting the occurrence of resistance against single drugs, and antibiotics that target multiple path-

ways in a cell are considered advantageous in this context (Ross-Gillespie and Kümmerli, 2014).

One example of the latter are compounds against S. aureus that inhibit both DNA gyrase and topo-

isomerase IV (Nyerges et al., 2020). The rate of resistance emergence may also be reduced by

using adjuvants that target the SOS response (Bell and MacLean, 2018), as previously shown for

compounds interfering with LexA activity leading to reduced resistance rates to ciprofloxacin and

rifampicin in E. coli (Cirz et al., 2005). Our study extends the role of resistance rates of antibiotics

beyond this convention. We show that inclusion of an antibiotic with relatively low spontaneous resis-

tance emergence can enhance the potency of a sequential treatment design.

What could be the underlying reasons for the particular importance of DOR compared with the

other b-lactams? DOR belongs to the carbapenem subclass of the b-lactam antibiotics. Carbape-

nems possess broad activity against Gram-positive and Gram-negative bacteria (Papp-

Wallace et al., 2011) and are active against many b-lactamase-producing microbes since their thia-

zolidinic ring makes them relatively resistant to b-lactamase-mediated hydrolysis (Schafer et al.,

2009). In contrast, the penicillin CAR is active mostly (albeit not exclusively) against Gram-negative

bacteria (Castle, 2007) while the activity of the cephalosporin CEF is restricted to P. aeruginosa

(Wright, 1986). Within P. aeruginosa, all three antibiotics show high potency against a large variety

of clinical isolates (Castanheira et al., 2009; Neu and Scully, 1984; Traub and Raymond, 1970).
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Resistance rates for b-lactam antibiotics were assessed with different approaches across P. aerugi-

nosa strains and clinical isolates, consistently showing that DOR has a particularly low propensity to

select for resistance mutations, even when compared to other carbapenems (Barbosa et al., 2017;

Barbosa et al., 2021; Sakyo et al., 2006; Tanimoto et al., 2008; Mushtaq et al., 2004;

Fujimura et al., 2009). Therefore, the phenotype of reduced spontaneous resistance to DOR

appears to be robustly expressed across different P. aeruginosa genotypes and does not extend to

other carbapenems or b-lactams. One possible reason for this pattern may be variation in the range

of b-lactam target proteins, in this case the penicillin binding proteins (PBPs), and where DOR is

known to bind more of these PBPs than do CAR or CEF (Davies et al., 2008; Fontana et al., 2000;

Rodriguez-Tebár et al., 1982; Rodrı́guez-Tebar et al., 1982; Zapun et al., 2008; Zimmer-

mann, 1980). Thus, target resistance to DOR would likely require a larger number of mutations than

that to other b-lactams. Interestingly, another carbapenem, meropenem, targets the same PBPs as

DOR (Davies et al., 2008) but has a higher resistance rate, suggesting that the underlying reasons

for resistance rate variation are multifactorial. Taken together, effective resistance mutations against

DOR seem to be less commonly available in P. aeruginosa in comparison to that against other drugs,

including the here used CEF and CAR.

A key determinant of treatment potency was the reduced level of spontaneous cross-resistance

to the sequentially applied drugs (Figure 5B). This effect was maximized by the switching rate (Fig-

ure 5—figure supplement 1). Our findings are consistent with the previously and repeatedly pro-

posed importance of collateral sensitivity for the efficacy of sequential treatment protocols

(Barbosa et al., 2019; Hernando-Amado et al., 2020; Imamovic and Sommer, 2013; Kim et al.,

2014; Maltas and Wood, 2019; Yen and Papin, 2017). Even though we did not measure collateral

sensitivity directly, the lack of cross-resistance is related as it indicates that the mutant cells, which

have become resistant to one drug, maintain at least ancestral levels of susceptibility against the sec-

ond drug. Moreover, our study focused on spontaneous emergence of cross-resistance (or lack

thereof). By contrast, many previous studies established collateral effects after bacteria evolved

resistance to the first drug over many generations, often followed by only a single antibiotic switch

to assess the impact of collateral sensitivity on therapy success (Barbosa et al., 2019; Hernando-

Amado et al., 2020; Imamovic and Sommer, 2013; Yen and Papin, 2017). Surprisingly, our study

revealed potentially beneficial collateral effects between antibiotics of the same class. In fact, we

chose these three b-lactams because our previous work demonstrated cross-resistance between

most of them, although inferred upon multigenerational adaptation to the first drug (Barbosa et al.,

