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Abstract

Direct conversion of human fibroblasts into mature and func-
tional neurons, termed induced neurons (iNs), was achieved for
the first time 6 years ago. This technology offers a promising
shortcut for obtaining patient- and disease-specific neurons for
disease modeling, drug screening, and other biomedical applica-
tions. However, fibroblasts from adult donors do not reprogram
as easily as fetal donors, and no current reprogramming
approach is sufficiently efficient to allow the use of this technol-
ogy using patient-derived material for large-scale applications.
Here, we investigate the difference in reprogramming require-
ments between fetal and adult human fibroblasts and identify
REST as a major reprogramming barrier in adult fibroblasts. Via
functional experiments where we overexpress and knockdown
the REST-controlled neuron-specific microRNAs miR-9 and miR-
124, we show that the effect of REST inhibition is only partially
mediated via microRNA up-regulation. Transcriptional analysis
confirmed that REST knockdown activates an overlapping subset
of neuronal genes as microRNA overexpression and also a distinct
set of neuronal genes that are not activated via microRNA over-
expression. Based on this, we developed an optimized one-step
method to efficiently reprogram dermal fibroblasts from elderly
individuals using a single-vector system and demonstrate that it
is possible to obtain iNs of high yield and purity from aged indi-
viduals with a range of familial and sporadic neurodegenerative
disorders including Parkinson’s, Huntington’s, as well as Alzhei-
mer’s disease.
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Introduction

New advances in somatic cell reprogramming offer unique access to

human neurons from defined patient groups for modeling neurologi-

cal disorders in vitro. This has enabled a number of mechanistic

studies to better understand how pathology arises and develops,

and also creates new opportunities for early and differential diag-

nostic tests and drug screens (Kondo et al, 2013; Young et al, 2015;

Mertens et al, 2016). The most common route to patient- and

disease-specific neurons to date is through reprogramming of

somatic cells into induced pluripotent stem cells (iPSCs), followed

by directed neural differentiation (Nityanandam & Baldwin, 2015).

Although this approach has led to important insights into neurode-

velopmental disorders and mechanisms underlying neural patholo-

gies (Ebert et al, 2009; Lee et al, 2009; Lafaille et al, 2012), a

number of studies show that reprogramming into pluripotency

resets the age of the cells such that the resulting neurons are very

young (Maherali et al, 2007; Meissner et al, 2008; Lapasset et al,

2011; Miller et al, 2013; Mertens et al, 2015). Consequently, this

approach may not be ideal for modeling all aspects of age-related

neurodegenerative disorders such as Alzheimer’s disease (AD),

Parkinson’s disease (PD), and Huntington’s disease (HD).

As an alternative for generating disease- and patient-specific

neurons, adult fibroblasts can be directly converted into functional
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neurons using chemicals, defined sets of transcription factors or

microRNAs (miRNAs) (Ambasudhan et al, 2011; Caiazzo et al,

2011; Pang et al, 2011; Pfisterer et al, 2011b; Victor et al, 2014; Hu

et al, 2015). This type of direct reprogramming allows fibroblasts

to be converted into induced neurons (iNs) without transitioning

via a proliferative stem cell intermediate (Ambasudhan et al, 2011;

Yoo et al, 2011; Fishman et al, 2015), making the process faster

and easier. In addition, recent studies have also demonstrated that

the resulting iNs, unlike iPSCs, maintain the aging signature of the

donor, making iNs ideal candidates for modeling neuronal

pathology in late-onset diseases (Mertens et al, 2015; Huh et al,

2016). However, several factors such as species and age of donor,

passage number, and prolonged culturing of cells prior to

conversion limit the reprogramming efficiency of this approach. In

particular, human cells are harder to reprogram than rodent cells

(Caiazzo et al, 2011; Xue et al, 2013, 2016), cells from adult donors

are much harder to reprogram than fetal cells (Pfisterer et al,

2011b; Liu et al, 2013), and in vitro expansion and/or extensive

culturing and passaging of cells prior to reprogramming prevents

successful conversion (Price et al, 2014; Masserdotti et al, 2015).

The reason for these differences is not fully understood, but the

fact that human fibroblasts from aged individuals are more

resistant/refractory to reprogramming than fetal fibroblasts creates

a barrier for using these cells for large-scale biomedical applications

and future clinical applications.

