
Contents lists available at ScienceDirect

IJP: Drugs and Drug Resistance

journal homepage: www.elsevier.com/locate/ijpddr

Activity of mefloquine and mefloquine derivatives against Echinococcus
multilocularis

Reto Rufenera, Dominic Ritlera, Jana Zielinskib, Luca Dicka, Emerson Teixeira da Silvac,
Adriele da Silva Araujoc, Deborah Elisabeth Joekeld, David Czocke, Christine Goepfertf,
Adriana Marques Moraesc, Marcus Vinicius Nora de Souzac, Joachim Müllera, Meike Mevissenb,
Andrew Hemphilla, Britta Lundström-Stadelmanna,∗

a Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
bDivision of Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012, Bern, Switzerland
c Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos – Far Manguinhos, 21041-250, Rio de Janeiro, Brazil
d Institute of Parasitology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, 8057 Zurich, Switzerland
e Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
f Institute of Animal Pathology COMPATH, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, Switzerland

A R T I C L E I N F O

Keywords:
Alveolar echinococcosis
Treatment
Anti-malaria
HPLC
Drug repurposing
Structure activity relationship

A B S T R A C T

The cestode E. multilocularis causes the disease alveolar echinococcosis (AE) in humans. The continuously pro-
liferating metacestode (larval stage) of the parasite infects mostly the liver and exhibits tumor-like growth.
Current chemotherapeutical treatment options rely on benzimidazoles, which are rarely curative and have to be
applied daily and life-long. This can result in considerable hepatotoxicity and thus treatment discontinuation.
Therefore, novel drugs against AE are urgently needed. The anti-malarial mefloquine was previously shown to be
active against E. multilocularis metacestodes in vitro, and in mice infected by intraperitoneal inoculation of
metacestodes when administered at 100mg/kg by oral gavage twice a week for 12 weeks. In the present study,
the same dosage regime was applied in mice infected via oral uptake of eggs representing the natural route of
infection. After 12 weeks of treatment, the presence of parasite lesions was assessed in a liver squeeze chamber
and by PCR, and a significantly reduced parasite load was found in mefloquine-treated animals. Assessment of
mefloquine plasma concentrations by HPLC and modeling using a two-compartment pharmacokinetic model
with first-order absorption showed that> 90% of the expected steady-state levels (Cmin 1.15mg/L, Cmax

2.63 mg/L) were reached. These levels are close to concentrations achieved in humans during long-term weekly
dosage of 250mg (dose applied for malaria prophylaxis). In vitro structure-activity relationship analysis of
mefloquine and ten derivatives revealed that none of the derivatives exhibited stronger activities than me-
floquine. Activity was only observed, when the 2-piperidylmethanol group of mefloquine was replaced by an
amino group-containing residue and when the trifluoromethyl residue on position 8 of the quinoline structure
was present. This is in line with the anti-malarial activity of mefloquine and it implies that the mode of action in
E. multilocularis might be similar to the one against malaria.

1. Introduction

The parasitic cestode Echinococcus multilocularis causes alveolar
echinococcosis (AE) in humans and a variety of mammals, such as dogs,
captive monkeys, beavers, and others (Deplazes and Eckert, 2001). E.
multilocularis is found on the Northern hemisphere, including high en-
demicity areas in Central and Eastern Asia (e.g. Kyrgyzstan, China, and
Northern Japan) as well as in Central and Eastern Europe (Deplazes
et al., 2017). The total global burden of human AE was estimated to be

18′235 new cases per year (Torgerson et al., 2010). Over the recent
decades, the parasite became more prevalent in Europe (Thompson
et al., 2017) and Canada (Trotz-Williams et al., 2017). Especially in
endemic areas with low standard health care systems, the disease poses
an increasing and uncontrolled health problem (Kern et al., 2017).

Definitive hosts (mainly foxes, dogs, and raccoon dogs) harbor the
adult stage of E. multilocularis in their intestines and this leads to con-
tamination of the environment with infectious eggs. Intermediate hosts
such as small rodents, but also humans (dead-end hosts), and other
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mammals, may accidentally acquire eggs containing an infectious on-
cosphere orally, and be infected with the parasite. Following infection,
the oncosphere differentiates into the metacestode stage, primarily in
the liver, where it infiltrates the adjacent tissue by asexual proliferation
of vesicles. Metacestodes exhibit an unlimited reproductive potential,
gradually forming cancer-like lumps, often with necrotic areas in the
centre. Thus, human AE is a chronic disease with extensive morbidity
and mortality if untreated (Kern et al., 2017). The only curative treat-
ment for AE is complete surgical resection of the parasite tissue. Such
invasive surgery is performed in about 30% of all AE patients, therefore
most receive only continuous medication with the benzimidazole-de-
rivatives albendazole (ABZ) or mebendazole (Kern et al., 2017). Ben-
zimidazoles have drastically improved the life expectancy and quality
of life of patients. Whereas the 10-years survival rate of untreated AE
patients was 0–25% in the pre-benzimidazole era, benzimidazole-
treated patients to date have a 10-years survival rate of 91–97% in
countries with well-developed health-care (Ammann and Eckert, 1996;
Grüner et al., 2017). However, benzimidazoles are mainly parasito-
static, requiring life-long administration to avoid recurrence. Benzimi-
dazoles bind to beta tubulin and interfere in microtubule formation,
thereby impairing uptake of nutrients and parasite growth (Lacey,
1990). However, stem cells in the germinal layer of E. multilocularis
metacestodes express a beta tubulin isoform, TUB-2, which does not
bind to benzimidazoles rendering stem cells largely resistant to the
dosages of benzimidazoles used in standard treatments. This, in com-
bination with the limited uptake and half-life of the drug, could, at least
partially, explain the parasitostatic rather than parasiticidal action of
benzimidazoles (Brehm and Koziol, 2014). A drawback of benzimida-
zole-based therapy is that about 16% of the treated patients experience
adverse effects such as hepatotoxicity that lead to treatment-dis-
continuation (Steiger et al., 1990). ABZ treatment increases the host
immune response against the parasite, implying that the action of
benzimidazoles could also be dependent on the immune system (Ricken
et al., 2017). With increasing numbers of patients and no alternative to
benzimidazoles, the development of better and/or alternative treatment
options becomes increasingly urgent (Kern et al., 2017). Two drugs that
were studied in clinical trials against AE over the last years are the anti-
fungal agent amphotericin B and the broad-spectrum anti-parasitic ni-
tazoxanide, but they were not further pursued due to minimal activity
in humans and pronounced side-effects (Kern et al., 2008; Tappe et al.,
2009).