2017). Our current finding of a lack of cross-resistance among some of these drugs now suggests

that spontaneous mutants may have different collateral profiles than the lines, which adapted over

many generations. Our results further suggest that the collateral effects of spontaneous mutants are

likely to be more pertinent for the design of sequential treatments with fast switches among antibi-

otics. This suggestion is supported by two previous studies, in which the efficacy of fast sequential

treatments was optimized by considering collateral effects for either single-step mutants of S.

aureus, obtained after 20 hr exposure to three distinct antibiotics for 20 hr (Kim et al., 2014), or

from Enterococcus faecalis populations adapted over 2 days to four distinct antibiotics (Maltas and

Wood, 2019). As a side note, it is particularly interesting that our detailed resistance analysis consis-

tently revealed almost all treatments to cause the evolution of collateral sensitivity towards the ami-

noglycoside gentamicin, but not the fluoroquinolone ciprofloxacin (Figure 2B, C), possibly indicating

yet another treatment option – in cases where the applied triple b-lactam sequential protocols fail.

Temporal irregularity was additionally found to constrain bacterial adaptation. When bacteria

experienced the antibiotics in an irregular pattern, this caused significantly increased extinction and

to some degree reduced multidrug resistance. With CAR-DOR-CEF, the lowest multidrug resistance

was observed in random sequential treatments (Figure 2—figure supplement 5), as also previously

observed with CIP-GEN-CAR (Roemhild et al., 2018). Environmental change anticipation has been

documented in several microorganisms (Mitchell et al., 2009; Mitchell and Pilpel, 2011), indicating

their capability to specifically adapt to regular environmental change. Stochastic changes can make

it harder to evolve anticipation (Roemhild and Schulenburg, 2019). Stochastic changes in environ-

mental parameters were indeed found to constrain fitness in evolving bacteria (Hughes et al., 2007)

and viruses (Alto et al., 2013). We show that irregular antibiotic sequences have potential to inhibit

bacterial resistance evolution.
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Unexpectedly, we further identified negative hysteresis for multiple combinations of the three b-

lactams. However, cumulative hysteresis levels per treatment did not significantly associate with any

of our measured evolutionary responses. In our previous study (Roemhild et al., 2018), within the

CAR-CIP-GEN combination, negative hysteresis was expressed for the switches from CAR to GEN

and CIP to GEN. Yet, only the CAR-GEN hysteresis was significantly associated to the evolutionary

responses. Thus, hysteresis interactions can exist between antibiotics from the same or different clas-

ses, but they need not impact the evolutionary outcome of a sequential treatment protocol each

time. In the current study, it appears that spontaneous resistance effects and the resulting cross-

resistance effects are dominant over the b-lactam hysteresis. One potential explanation could be

that insensitivity to b-lactam hysteresis evolves quickly. Nevertheless, it clearly warrants further

research to assess whether negative hysteresis between the b-lactam drugs is robustly shown across

strains of P. aeruginosa or other bacterial species and can somehow be exploited in sequential ther-

apy, in analogy to the previous results with antibiotics from different classes (Roemhild et al., 2018).

Taken together, our study highlights that the available antibiotics offer unexplored, highly potent

treatment options that can be harnessed to counter the spread of drug resistance. It further under-

scores the importance of evolutionary trade-offs such as reduced cross-resistance in treatment

design and introduces spontaneous resistance rates of component antibiotics as a guiding principle

for sequential treatments. It is ironic that the differential cross-resistance landscape of the b-lactams

was a key factor contributing to treatment potency, even though the risk of cross-resistance is usu-

ally used to reject b-lactam-exclusive treatments. The underlying reasons for differential spontaneous

and long-term cross-resistance between these drugs (including the underlying molecular mecha-

nisms) are as yet unknown and clearly deserve further attention in the future. We conclude that a

detailed understanding of both spontaneous resistance rates and resulting cross-resistances against

different antibiotics should be of particular value to further improve the potency of sequential

protocols.