In this study, we performed comparative global gene expression

analysis of fetal and adult fibroblasts to investigate the transcrip-

tional response in the early stage of neural conversion to better

understand the reprogramming requirements specific to adult

dermal fibroblasts. From this dataset, we identified the RE1-

silencing transcription factor (REST) complex as a potential barrier

to reprogramming of adult human fibroblasts. We confirm this by

showing that REST inhibition (RESTi), when combined with the

neural conversion genes Ascl1 and Brn2, can remove the reprogram-

ming barrier in adult dermal and lung fibroblasts and yield a high

number of functionally mature neurons. Via functional experiments

where we overexpress or knockdown the neuron-specific miRNAs

miR-9 and miR-124, we could show that the effect of RESTi during

conversion of adult fibroblasts is mediated in part via miRNA up-

regulation, but also through miRNA-independent mechanisms.

Based on these data, we constructed an all-in-one neural conver-

sion vector that contains all the components necessary for robust,

high-yield neural conversion of adult dermal fibroblasts. We then

demonstrated that such a vector could be used to efficiently convert

fibroblasts collected at three different clinical sites from individuals

with idiopathic as well as genetic forms of PD and AD as well as

patients with HD. This new approach to iN conversion reported here

has great potential for disease modeling across a range of neurologi-

cal disorders that develop later in life—a set of conditions that until

now has been nearly impossible to model using this approach.

Results

Development of a bicistronic vector for co-delivery of neural
conversion genes

To achieve a highly effective and reproducible conversion system

with less variability in transcription factor expression in each cell,

we generated and tested three different dual-promoter vectors

(Stadtfeld et al, 2010; Carey et al, 2011). Although the level of

expression of each transgene may vary between each cell, this dual-

vector approach insures a delivery of the two neural conversion

genes Ascl1 and Brn2 in all cells. All vectors are based on the human

PGK promoter, but the conversion genes were placed in a different

order and distance from the woodchuck hepatitis virus posttran-

scriptional regulatory elements (WPRE) (Fig 1A). When expressed

in human fetal fibroblasts, the three constructs resulted in different

levels of expression of the conversion genes (Fig 1B and C), and we

found that the pB.pA construct, yielding the highest ASCL1 to BRN2

protein expression ratio, resulted in the highest level of neural

conversion (Fig 1D). However, since immunochemical staining

depends on the quality of the antibody and is not quantitative, in a

separate experiment, we used GFP as a reporter and placed it in two

different positions in our vector (Appendix Fig S1A), and by measur-

ing endogenous GFP expression, we confirmed that the gene placed

▸Figure 1. Bicistronic approach successfully reprograms fetal fibroblasts but fails to reprogram adult fibroblasts.

A Vector maps of constructs containing the neural conversion factors ASCL1 coding for MASH1 and BRN2 as well as woodchuck hepatitis posttranscriptional element
(WPRE) at different positions.

B Quantitative analysis showing the difference in fluorescence intensity of ASCL1 (red bar graphs) and BRN2 (yellow bar graphs) following transduction with the
different constructs.

C, D Representative images of double-immunofluorescent staining of ASCL1 (in green) and BRN2 (in red) (C) as well as MAP2 staining (D) showing the different
expression levels of each transcription factor and the resulting neuronal conversion for each construct.

E Quantification of the number of iNs converted 12 days after transduction with either Pgk.Ascl1 + Pgk.Brn2 + Pgk.Myt1L or pB.pA.
F RNA-seq analysis illustrating the fold changes in gene expression in fetal fibroblasts transduced with pB.pA as compared to untransduced cells, with genes that are

significantly up- or down-regulated marked as red dots.
G Gene ontology enrichment analysis reveals significant enrichment of neuronal genes (in bold) among the up-regulated genes in the pB.pA-transduced fetal

fibroblasts.
H Representative fluorescence images showing the MAP2 expression in fetal and adult fibroblasts (dermal and lung) reprogrammed with pB.pA.
I FC correlation analysis and Venn diagram showing genes that are significantly changed in both adult and fetal pB.pA-transduced cells (red) and significantly

changed in fetal cells only (blue) or adult cells only (green) or not changed (black).
J Gene ontology enrichment analysis showing the genes associated with neurons (in bold) that are up-regulated in the pB.pA-transduced fetal fibroblasts but not in

the adult fibroblasts transduced with pB.pA.