Pharmaceutical companies are reluctant to engage in preclinical
drug development for AE, and therefore an important focus is on re-
purposing of existing drugs or compound classes that are on the market
or being developed for other indications. This approach could result in
lower costs, lower risk of failure, and faster time to the market within
the drug development process (Andrews et al., 2014; Panic et al., 2014).
A rich source for drug repurposing against parasites are anti-malarials,
since over 6 million compounds have been screened for activity against
the blood stage of P. falciparum, and over 20′000 hits with activity in
the low μM range have been identified. Over the past years, several
anti-malarials were shown to exhibit activity against E. multilocularis
metacestodes (Lubinsky, 1969; Reuter et al., 2006; Spicher et al., 2008;
Küster et al., 2014; Stadelmann et al., 2016), including mefloquine
(Küster et al., 2011, 2015; Stadelmann et al., 2011). In Plasmodium,
mefloquine inhibits the formation of hemozoin, an essential step in

heme detoxification upon hemoglobin degradation (Egan et al., 1994).
Additional proposed targets are the ribosomes (Wong et al., 2017),
phosphatidylinositol, volume-regulated anion channels and endocytosis
(Dassonville-Klimpt et al., 2011). Mefloquine is also active against the
helminth parasite Schistosoma (Keiser and Utzinger, 2012), where in-
hibition of hemozoin formation (Corrêa Soares et al., 2009) as well as
impairment of enolase activity (Manneck et al., 2012) were postulated
as potential mechanisms of action. In addition, mefloquine is active
against cancer cells (Sharma et al., 2012; Liu et al., 2016), and neuronal
cells (Lim and Go, 1985; Cruikshank et al., 2004; McArdle et al., 2005;
Milatovic et al., 2011). The adverse-effects of mefloquine are well-
known. Mefloquine has been reported to induce a post-hepatic syn-
drome (including gastrointestinal disturbances, headache, malaise)
(Mawson, 2013) and may induce neuropsychiatric side-effects in pa-
tients, who are either receiving malaria prophylaxis or single dose
treatment (Croft and Herxheimer, 2002; Croft, 2007; Grabias and
Kumar, 2016; Nevin and Byrd, 2016).

Upon in vitro treatment of E. multilocularis metacestodes with me-
floquine, a rapid separation of the cellular germinal layer from the
acellular laminated layer and collapse of the metacestode tissue was
observed (Küster et al., 2011). Subsequent injection of in vitro-treated
parasites into animals showed that the drug exhibited parasiticidal
activity (Küster et al., 2011). To reduce the expected neurological side-
effects in vivo, erythro-enantiomers of mefloquine were tested in vitro, as
it was suggested that adverse effects might be attributable mainly to
one form of enantiomer. However, against E. multilocularis, both en-
antiomers exhibited similar activities (Stadelmann et al., 2011). In the
secondary infection model mice are infected by intraperitoneal in-
oculation of metacestodes, reflecting the late chronic, disseminated
stage of disease. In this model we showed that intraperitoneal injection
of mefloquine at 25mg/kg twice per week during 8 weeks resulted in a
significant reduction of the parasite burden (Küster et al., 2011). The
same was achieved upon oral application of mefloquine at 100mg/kg,
twice per week for 12 weeks (Küster et al., 2015). Thus, mefloquine was
active in the chronic disease model. However, there is no information
on the drug plasma concentrations required for activity against murine
AE in the above-mentioned studies. Further, mefloquine has not yet
been assessed in a primary infection model, i.e. in mice infected orally
with E. multilocularis eggs reflecting the natural route of infection and
earlier stage of disease. E. multilocularis ferritin and cystatin were
identified to possibly interact with mefloquine (Küster et al., 2015).
However, this has not been further investigated and additional in-
formation on the mode of action of mefloquine against E. multilocularis
is lacking to date.

We here assessed the anti-parasitic effect of mefloquine in a primary
mouse infection model of AE, and measured drug plasma concentra-
tions by high-performance liquid chromatography (HPLC). In addition,
ten derivatives of the molecule were tested in vitro against E. multi-
locularis metacestodes to further investigate the mode of action and
structure activity relationship of mefloquine.

2. Materials and methods

2.1. Materials

All chemicals were purchased from Sigma-Aldrich (Buchs,
Switzerland), if not stated otherwise.

2.2. Isolation of E. multilocularis eggs and viability assessment

E. multilocularis eggs were obtained from naturally infected foxes
during the regular Swiss hunting season in spring 2017 according to
Hofer et al. (2000). In brief, adult E. multilocularis worms from the small
intestines of foxes were collected and kept in 0.9% NaCl, the worms
were squashed and the suspension was first passed through a 105 μm
and a 41 μm diameter mesh, followed by a 21 μm mesh (Lanz-Anliker

Abbreviations

ABZ albendazole
AE alveolar echinococcosis
PGI phosphoglucose isomerase
SH sodium-hypochlorite
TLC thin-layer chromatography
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AG, Switzerland). The suspension was stored at 4 °C in PBS with 100 U
penicillin and 100 μg streptomycin (Life Technologies, Switzerland)
(PBS-P/S). The egg suspension was centrifuged every second to third
week (500×g, 10min, 4 °C), the supernatant was removed and replaced
by fresh PBS-P/S. Integrity (maturity) of Echinococcus eggs was assessed
by sodium hypochlorite resistance test (Deplazes and Eckert, 1988). In
brief, 0.3 mL of a sodium-hypochlorite solution (2% active chlorine, pH
12) was added to 0.4mL E. multilocularis egg suspension (500–1000
eggs/mL). The total number of eggs was determined in a McMaster-
chamber. Few minutes after the addition of sodium-hypochlorite solu-
tion, oncospheres with intact membranes were counted. Sodium hy-
pochlorite resistance was calculated from triplicate counts as percen-
tage of intact oncospheres.