Materials and methods

Key resources table

Reagent type
(species)
or resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background
(Pseudomonas
aeruginosa)

PA14 https://doi.org/
10.1126/science.
7604262

UCBPP-PA14

Chemical
compound,
drug

AZL
(azlocillin)

Sigma A7926-1G

Chemical
compound,
drug

CAR
(carbenicillin)

Carl Roth 6344.2

Chemical
compound,
drug

CIP
(ciprofloxacin)

Sigma 17850-5 G-F

Chemical
compound,
drug

CEF
(cefsulodin)

Carl Roth 4014.2

Chemical
compound,
drug

CEZ
(ceftazidime)

Sigma C3809.1G

Chemical
compound,
drug

DOR
(doripenem)

Sigma 32138-25 MG

Chemical
compound,
drug

GEN
(gentamicin)

Carl Roth 2475.1

Continued on next page
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Continued

Reagent type
(species)
or resource Designation

Source or
reference Identifiers

Additional
information

Chemical
compound,
drug

STR
(streptomycin)

Sigma S6501-5

Chemical
compound,
drug

TIC
(ticarcillin)

Sigma T5639-1G

Software,
algorithm

R: A language
and environment
for statistical
computing

https://www.R-project.org/

Materials
All experiments were performed with P. aeruginosa UCBPP-PA14 (Rahme et al., 1995). Bacteria

were grown in M9 minimal medium supplemented with glucose (2 g/L), citrate (0.58 g/L), and casa-

mino acids (1 g/L) or on M9 minimal agar (1.5%) or Lysogeny broth (LB) agar. Antibiotics were added

as indicated. Cultures and plates were incubated at 37˚C. Experiments included biological replicates

(initiated with independent clones of the bacteria, which were grown separately before the start of

the experiment, or independent evolutionary lineages from the respective evolution treatments) and

technical replicates (initiated from the same starting culture of the bacteria), as indicated below. For

the experiments, treatment groups were run in parallel and randomized. Treatment names were

masked in order to minimize observer bias.

Dose-response curves of ancestor
We used dose-response curves based on broth microdilution in order to determine antibiotic con-

centration causing inhibition level of 25% growth yield relative of untreated controls (inhibitory con-

centration 75 [IC75]) for the antibiotics azlocillin (AZL), carbenicillin (CAR), ciprofloxacin (CIP),

cefsulodin (CEF), ceftazidime (CTZ), doripenem (DOR), gentamicin (GEN), and ticarcillin (TIC; see

Supplementary file 1A for details on antibiotics). Briefly, bacteria were grown to exponential phase

(OD600 = 0.08) and inoculated into 96-well plates (100 mL per well, 5 � 106 CFU/mL) containing lin-

ear concentration ranges close to MIC of the antibiotics in M9 medium. Antibiotic concentrations

were randomized spatially. Bacteria were incubated for 12 hr after which optical density was mea-

sured in BioTek EON plate readers at 600 nm (OD600). We included six biological replicates and 1–2

technical replicates per concentration and antibiotic. Optical density was plotted against antibiotic

concentration to obtain a dose-response curve. Model fitting was carried out using the package drc

(Ritz et al., 2015) in the statistical environment R (R Development Core Team, 2020) and the fitted

curve was used to predict IC75 values (Figure 1—figure supplement 1).

Evolution experiments
We carried out evolution experiments with the various combination of antibiotics according to the

design described previously (Roemhild et al., 2018). A total of 16 treatments were included

(Figure 1B). Treatments 1–4 were constant environments consisting of the monotherapy (#1–3) and

no drug control (#4). Treatments 5–10 were the regular switching treatments. They switched

between the antibiotics in a regular predictable fashion, either every transfer (fast; #5–7) or every

fourth transfer (slow; #8–10). Treatments 11–16 consisted of the random treatments that switched

fast in a temporally irregular fashion. The setup was designed to test the effect of switching rate and

temporal irregularity.

Every treatment consisted of 12 replicate populations (initiated from six biological replicates �

two technical replicates). All populations were started with an inoculum of 5 � 105 cells. Populations

were propagated as 100 mL batch cultures in 96-well plates, with a transfer to fresh medium every

12 hr (transfer size 2% v/v). Antibiotic selection was applied at IC75 throughout. We monitored

growth by OD600 measurements taken every 15 min through the entire evolution experiment (BioTek

Instruments, USA; EON; 37˚C, 180 rpm double-orbital shaking). Evolutionary growth dynamics were
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assessed by plotting the final OD achieved in every transfer (relative to final OD of no drug control;

relative yield). Adaptation rate was calculated with a sliding window approach, where adaptation

rate was the inverse of the transfer at which the mean relative yield of a sliding window of 12 trans-

fers reached 0.75 for the first time. Cases of extinction were determined at the end of the experi-

ment by counting wells in which no growth was observed after an additional incubation in antibiotic-

free medium. Samples of the populations were frozen in regular intervals in 10% (v/v) DMSO and

stored at �80˚C for later analysis. The evolution experiments were carried out for a total of 96

transfers.