Data information: Scale bars, 100 lm in (D), 50 lm in (H). ahDF, adult human dermal fibroblasts; ahFL, adult human lung fibroblasts; CTR, control. Data are expressed as
mean � SEM and are from biological replicates (n = 3). *P < 0.05. Exact P-values and statistical tests used to calculate them are provided in Appendix Table S4.
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under control of the second promoter in this construct is expressed

at higher levels and in a greater number of cells (Appendix Fig S1B–

D). When co-delivering the two conversion factors using the pB.pA

dual-promoter vector, we found that we increased the yield of iNs

by more than 30-fold compared to when the neural conversion

factors were delivered using separate vectors (Fig 1E), and by

increasing the viral titer, we could further increase the yield to very

high levels, reaching conversion efficiencies up to 150% (i.e.,

150,000 iNs generated per 100,000 fibroblasts plated, Fig 1E).

Difference in conversion mechanism/requirement between fetal
and adult fibroblasts

Global gene expression analysis confirmed that the pB.pA dual-

promoter construct induced a major change in gene expression in

the fetal fibroblasts. We found 561 significantly (Benjamini–

Hochberg (BH)-corrected P-value < 0.001) up-regulated and 328

significantly down-regulated genes (Fig 1F) 5 days after delivering

the conversion vector. Gene ontology analysis showed that many of

the up-regulated genes were associated with a neuronal identity

(Fig 1G), in line with the high conversion yield observed using this

reprogramming vector. We next used the same system to convert

adult human dermal fibroblasts from a healthy 67-year-old individ-

ual. However, we detected only very few, if any, iNs after 30 days

(Fig 1H). To rule out the possibility that this failure to reprogram

was in fact related to adult versus fetal fibroblasts and not due to

difference in the origin of the fibroblast, we confirmed the failure to

reprogram using adult lung fibroblasts from a 45 to 65 individual

(Fig 1H).

To better understand the difference in reprogramming require-

ments between fetal and adult fibroblasts, we assessed the transcrip-

tional response in the cells after delivery of the dual-conversion

vector using RNA-seq. We found that while 204 genes were up-regu-

lated (P < 0.001) in both adult and fetal fibroblasts after transduc-

tion with pB.pA dual-promoter vector, another 357 and 421 genes

were uniquely up-regulated in the transduced fetal or adult fibro-

blasts, respectively (Pearson correlation: 0.307, Fig 1I). GO analysis

of the genes up-regulated in the fetal, but not adult fibroblasts

resulted in gene categories associated with neuronal functions

(Fig 1J). This demonstrates that the neural conversion factors acti-

vate a largely different set of genes with limited overlap in the two

starting populations, and suggests that there are specific barriers to

reprogramming present in adult but not fetal fibroblasts. When

looking at the top 11 genes related to neuronal differentiation and

development uniquely up-regulated in the fetal fibroblasts, four

were identified as REST targets: JAG2, L1CAM, DYNLL2, and

DCLK1, suggesting that REST blocks the activation of neuronal

genes and subsequent neuronal conversion in the adult fibroblasts.

REST inhibition removes neural reprogramming block in human
adult lung and dermal fibroblasts

To test the hypothesis that REST prevents neural conversion of adult

fibroblasts transduced with ASCL1 and BRN2, we performed qRT–

PCR analysis in fetal and adult fibroblasts which revealed slightly

increased levels of REST transcripts in adult cells (Fig 2A, P < 0.05).