2.3. Animal housing and experimental infection with E. multilocularis eggs

All manipulations with animals followed the guidelines of the Swiss
legislation on experimental animal procedures and the experiment was
approved by the Bernese cantonal authorities under the license number
BE112/14. Eight-week old female BALB/c mice (Charles River,
Sulzfeld, Germany) weighing 20.4 ± 0.8 g at the beginning of the ex-
periment were housed in temperature- and humidity-controlled animal
facilities (biosafety level 2) with day/night cycle (12/12 h) and free
access to water and food. Prior to egg infection, 35 mice were trans-
ferred to a biosafety level 3 animal facility and were infected by oral
gavage of approximately 200 E. multilocularis eggs (corresponding to 46
viable eggs) suspended in 100 μL PBS. An additional 9 female BALB/c
mice received oral gavage of 100 μL PBS only. After two weeks, animals
were transferred back to a conventional biosafety level 2 facility.

2.4. Mefloquine treatment

The infected mice were randomly allocated into three egg-infected
groups: (I) mefloquine treatment (n = 9); (II) albendazole (ABZ)
treatment (n = 8); (III) placebo treatment (n = 9). Group (IV) consisted
of the non-infected control group (n = 9). Based on power analysis in
G*Power (version 3.1.9.2), a power of 0.8 and a p-value of 0.05, the
minimal group size was calculated to n = 8. In groups I, II, and IV, we
increased this number to n = 9, as for these groups plasma con-
centration assessments in three times three animals were planned (see
section 2.7). At 4 weeks post infection (p.i.) mice were treated for a
period of 12 weeks by oral gavage with drugs suspended in 100 μL corn
oil. Mefloquine (Selleckchem, LuBioScience, Luzern, Switzerland) was
applied at 100mg/kg twice a week, and ABZ at 200mg/kg during 5
consecutive days per week. The treatment schedule was as follows:
mice in group (I) received mefloquine on day 1 and day 4, and corn oil
without mefloquine on days 2, 3 and 5 of each week; to group (II) ABZ
was applied on days 1–5 each week; group (III) received corn oil on
days 1–5 each week; the uninfected mice in group (IV) were treated
with mefloquine on day 1 and day 4, and with corn oil only on days 2,
3, and 5 of each week (as in group (I)), in order to evaluate mefloquine
pharmacokinetics in uninfected mice. No treatments were performed on
days 6 and 7 of each week. After 12 weeks of treatment, all animals
were euthanized by CO2, livers were resected and cut into single liver
lobes. Each liver lobe was placed into a squeeze chamber and presence
of lesions was assessed in a blinded way using a stereo microscope.
Lesion numbers of the three infected groups were analyzed by one-sided
exact Wilcoxon rank-sum test using the R package coin version 1.2.2
(Hothorn et al., 2006) and p-values were Bonferroni adjusted (R version
3.4.2). The significance level was set to p < 0.05. Figures were pre-
pared in Microsoft Excel (2010) and Adobe Illustrator 2015.1.0.

2.5. Histopathology

Histopathological analysis of liver tissues was performed from each
mouse. Samples of the left lateral liver lobe were fixed for 24 h in 4%

paraformaldehyde and paraffin embedded. Blocks were sectioned and
stained with hematoxylin and eosin. Morphological changes on each
section in relation to the controls were recorded. The microscopical
evaluation was performed in a blinded fashion by a board-certified
veterinary pathologist.

2.6. E. multilocularis-specific PCR of mouse livers

The presence or absence of E. multilocularis DNA in livers of infected
mice was assessed by PCR. Each liver was cut into two pieces of similar
size that were then treated equally. DNA was extracted using a com-
mercial kit (NucleoSpin DNA RapidLyse; Macherey-Nagel, Oensingen,
Switzerland). The samples were digested in 720 μL lysis buffer and
30 μL Proteinase K solution for 2 h at 65 °C. One glass bead of 5mm in
diameter was added prior to digestion and the samples were homo-
genized just before the start of the digestion and after 1 h of digestion in
a FastPrep 24 Tissue lyser (MP Biomedicals, Eschwege, Germany) at
4m/s for 60 s. DNA extraction was then continued according to the
manufacturer's protocol with 160 μL of the digested samples. The ex-
tracted DNA was subsequently quantified in triplicates using the
QuantiFluor dsDNA System (Promega, Dübendorf, Switzerland) ac-
cording to the manufacturer's manual. Polymerase chain reaction (PCR)
was performed according to Trachsel et al. (2007) with slight mod-
ifications applying the primers Cest1 and Cest2 (Eurofins Genomics,
Ebersberg, Germany) of said study to amplify the mitochondrial NADH
dehydrogenase subunit 1 gene. The amplification was done in a final
volume of 20 μL reaction mixture (all components except the primers
and samples were purchased from Promega), containing GoTaq Reac-
tion buffer, 10mM nucleotide mix, 1 U GoTaq G2 DNA Polymerase,
0.5 μM Cest1 primer, 0.5 μM Cest2 primer, and 1 μL sample. The PCR
reactions were performed in a T3000 Thermocycler (Biometra, Göt-
tingen, Germany) and had an initial denaturation at 94 °C for 3min,
followed by 35 cycles of denaturation at 94 °C for 30 s, annealing at
58 °C for 60 s, and elongation at 72 °C for 60 s, and a final elongation at
72 °C for 5min. The PCR products were subsequently visualized in a 2%
agarose gel with 0.2 μg/mL Ethidium bromide (Promega) under an UV
illuminator.