Resistance measurements of evolved populations
We characterized populations frozen at transfers 12 and 48 in detail because they represented the

early and late phases of the evolution experiment. One population originating from a single biologi-

cal replicate was chosen per treatment and plated onto LB agar. After incubation at 37˚C, 20 colo-

nies from each population were picked randomly and frozen in 10% (v/v) DMSO and stored at �80˚

C. These colonies, termed isolates, were considered to be representative biological replicates for

each population. We constructed dose-response curves for the isolates using for each evolved popu-

lation one technical replicate per isolate and four technical replicates of the ancestral PA14 strain, as

described above, for the antibiotics CAR, CEF, DOR, GEN, and CIP. The integral of this curve for

every isolate was calculated and the integral of the ancestral PA14 control subtracted. The resulting

value was resistance of the isolate on the said antibiotic. We identified subpopulations in any given

population by hierarchical clustering of the resistance profiles, as previously described

(Roemhild et al., 2018). Resistance of a population was calculated by averaging the resistance of

the isolates. Resistance of the population on CAR, CEF, and DOR was added to obtain a single value

for multidrug resistance.

Whole-genome sequencing
From the frozen isolates at transfer 12, we chose three isolates per population (i.e., three biological

replicates per population) for whole-genome sequencing to determine possible targets of selection.

Each resistance cluster in the population was represented in the sequenced isolates. For the DOR

monotherapy, isolates from transfer 48 were also sequenced as no phenotypic resistance was

observed at transfer 12. Frozen isolates were thawed and grown in M9 medium at 37˚C for 16–20 hr.

We extracted DNA using a modified CTAB protocol (von der Schulenburg et al., 2001) and

sequenced it at the Competence Centre for Genomic Analysis Kiel (CCGA Kiel; Institute for Clinical

Microbiology, University Hospital Kiel), using Illumina Nextera DNA Flex library preparation and the

MiSeq paired-end technology (2 � 300 bp). Quality control on the resulting raw reads was per-

formed with FastQC (Andrews, 2010) and low-quality reads were trimmed using Trimmomatic

(Bolger et al., 2014). We then used MarkDuplicates from the Picard Toolkit (http://broadinstitute.

github.io/picard/) to remove duplicate reads and mapped the remaining reads to the P. aeruginosa

UCBPP-PA14 genome (available at http://pseudomonas.com/strain/download) using Bowtie2 and

samtools (Langmead and Salzberg, 2012; Li et al., 2009). Variant calling was done using the GATK

suite (Poplin et al., 2018) and the called variants were annotated using SnpEFF (Cingolani et al.,

2012) and the Pseudomonas Genome Database (https://www.pseudomonas.com/). We removed all

variants that were detected in the no drug control as they likely represent adaptation to the medium

and not the antibiotic. The fasta files of all sequenced isolates are available from NCBI under the Bio-

Project number: PRJNA704789.

Hysteresis testing
The presence of cellular hysteresis was tested, following the previously developed protocol

(Roemhild et al., 2018). Bacterial cells were grown to exponential phase (OD600 = 0.08), diluted 10-

fold, and treated with IC75 of the first antibiotic. In the treatments where the pretreatment did not

require an antibiotic, none was added. These cells were allowed to incubate for 15 min at 37˚C and

150 rpm (pretreatment). After this, the first antibiotic was removed by centrifugation and fresh

medium containing IC75 of a second antibiotic was added. In cases where the main treatment did

not require an antibiotic, fresh medium without an antibiotic was added. Bacteria were now incu-

bated for 8 hr at 37˚C and 150 rpm (main treatment). Bacterial count was monitored through the
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main treatment by spotting assays. We used three biological replicates per treatment and, for CFU

counting, four technical replicates per biological replicate and treatment. Log10 CFU/mL were plot-

ted against time to obtain time-kill curves (Figure 3B). The level of hysteresis was calculated as the

difference between the antibiotic switch and only main treatment curves.

Agar dilution
We determined the MIC on M9 agar for the antibiotics CAR, CEF, and DOR according to the

EUCAST protocol (https://doi.org/10.1046/j.1469-0691.2000.00142.x) that was modified to account

for inoculum effect in our fluctuation assay setup. UCBPP-PA14 was grown in M9 medium at 37˚C for

20 hr. 5 � 105 cells were taken from the stationary phase cultures and spread on M9 agar plates con-

taining doubling dilutions of the antibiotic. Plates were incubated at 37˚C for 20–24 hr. MIC was

read as the lowest concentration at which no growth of bacteria was seen. MIC determination for

each antibiotic was done for three biological replicates (no additional technical replication).