We next used RNAi to knockdown REST, which reduced REST tran-

script levels in adult fibroblasts down to that observed in fetal

human fibroblasts (Fig 2A). When we expressed the dual-promoter

conversion vector together with the shRNAs against REST in adult

dermal fibroblasts from two different donors (age 61 and 67), we

consistently observed exceptionally high neural conversion levels

(Fig 2B). We also confirmed that RESTi removes the reprogramming

barrier also of adult lung fibroblasts (Fig 2B). The high conversion

efficiency was confirmed using five primary lines from dermal biop-

sies of individuals aged from 61 to 71 years and sourced from three

different clinical sites (Fig 2C). We also observed that in contrast to

previous reports demonstrating that the reprogramming efficiency

decreases at higher passages (Pfisterer et al, 2011a; Tocchini et al,

2014), there was no decrease in the conversion efficiency or

neuronal purity when the fibroblasts from a 67-year-old donor were

reprogrammed with the dual-promoter construct and RESTi at

passages ranging from 3 to 10 (Fig 2D). This implies that RESTi also

removes the barriers to reprogramming associated with extensive

passaging of the fibroblasts previously observed (Price et al, 2014;

Masserdotti et al, 2015).

We next analyzed the mature neuronal properties of the resulting

iNs. We found that they did indeed express mature neuronal mark-

ers such as MAP2, NEUN, SYNAPSIN, and TAU (Fig 2E). Patch-

clamp electrophysiological recordings of the iNs after terminal dif-

ferentiation and maturation in culture showed that they had

acquired the functional properties of neurons (Fig 2F and

Appendix Table S1). This was also the case when cells pre-labeled

with a vector containing GFP expressed under the control of the

human synapsin promoter were transplanted to the neonatal brain

and analyzed after 7–9 weeks of maturation in vivo. When analyz-

ing the transplanted iNs detected based on GFP expression, we

again found current evoked multiple action potentials in the iNs

(n = 8 from four different rats) (Fig 2G), and the cells displayed

postsynaptic currents that could be blocked with the glutamate

antagonist CNQX (Fig 2G), demonstrating that adult iN cells

converted in the presence if RESTi functionally mature, integrate,

and receive glutamatergic synaptic inputs from the host brain.

RESTi results in up-regulation of neural-specific miRNAs

MiRNAs have been implicated as important mediators of cell repro-

gramming (Adlakha & Seth, 2017), including in neural conversion

(Yoo et al, 2011; Xue et al, 2013, 2016; Victor et al, 2014). Inhibi-

tion of REST is known to increase expression of neuron-specific

miRNAs (Ballas et al, 2005; Conaco et al, 2006), and we speculated

that the potential up-regulation of miRNAs could be what mediated

the effect of RESTi during neural conversion of adult human fibro-

blasts. We therefore assessed the neuron-specific miRNA expression

levels in the absence and presence of RESTi and found that miR-9

was up-regulated when adult fibroblasts are converted in the pres-

ence of RESTi (Fig 3A). We also checked the expression of several

region-specific miRNAs (Jönsson et al, 2015) but found no clear dif-

ferences, indicating that RESTi affects pan-neuronal expression

without affecting subtype identity (Fig 3B). To further investigate

this, we tested whether expression of neuron-specific miRNAs could

mimic the effect of RESTi. We therefore expressed miR-9/9* and

miR-124 together with the conversion factors (Fig 3C) but without

RESTi. We found that adult fibroblasts transduced with this

construct expressed high levels of miR-9 and miR-124 (Appendix Fig

S2A and B) and converted adult fibroblasts into neurons with
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Figure 2. REST knockdown promotes the pB.pA-driven reprogramming of adult human fibroblasts.

A qPCR analysis of REST gene expression.
B Representative immunofluorescence images showing a high density of MAP2+ cells in pB.pA + RESTi reprogrammed adult fibroblasts from different sources.
C Quantification of neuronal efficiency and purity of pB.pA + RESTi reprogrammed adult human dermal fibroblasts from five healthy donors (61–71 years).
D Quantification of neuronal efficiency and purity of an adult human dermal fibroblast line reprogrammed with pB.pA + RESTi at different passages.
E Double-immunofluorescence stainings showing the expression of neuronal markers in iNs reprogrammed from adult fibroblasts 25 days post-transduction with

pB.pA + RESTi.
F In vitro patch-clamp recordings of adult iNs depicting repetitive current-induced action potentials indicative of mature neuronal physiology at 12–15 weeks

post-transduction.
G Presence of repetitive current-induced action potentials and spontaneous postsynaptic currents in vivo 8 weeks following transplantation.