2.7. Blood-sampling and sample extraction

At least 60 μL blood-samples were taken during the 12-week course
of treatment from the tail vein of mice for subsequent analysis of me-
floquine plasma concentrations. Blood samples were taken 1 and 5
weeks after treatment initiation (after doses 3 and 11 respectively). 12-
week blood samples were taken by heart puncture (after dose 23) after
euthanasia. At each of these time points, blood samples were retrieved
6, 24, and 48 h after mefloquine dosage from 3 mice in each group.
Blood was taken with heparin-coated microvette tubes and plasma was
retrieved by centrifugation for 15min, 10′000×g at 4 °C. Each plasma
sample was then spiked with the internal standard quinine (0.1 g/L in
methanol) to 31.25mg/L. All samples were immediately frozen on dry
ice and stored at - 80 °C until analysis by HPLC. At every time point, an
internal standard sample with quinine only was frozen in order to
follow stability of the standard over time.

Plasma extraction and determination of mefloquine concentrations
in mouse plasma were largely performed according to Ingram et al.
(2013). For extraction, 1mL acetonitrile was added to each plasma
sample, and after short vortexing, samples were centrifuged at room
temperature for 10min at 10′000×g. Supernatants were collected and
were dried for 2.5 h at 30 °C in an Eppendorf Concentrator 5301. Dried
samples were reconstituted in 110 μL acetonitrile/potassium dihy-
drogen phosphate buffer (1:1 mix, potassium dihydrogen phosphate
buffer 0.05M, pH 3.9, pH adjusted with 0.05% phosphoric acid). After
centrifugation (13′000×g, 10min at room temperature), samples were
transferred into conical HPLC cuvettes (0.2 mL, 6× 31mm, wide
opening, Macherey Nagel) and were immediately subjected to HPLC.
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2.8. Mefloquine standard curve for HPLC

A calibration curve was established by spiking of plasma from non-
treated mice with a 1:2 dilution series of mefloquine from 25 to
0.098mg/L (stock in acetonitrile/potassium dihydrogen phosphate),
covering the range of the plasma samples. All calibration samples in-
cluded the internal quinine standard as described above. Three stan-
dard curves were prepared independently. All standard samples were
extracted exactly as stated for the plasma samples above.

2.9. Mefloquine plasma concentration measurements by HPLC

HPLC was performed as described previously with adaptations
(Ingram et al., 2013). Mefloquine concentrations were analyzed on an
Ultimate 3000 System (Dionex, Reinach, Switzerland) with an EC 250/
4 Nucleodur 100-5 C18ec (Macherey Nagel) and UV detection at
284 nm. The mobile phase consisted of 35% methanol, 25% acetoni-
trile, and 40% potassium dihydrogen phosphate (pH 3.9). Column
temperature was 25 °C, flow rate constant at 1mL/min and each run
was 10min. The recorded peaks were annotated according to the re-
tention times of known standards. Stability of samples was assessed
with the help of the internal quinine standard. Mefloquine plasma
concentrations were quantified based on internal calibration of the
peak area to the internal standard quinine and calculated with a linear
calibration curve in the software Chromeleon Ultimate 3000 (Dionex,
CA, USA) and Microsoft Excel 2010. Further calculations and figures
were prepared in SigmaPlot Version 14, and in Adobe Illustrator
2015.1.0.

2.10. Pharmacokinetic model

Mefloquine concentrations were modeled using a standard two-
compartment pharmacokinetic model with first-order absorption. Mean
mefloquine concentrations and a mean dose of 2.04mg were used for
calculations. Primary parameters were the absorption rate constant ka,
the apparent clearance after extravascular administration CL/F, the
intercompartment clearance CLd/F, and the apparent volumes of the
central and peripheral compartment V1/F and V2/F. A secondary
parameter was the terminal elimination half-life T½. Expected steady-
state minimum (Cmin) and maximum (Cmax) concentrations were de-
rived by simulating continued mefloquine dosing. Pharmacokinetic
calculations were done using Phoenix WinNonlin 7.0 (Certara,

Princeton, NJ, USA) and Figures prepared in Microsoft Excel (2010) and
in Adobe Illustrator 2015.1.0.

2.11. Synthesis of mefloquine derivatives

Melting points were determined with a MQAPF-302 Micro Química
apparatus and are uncorrected. NMR spectra were determined using
400 or 500MHz Bruker AC spectrometers using tetramethylsylane as
internal standard. Splitting patterns are as follows: s, singlet; d, duplet;
t, triplet; quin, quintet; m, multiplet; Brl, broad signal. Infrared spectra
were obtained using a Thermo Nicolet 6700 spectrometer. Mass spectra
were recorded on Agilent 122 5532 GC/MS column by electron impact
and high resolution spectra on a Bruker compact-TOF. The progress of
the reactions was monitored by thin-layer chromatography (TLC) on
2.0×6.0 cm aluminum sheets (silica gel 60, HF-254, Merck) with a
thickness of 0.25mm, ultraviolet light irradiation. For column chro-
matography, a Merck silica gel (70–230 mesh) was used. Solvents and
reagents were used without further purification.

10 derivatives of mefloquine were synthesized to be compared to
mefloquine in vitro activity against E. multilocularis. The synthesis of six
of them (PASALR-01-095, PASALR-01-097, MEFLOMETIL-02, PASALR-
01-146, PASALR-01-096, PASALR-01-126) has been described else-
where (see Table 1) (Barbosa-Lima et al., 2017; Lilienkampf et al.,
2009). The other four derivatives were synthesized as described below
and given in scheme in Fig. 1.

2.11.1. 2-(trifluoromethyl)quinolin-4-ol 1
Polyphosphoric acid (11.25 g; 5 w/w) was added to an equimolar

solution of aniline (2.25 g; 24.19mmol) and ethyl 4,4,4-tri-
fluoroacetoacetate (3.0 g; 24.19mmol). The reaction mixture was
stirred at 150 °C for 2 h. Reaction completion was monitored by TLC.
The reaction mixture was slowly poured into ice water (500mL) with
vigorous stirring and stirred at room temperature during 30min. The
precipitated solid was filtered, washed with 50mL water and dried in a
vacuum oven for 4 h to get the crude product as white solid. The crude
product (termed phenol 1) was taken as such for the next step without
further purification. Melting point (m.p.) 205–207 °C (lit.: 208–210 °C).
Phenol 1 was not tested against E. multilocularis, but was needed for
further synthesis.