Fluctuation assay
We measured resistance rates on the three b-lactams using the classic fluctuation assay (Luria and

Delbrück, 1943). Briefly, a single colony of UCBPP-PA14 was inoculated to 10 mL M9 and incubated

at 37˚C, 150 rpm for 20 hr. This primary culture was used to start 30 parallel cultures all having a

starting concentration of 102 CFU/mL. The parallel cultures were considered biological replicates

and incubated at 37˚C, 150 rpm for 20 hr. Thereafter, 5 � 105 cells were plated onto MIC plates of

CAR, CEF, and DOR. The plates were incubated for 40 hr at 37˚C. The resulting mutant colonies

were taken and patched on identical antibiotic MIC plates to ensure genetic resistance. Colonies

that grew after patching were counted. We used counts from all 30 cultures to estimate resistance

rate on each antibiotic using the package rSalvador (Zheng, 2017) in R (R Development Core

Team, 2020).

Patching assay
We assessed the extent of cross-resistance associated with each b-lactam using the mutants

obtained from the fluctuation assay. Sixty mutants with genetic resistance to a given b-lactam were

considered biological replicates and patched onto MIC plates of the two other b-lactams. The

patched plates were incubated for 16–20 hr at 37˚C. If the mutant grew at MIC of the second b-lac-

tam, it was counted as resistant. If it did not grow at the MIC of the second b-lactam, it was counted

as susceptible. For each switch between two drugs, the fraction of cross-resistant mutants was calcu-

lated as

Number of mutants that grewondrugB

Totalmutants isolated ondrugA

Statistical analysis for cross-resistance on secondary antibiotic
To test whether the secondary antibiotic had an influence on the degree of cross-resistance of the

mutants obtained from the fluctuation assay, we conducted a Fischer’s exact test followed by

post hoc comparisons using the R package rcompanion (Mangiafico, 2016). The obtained p-values

were then corrected for multiple testing using false discovery rate.

Statistical analysis of adaptive growth dynamics
To test whether main treatment types were associated with altered dynamics of adaptation in non-

extinct populations, we analyzed the trajectories of relative growth yield (as plotted in Figure 1E

and Figure 2A) of drug-treated populations using a GLM, including sequence (##1–16) and transfer

as fixed factors and preculture and replicate population as nested random factors (see

Supplementary file 1B for details). Comparisons between main treatment groups were performed

using pairwise post hoc tests and z statistics. All p-values were corrected for multiple testing using

false discovery rate. The analysis was performed separately for the three time phases ‘early’ (trans-

fers 2–12), ‘middle’ (transfers 13–48), and ‘late’ (transfers 49–96) of the experiment, thus fulfilling the

model assumption of response linearity. All statistical analyses were carried out in the statistical envi-

ronment R (R Development Core Team, 2020).
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Statistical analysis of evolved multidrug b-lactam resistance
To test whether evolved populations displayed distinct multidrug b-lactam resistance depending on

their main treatment type, we analyzed multidrug b-lactam resistance of evolved isolates – the sum

of resistance values against CAR, CEF, and DOR (as plotted in Figure 3B, C) – using a GLM. The

model included sequence (##1–16) as fixed factor and replicate population as nested random factor

(see Supplementary file 1C for detailed information). Comparisons between main treatment groups

were performed using pairwise post hoc tests and z statistics. All p-values were corrected for multi-

ple testing using false discovery rate. The analysis was performed separately for the ‘early’ (after

transfers 12) and ‘middle’ (transfer 48) time points of the evolution experiment using the R statistical

environment (R Development Core Team, 2020).

Statistical analysis of treatment potency predictors
To test whether our experimental (switching rate and temporal irregularity) and biological predictors

(hysteresis, probability of direct resistance, and cross effects) were able to explain the variability in

our evolutionary responses (extinction, rate of growth adaptation, and multidrug resistance) we car-

ried out a GLM analysis. Values per treatment protocol for the biological predictors were calculated

and the GLM analysis then carried out in R (R Development Core Team, 2020). We used the lm and

anova commands and the main effects model: response ~ switching rate + irregularity for the experi-

mental predictors and response ~ hysteresis + spontaneous resistance + mutant fraction cross-resis-

tant for the biological predictors.
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