Data information: Scale bars, 100 lm in (B), 25 lm in (E–G). ahDF, adult human dermal fibroblasts; ahFL, adult human lung fibroblasts; shREST, short hairpin RNA
against REST. Data are expressed as mean � SEM and are from biological replicates (n = 3–4). *P < 0.05, **P < 0.01. Exact P-values and statistical tests used to calculate
them are provided in Appendix Table S4.
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similar efficiency to the cells treated with RESTi (Fig 3D), support-

ing the hypothesis that RESTi effect could be mediated via up-regu-

lation of miR-9/9* and miR-124, and that miRNAs, like RESTi

removes the reprogramming barrier in adult fibroblasts allowing

also fibroblasts from aged donors to efficiently and reproducibly be

converted into neurons.

To experimentally address whether the RESTi effect is mediated

via miRNA up-regulation, we next performed conversions using

pB.pA + RESTi while simultaneously knocking down miR-124 or

miR-9 in the cells and checked for effects on neural conversion

(Fig 3E–G). We found that while inhibition of miR-124 during the

conversion did not significantly affect the iN conversion (Fig 3E),
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D

Figure 3.
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the inhibition of miR-9 during the reprogramming resulted in a

decrease in the number of iNs generated compared to control

(Fig 3F and G).

Taken together, our data show that the effect of RESTi can be

mimicked via miRNA overexpression but that blocking miRNA

inhibition during the conversion process only partially affects the

neural conversion. This supports that the RESTi acts, at least

partially, via miRNA activation and via the previously suggested

interplay between RESTi and miRNAs (Ballas et al, 2005; Conaco

et al, 2006; Xue et al, 2013, 2016).

◀ Figure 3. Neuronal microRNA expression partly drives neuronal reprogramming of adult fibroblasts.

A qPCR measurements of miR-124 and miR-9 in adult fibroblasts reprogrammed with pB.pA only or pB.pA + RESTi and normalized on the non-transduced fibroblast
values (yellow dashed line).

B Region-specific microRNAs qPCR measurements in adult fibroblasts reprogrammed with pB.pA only or pB.pA + RESTi and normalized on the non-transduced
fibroblast values (yellow dashed line).

C Vector maps of constructs containing the transcription factors Ascl1 and Brn2 with and without miR-9 and miR-124, as well as the shRNA sequences against REST.
D Quantification of the neuronal yield as assessed by MAP2 expression in adult fibroblasts transduced with different reprogramming vectors.
E, F Quantification of the total number of cells as well as the percentage of TAU+ cells and the average fluorescence intensity in adult iNs with and without miR-124 (E)

or miR-9 (F) knockdown.
G Representative images of the high content screening target activation analysis showing the cells expressing mCherry (successfully transduced with the miRNA

inhibition or control constructs) that have been included in the analysis of the TAU staining (white contours). Rejected nuclei are circled in yellow and valid nuclei
that do not express mCherry exhibit blue contours.

Data information: Scale bar, 50 lm in (G). CTR, control; KD, knockdown. Data are expressed as mean � SEM and are from biological replicates (n = 3–4). **P < 0.01.
Exact P-values and statistical tests used to calculate them are provided in Appendix Table S4.

A B

C D

Figure 4. Differences in gene expression between pB.pA + RESTi and pB.mir9/124.pA.

A Graph illustrating the fold changes in gene expression in adult fibroblasts transduced with pB.pA + RESTi as compared to untransduced cells (genes that are
significantly up- or down-regulated marked as red dots).

B Graph illustrating the fold changes in gene expression in adult fibroblasts transduced with pB.mir9/124.pA as compared to untransduced cells (genes that are
significantly up- or down-regulated marked as red dots).

C FC correlation analysis showing the genes that are significantly changed in both pB.pA + RESTi- and pB.mir9/124.pA-transduced cells (red) that are significantly
changed in pB.mir9/124.pA-transduced cells only (blue) or pB.pA + RESTi cells only (green) or unchanged (black).