2.11.2. 4-Methoxy-2-(trifluoromethyl)quinoline (PAMMLR-01-99.2)
The phenol 1 (3.0 g; 14.08mmol) was dissolved in acetone (70mL)

Table 1
List of ten mefloquine derivatives and synthesis.

abbreviation full name R1 R2 source

Mefloquine (2,8-bis(trifluoromethyl)quinolin-4-yl)-piperidin-2-yl-methanol -CF3 -CHOHPip Selleckchem
PASALR-01-095 ethyl 2-((2,8-bis(trifluoromethyl)quinolin-4-yl)oxy)acetate -CF3 -OCH2CO2Et Acros Organics, according to (Lilienkampf et al., 2009)
PAMMLR-01-99.2 4-methoxy-2-(trifluoromethyl)quinoline -H -OCH3 2, Fig. 1
PASALR-01-097 N1-(2,8-bis(trifluoromethyl)quinolin-4-yl)ethane-1,2-diamine -CF3 -NHCH2CH2NH2 (Barbosa-Lima et al., 2017)
MEFLOMETIL-02 4-methoxy-2,8-bis(trifluoromethyl)quinoline -CF3 -OCH3 (Barbosa-Lima et al., 2017)
PASALR-01-137 4-ethoxy-2-(trifluoromethyl)quinoline -H -OEt 3, Fig. 1
PASALR-01-146 N-(2-chloroethyl)-2,8-bis(trifluoromethyl)quinolin-4-amine -CF3 -NHCH2CH2Cl (Barbosa-Lima et al., 2017)
PAMMLR-01-102-2 2-((2-(trifluoromethyl)quinolin-4-yl)amino)ethanol -H -NHCH2CH2OH 4, Fig. 1
PASALR-01-144 N-(2-chloroethyl)-2-(trifluoromethyl)quinolin-4-amine -H -NHCH2CH2Cl 5, Fig. 1
PASALR-01-096 N-butyl-2,8-bis(trifluoromethyl)quinolin-4-amine -CF3 -NHbutyl (Barbosa-Lima et al., 2017)
PASALR-01-126 2-((2,8-bis(trifluoromethyl)quinolin-4-yl)amino)ethanol -CF3 -NHCH2CH2OH (Barbosa-Lima et al., 2017)
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by stirring at room temperature. K2CO3 (6 eq. (11.66) g, 84.48mmol)
and methyl iodide (5 eq., 4.3 mL, 70.4 mmol) were then added. The
reaction was stirred overnight at room temperature. Then, the solvent
was removed under reduced pressure and 70mL water was added. The
aqueous phase was extracted with ethyl acetate (3× 60mL) and the
combined organic phases were dried over anhydrous Na2SO4 and
concentrated under reduced pressure to leave a solid. This was purified
by flash chromatography (SiO2, 230–400 mesh, AcOEt/nHex 5–10%) to
furnish the compound 4-methoxy-2-(trifluoromethyl)quinoline (com-
pound 2 in Fig. 1) as a pale white solid in 70% yield. m. p.: 99–103 °C.
1H NMR (MeOD, 500MHz)δ: 8.27 (1H, d, J=8.5 Hz), 8.08 (1H, d,
J=8.5 Hz), 7.85 (1H, t, J=7.3 Hz), 7.67 (1H, t, J=7.3 Hz), 7.28 (1H,
s), 4.17 (3H, s, -OCH3). 13C NMR (MeOD, 125MHz) d: 164.47, 148.83
(CF3, J=34Hz), 147.72, 131.95, 131.00, 128.42, 127.49, 121.63,
121.54, 96.08, 55.83. (IR v cm−1: 1315 (C-O-C). Theoretical mass
calculated for [C11H8F3NO + H]: 228.0636; Found: 228.0634.

2.11.3. 4-Ethoxy-2-(trifluoromethyl)quinoline (PASALR-01-137)
The phenol 1 (3.0 g; 14.08mmol) was dissolved in acetone (70mL)

by stirring at room temperature. K2CO3 (6 eq. (11.66) g, 84.48mmol)
and ethyl bromide (5 eq., 5.2 mL, 70.4mmol) was added. The reaction
was stirred overnight. Then, the solvent was removed under reduced
pressure and 70mL water was added. The aqueous phase was extracted
with ethyl acetate (3×60mL) and the combined organic phases were
dried over anhydrous Na2SO4 and concentrated under reduced pressure
to leave a solid which was purified by trituration in hot n-Hexane. The
compound 4-ethoxy-2-(trifluoromethyl)quinoline (compound 3 in
Fig. 1) was a pale white solid with 55% yield. m. p.: 90–92 °C. 1H NMR
(MeOD, 400MHz) δ: 8.29 (1H, d, J=8.5 Hz), 8.07 (1H, d, J=8.5 Hz),
7.84 (1H, t, J=8.5 Hz), 7.67 (1H, t, J=8.5 Hz), 7.25 (1H, s), 4.42 (2H,
q, O-CH2CH3, J=4Hz), 1.60 (t, 3H, CH3, J=4Hz). 13C NMR (MeOD,
125MHz) δ: 165.08, 150.23 (CF3, J=34Hz), 149.22, 132.40, 129.82,
128.84, 123.15, 123.02, 121.54, 97.96, 66.55, 14.65. IR v cm−1: 1340
(C-O-C). Theoretical mass calculated for [C12H10F3NO + H]:
242.0793; Found: 228.0785.

2.11.4. 2-((2-(trifluoromethyl)quinolin-4-yl)amino)ethanol (PAMMLR-
01-102-2)

A mixture of compound 3 (500mg, 2.371mmol) and 5mL of
ethanolamine was heated to 130 °C under stirring for 4 h when TLC
analyses indicated total consumption of the starting material. Water
(15mL) was added to the reaction mixture and it was extracted with

ethyl acetate (3× 25mL). The organic phase was dried and evaporated
under reduced pressure to yield an oil which was submitted at chro-
matographic purification on silica gel (SiO2, 70–230 mesh, MeOH/
CHCl3 10%). The product 2-((2-(trifluoromethyl)quinolin-4-yl)amino)
ethanol (compound 4 in Fig. 1) was obtained at 62% according to
(Halby et al., 2017). m. p.: 173–175 °C.

2.11.5. N-(2-chloroethyl)-2-(trifluoromethyl)quinolin-4-amine (PASALR-
01-144)

0.3mL of SOCl2 was added to a solution of compound 4 (200mg;
0.78mmol) in 10mL of CH2Cl2. After 2 h of reaction at reflux, TLC
indicated a total consumption of the starting material. 10% NaOH so-
lution (20mL) was slowly added and extracted with ethyl acetate
(3×20mL). The organic phase was dried with Na2SO4 and evaporated
for yield a residue which was submitted to chromatographic purifica-
tion on silica gel (SiO2, 70–230 mesh, AcOEt/nHex 20%). The product
N-(2-chloroethyl)-2-(trifluoromethyl)quinolin-4-amine (compound 5 in
Fig. 1) was obtained in 75% yield according to (Halby et al., 2017). m.
p.: 78–80 °C.

2.12. In vitro testing of mefloquine derivatives against E. multilocularis
metacestodes

In vitro culture of E. multilocularis (isolate H95) metacestodes in co-
culture with Reuber rat hepatoma cells was performed as described
previously (Stadelmann et al., 2010). All compounds were prepared as
20mM stocks in DMSO. The metacestode vesicle damage was assessed
by phosphoglucose isomerase (PGI) assay as described previously
(Stadelmann et al., 2010). In short, in vitro cultured metacestode ve-
sicles of approximately 4mm in size were extensively washed in PBS
and taken up in an equal volume of DMEM without phenol red (Bios-
wisstec, Schaffhausen, Switzerland), including penicillin/streptomycin
(100 U/mL, Thermo Fisher Scientific, Zug, Switzerland). Parasites were
distributed into a 48 well-plate at 1mL per well and mefloquine or
derivatives were added to a final concentration of 10, 20, 30, and
40 μM. 0.1% Tx-100 served as a positive control, DMSO only as a sol-
vent control. Samples were prepared in triplicates. PGI-assays were
carried out after 5 and 12 days (Stadelmann et al., 2010). Active me-
floquine derivatives were further tested at concentrations ranging from
40 to 1.25 μM in a 1:2 serial dilution and parasite damage by PGI-assay
was assessed as described previously (Stadelmann et al., 2010). Cal-
culations were performed in Microsoft Excel (2010), and final figures

Fig. 1. Synthesis of mefloquine derivatives based on the C-4 position.
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were prepared in Adobe Illustrator 2015.1.0.

3. Results

3.1. Mefloquine treatment is efficacious in mice orally infected with E.
multilocularis eggs

Upon isolation of E. multilocularis eggs from fox intestines, sodium
hypochlorite resistance test showed that egg maturity was 23 %. All
mice received a dose of approximately 200 eggs. Four weeks p. i., the
26 egg-infected mice (groups I, II, and III), as well as the non-infected
mice (group IV) underwent treatment for 12 weeks. No adverse effects
were observed in any of the animals. Thereafter, all animals were eu-
thanized. The number of liver lesions was assessed by stereo micro-
scopical examination in a squeeze chamber (Fig. 2A), histological ex-
amination of each left lateral liver lobe was carried out by a pathologist,
and infection of the liver tissue was confirmed by PCR (Fig. 2B,
Supplementary Table 1). The blinded stereo microscopical examination
of control group samples (group III, Fig. 2A) revealed the presence of E.
multilocularis lesions in 5 of 9 mice. In ABZ-treated mice (group II),
lesions were observed in 3 out of 8 mice, which was not significantly
different from the placebo group (p=0.591). In the mefloquine-treated
group (group I), only 1 out of 9 mice exhibited a parasite lesion in the
liver, and compared to the placebo group, the difference was statisti-
cally significant (p=0.044) (Fig. 2A). However, compared to the ABZ-
treated mice, mefloquine treatment did not lead to a significant im-
provement (p= 0.406). Histopathological examination of liver sections
identified two animals (one each in the mefloquine treatment group (I)
and the control group (III)) with E. multilocularis metacestodes and as-
sociated inflammation. Another two animals from the ABZ group had
inflammatory lesions that could originate from parasite infection, but
metacestode tissue was not clearly discernible. No further histopatho-
logical changes were detected in the liver tissue of other animals. PCR
of whole livers confirmed the presence/absence of E. multilocularis le-
sions in those tissue samples previously identified by stereo microscopy
(Fig. 2B, Supplementary Table 1).

3.2. Mefloquine plasma concentrations of infected and control-mice are
similar

During the 12 weeks mefloquine-treatment, mefloquine plasma
concentrations were periodically assessed by HPLC in E. multilocularis-
infected and corresponding non-infected animals at weeks 2, 6, and 12
of treatment. A representative HPLC chromatogram is shown in
Supplementary Fig. 1. As depicted in Fig. 3A, no difference in me-
floquine plasma concentrations was observed between non-infected and
infected animals. There was a gradual decrease of mefloquine con-
centrations after dosing, with peak levels at 6 h and lowest levels
measured after 48 h (Fig. 3A). At 6 h post-dosage, mefloquine con-
centrations reached an average (± SD) between 1.58 (± 0.11) and
2.65 (± 0.53) mg/L, whereas after 24 h they dropped to 0.94 (± 0.07)
to 2.05 (± 0.25) mg/L, and after 48 h to 0.57 (± 0.16) to 1.37
(± 0.15) mg/L. With increasing treatment-time, mefloquine con-
centrations accumulated slightly (Fig. 3A).

The limited number of blood samples that could be drawn from a
single mouse did not allow for individual pharmacokinetic calculations.
However, to get a more comprehensive picture on the evolution of
mefloquine concentrations, a pharmacokinetic analysis using average
concentrations was performed (Fig. 3B). Parameter estimates were
ka= 0.3 h−1, CL/F= 0.014 L/h, CLd/F=0.027 L/h, V1/F=1.04 L,
V2/F= 7.39 L. The terminal half-life of mefloquine was calculated as
580 h. After 12 weeks of treatment, the predicted steady-state trough
level (Cmin 1.15mg/L) was reached to 91.4% and the predicted steady-
state peak level (Cmax 2.63mg/L) was reached to 96.6%.

3.3. In vitro activity of mefloquine derivatives against E. multilocularis
metacestodes

Currently, there is no information available on which structural
entities of mefloquine are important for the observed effects against E.
multilocularis. The in vitro activities of 10 structural mefloquine deri-
vatives against E. multilocularis metacestodes were assessed by PGI-
assay. As shown in Fig. 4A, mefloquine was the most potent drug at
concentrations above 20 μM, as it induced the strongest PGI-release
after 5 and 12 days of treatment. Five derivatives (PASALR-01-097,
PASALR-01-146, PASALR-01-144, PASALR-01-096, and PASALR-01-
126) also exhibited in vitro activity by PGI-assay. With the exception of
PASALR-01-144, which was the least active of these compounds, all
other active derivatives contain a trifluoromethyl-group in the R1 re-
sidue (position 8 of the quinoline, see Figs. 1 and 4B). In addition, the
R2 residue (2-piperidylmethanol substitution, see Figs. 1 and 4B) of the
above-mentioned active compounds contains at least one amino group
in the substitution. For none of the tested compounds did an extended
incubation period of 12 days lead to much higher anti-parasitic activity,
except for PASALR-01-096. At concentrations lower than 10 μM, none
of the active compounds exhibited any activity against in vitro cultured
E. multilocularis metacestodes.

Fig. 2. Mefloquine treatment of Echinococcus multilocularis egg-infected
mice. BALB/c mice, orally infected with E. multilocularis eggs, were treated by
either mefloquine (100mg/kg twice per week, n=9), ABZ (200mg/kg, 5 times
per week, n= 8) or control-treated (placebo, n= 9). After 12 weeks of treat-
ment, parasite lesion numbers in the liver were assessed microscopically (A)
and presence or absence of lesions in whole liver extracts was confirmed by PCR
(B, see also Supplementary Table 1). A representative agarose gel is shown in
(B) with 1, positive control; 2, negative control; 3, extract from infected mouse;
4, extract from non-infected mouse; L, 100 bp ladder.
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4. Discussion

Over the past years, the anti-malarial drug mefloquine has been
repurposed against a variety of infectious agents (Kunin and Ellis, 2000;
Keiser and Utzinger, 2012; Rodrigues-Junior et al., 2016;
Balasubramanian et al., 2017), and in vivo efficacy of mefloquine
against secondary AE, induced by intraperitoneal injection of E. multi-
locularis metacestodes into mice, has been well documented (Küster
et al., 2011, 2015; Gorgas et al., 2017). In this study, we have assessed
the efficacy of mefloquine treatment against primary AE, caused by oral
infection with E. multilocularis eggs, where the site of infection reflects
the situation in humans. Mice were treated bi-weekly by oral gavage of
100mg/kg mefloquine. This dose had previously been determined to be
the optimal dosage against secondary murine AE in terms of achieving
efficacy versus preventing adverse side effects (Küster et al., 2015).
However, in those studies the plasma levels achieved by this treatment
in infected and non-infected BALB/c mice were not analyzed. We here

provide corresponding information and present measurements of
plasma levels in weeks 2, 6, and 12 of treatment, with plasma samples
obtained at 6, 24, and 48 h post-drug application. Peak-levels were
expected to occur around 6–8 h after dosage based on previous studies
in rodents (Ingram et al., 2013; McCarthy et al., 2016). As expected, a
slight accumulation of mefloquine plasma over time was observed.
Overall, mefloquine plasma levels were similar in egg-infected versus
non-infected mice. This contrasts with Schistosoma-infected mice, where
mefloquine concentrations and half-lives differed when compared to
healthy control mice (Ingram et al., 2013).

In a pharmacokinetic model based on the observed mefloquine-le-
vels, steady-state levels were predicted to be 1.15mg/L for Cmin and
2.63mg/L for Cmax, and steady-state was reached to 91.4% and 96.6%,
respectively, after 12 weeks of treatment, suggesting that concentra-
tions below the predicted steady-state concentrations might be effec-
tive. In humans, the average steady-state levels after 13 weeks of a
prophylactic weekly mefloquine-dosage of 250mg mefloquine was Cmax

1.74 (± 0.34) mg/L and Cmin 1.14 (± 0.34) mg/L in one study (Pennie
et al., 1993) and Cmax 1.68 (± 0.24) mg/L and Cmin 1.12 (± 0.29) mg/
L in a different study (Gimenez et al., 1994). Another publication,
which covered a treatment period of 21 weeks, reported steady-state
levels of 0.56–1.25mg/L (Mimica et al., 1983). Overall, the expected
mefloquine concentrations in humans receiving a prophylactic weekly
dosage of 250mg mefloquine range between 0.5 and 1.7mg/L and are
thus similar, but slightly lower, to concentrations reached in mice in
this study. The estimated half-life of mefloquine in mice was 580 h in
this study, which corresponds closely to half-lives described for me-
floquine in humans after weekly dosage for 13 weeks (422 ± 9 h
(Pennie et al., 1993), or 421 ± 157 h, (Gimenez et al., 1994).

The major drawback of mefloquine are the described adverse side-
effects, in particular neuropsychiatric syndrome (OR=3.92), which
includes confusion and disorientation (23.2%), dementia and amnesia
(7.2%), and seizures (7.8%), as well as prodromal symptoms such as
anxiety (11.3%), depression (17.4%), sleep disturbance (23.3%), and
other neurological symptoms (Nevin and Leoutsakos, 2017). Serious
side-effects were observed in 0.9% and 1% of mefloquine-medicated
malaria patients when compared to treatment with doxycycline or
atovaquone-proguanil respectively, and more detailed information on
the frequency of side-effects is given in a recent Cochrane review
(Tickell-Painter et al., 2017). Various biological pathways have been
suggested to be involved in these neuropsychological side-effects
(Gamo et al., 2010). One of them is post-hepatic syndrome, which leads
to release of toxic levels of retinoids into the body, and thereby toxic
neurological symptoms (Mawson, 2013). Adverse effects were also
described to occur with co-medications that interfere with metabolism
in the liver, as well as alcohol (Croft and Herxheimer, 2002). For these
reasons, mefloquine-prophylaxis for travelers to malaria-endemic
countries is not recommended for patients with a previous history of
psychological disorders or alcohol abuse (Tickell-Painter et al., 2017).
The advantages of mefloquine, which is still clinically applied, are the
activity against chloroquine-resistant malaria, the long half-life re-
sulting in better patient-compliance, as well as safety of use in preg-
nancy (Dassonville-Klimpt et al., 2011).

In mice treated with mefloquine, only one mouse out of nine had
one single E. multilocularis lesion whereas in mice without treatment
five out of nine had multiple lesions. The egg-infection model of murine
AE is not as well developed as the secondary murine model of AE, and
up to date assessments of parasite burden at the endpoint have relied
solely on morphological observation of parasite lesions in squeezed li-
vers by stereo microscopy. In this study, we have applied an additional
and more objective assessment, by using whole-liver PCR based on the
method described by Trachsel and colleagues (Trachsel et al., 2007).
PCR detected parasite DNA in whole liver extracts only in those samples
that were identified to contain E. multilocularis lesions by microscopy,
thus validating the microscopy results. For the future, this method
could even be expanded for a quantitative assessment of the parasite

Fig. 3. Mefloquine plasma concentrations in BALB/c mice. (A) Animals
were treated with 100mg/kg mefloquine per os twice per week. Plasma con-
centrations as assessed by HPLC are given for weeks 2, 6 and 12 of treatment. At
these intervals, plasma concentrations were measured 6, 24 and 48 h after
dosing (n=3 for each time point). (B) Modeling of mefloquine concentrations
as measured in (A) based on a standard two-compartment pharmacokinetic
model with first-order adsorption. Predicted values are shown as solid line.
Empty circles show observed mefloquine concentrations.
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burden. Serology could be applied as an alternative method to confirm
successful infection. However, as of to date, the Em2-based serology
classically applied for human patients exhibited varying sensitivity in
egg-infected mice (own observations). This is as also the case in dogs
with AE, where sensitivity of Em2-serology ranges between 0.52 and
0.92 (Frey et al., 2017). Thus, for the murine model of primary infec-
tion with E. multilocularis, a better diagnostic antigen awaits to be de-
fined.

To date, little is known regarding the mode of action of mefloquine
against E. multilocularis. As the parasite does not rely on blood con-
sumption, the accepted mode of action involving accumulation of toxic
heme can be excluded. A deeper understanding of the structural entities
that cause the profound anti-echinococcal activity, as well as of the
molecular drug target(s), is needed to improve the efficacy and safety-
profile of mefloquine. In vitro efficacy studies on 10 mefloquine-deri-
vatives against E. multilocularis metacestodes showed that the tri-
fluoromethyl group of mefloquine at the R1 position (position 8 of the
quinoline structure) seems to be essential, as it is described against
Plasmodium spp. (Dassonville-Klimpt et al., 2011). The other tri-
fluoromethyl group (on position 2 of the quinoline structure) is also
known to be essential for the potent activity against malaria
(Dassonville-Klimpt et al., 2011), but this residue was not further as-
sessed in the present study. Binding of metal ions to the trifluoromethyl
groups could contribute to the mechanism of action, since the iron-
binding protein ferritin was shown to bind to mefloquine in E. multi-
locularis (Küster et al., 2015). Furthermore, mefloquine inhibits hemo-
zoin formation from the heme of the metalloprotein haemoglobin in
Plasmodium spp. (Egan et al., 1994), as well as the magnesium-con-
taining enolase of Schistosoma mansoni (Manneck et al., 2012). Upon
substitution of the 2-piperidylmethanol group at the R2 position, the
derivative was only active when an amino group was present. A similar
observation was made by Barbosa-Lima et al. who tested 2,8-bis(tri-
fluoromethyl)quinoline analogs against the Zika virus (Barbosa-Lima
et al., 2017). For anti-malarial activity, the amino group in R2 is known
to be essential, as is the hydroxyl group (Dassonville-Klimpt et al.,
2011). According to our observations, the hydroxyl group does not play
an essential role for anti-echinococcal activity. Within the limited
number of derivatives tested here, we could show that a more electron-
withdrawing substituent on the beta-position of the amine in the R2
resulted in higher activity against E. multilocularis metacestodes.

5. Conclusions

We here provide first evidence that bi-weekly mefloquine treatment
in mice infected orally with E. multilocularis eggs at 100mg/kg, is at
least as active as 200mg/kg ABZ applied 5 days per week. In the pre-
sent study, analytical assessment of plasma levels showed that oral
application of mefloquine by gavage led to plasma levels that are
slightly above the described levels reached in humans taking the
compound for malaria prophylaxis. Thus, there is a promising oppor-
tunity that potentially might be exploited also for the treatment of
human AE. This could be of particular interest for patients that suffer
from severe benzimidazole toxicity. However, due to the inherent
variability of the biological material used for such infections in this
model, and the limited numbers of mice that got successfully infected,
further confirmatory studies need to be carried out in the future. In vitro
structure-activity relationship studies show that the efficacy of me-
floquine is highly dependent on the presence of two residues, both of
which are also essential for its anti-malarial activity. Further studies
will be needed to elucidate the precise mode of action of mefloquine
against E. multilocularis.
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