D Venn diagram showing the genes that are significantly changed in both pB.pA + RESTi- and pB.mir9/124.pA-transduced cells (red) that are significantly changed in
pB.mir9/124.pA-transduced cells only (blue) or pB.pA + RESTi cells only (green).
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MicroRNA-independent effects of REST inhibition

To better understand the mechanisms that mediate the conversion

of adult fibroblasts driven by RESTi or miR-9/miR-124, we

performed a comparative global gene expression analysis using

RNA sequencing 5 days following the initiation of conversion. In

this analysis, we included unconverted adult human fibroblasts and

adult fibroblasts in which REST is knocked down as controls. The

conversion groups included were as follows: pB.pA (that gives rise

to only very low-level iN conversion if any); pB.pA + RESTi;

pB.miR9/124.pA; and pB.miR9/124.pA + RESTi. We compared

the genes up-regulated (BH-corrected P-value < 0.001) in the

pB.pA + RESTi group and the pB.miR9/124.pA groups. This analy-

sis showed that both RESTi and miR-9/miR-124 delivery caused a

major transcriptomic change in the cells and that the effect was not

cumulative (Fig 4A and B). Further analysis showed that most of

the genes with the largest FC are significant in both the miR-9/miR-

124- and RESTi-transduced cells (Pearson correlation = 0.81, Fig 4C

and D). Most genes (more than 1700) were up-regulated in both

groups suggesting that these factors largely work on the same

neurogenic pathway(s) and activate similar gene cascades.

We next investigated in more detail the differences in gene

expression profiles between the RESTi- and miRNA-converted cells.

Unsupervised clustering revealed that the two controls (fibroblasts

and fibroblasts + RESTi) as well as the pB.pA (very low conversion

group) clustered together, while all three groups with successful

neural conversion clustered together (Fig 5A). Principal component

analysis revealed that the three conversion groups were very similar

on the PC1 axis and distinctly different from the control groups.

Furthermore, the PC2 axis showed a separation of the groups with

RESTi from those without (Fig 5B). The GO term and Kyoto Ency-

clopedia of Genes and Genomes (KEGG) pathway analyses of the

differentially expressed genes revealed that those differentially

expressed in the RESTi conversion group were enriched for the

regulation of synaptic transmission, synaptic plasticity, as well as

cell morphogenesis and the differentiation and regulation of

A B

C D

Figure 5. Enhanced neuronal gene up-regulation in pB.pA + RESTi reprogrammed adult iNs.

A Clustering of RNA-seq samples, using euclidean distance on normalized and log-transformed read counts.
B Principal component analysis showing a separation of the groups that reprogram well from those that do not on PC1 and a separation of the groups with REST

knockdown on PC2.
C Gene ontology enrichment analysis showing significant enrichment of neuronal genes (in bold) among the genes up-regulated in the pB.pA + RESTi-transduced

fibroblasts but not in the adult fibroblasts transduced with pB.mir9/124.pA.
D Gene ontology enrichment analysis showing that no genes associated with neurons are uniquely up-regulated in the pB.mir9/124.pA-transduced fibroblasts.
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Figure 6. All-in-one vector to reprogram skin fibroblasts from patients with a range of different neurodegenerative disorders.

A Map of the single reprogramming vector containing REST shRNA sequences as well as Brn2 and Ascl1.
B Quantitative comparison of the total number of cells, as well as the number of MAP2+ and TAU+ cells per well using separate vectors or one single vector for

pB.pA + RESTi reprogramming in four different adult dermal fibroblast lines.
C Fluorescence microscopy images of iNs reprogrammed using the single vector from healthy individuals as well as from patients with various neurodegenerative

disorders.
D Quantification of the neuronal counts and purity.
E Fluorescence microscopy images of iNs derived from an HD patient after optimization of culture conditions.
F Percentage of cells displaying various number of neurites for each line.
G qPCR analysis of six neuronal genes in healthy individuals as well as from patients with various neurodegenerative disorders.

Data information: Scale bars, 25 lm in (C), 100 lm in (E). FAD, familial Alzheimer’s disease; FPD, familial Parkinson’s disease; HD, Huntington’s disease; SPD, sporadic
Parkinson’s disease. Data are expressed as mean � SEM and are from biological replicates (n = 4).
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neurogenesis and synapse formation (Fig 5C). In contrast, the genes

uniquely up-regulated in the pB.miR9/124.pA were not associated

with neuronal properties (Fig 5D).

Taken together, our results show that the RESTi, when combined

with the neural conversion genes Ascl1 and Brn2, overcomes

human-specific barriers of both reprogramming and neuronal matu-

ration. The miRNA knockdown experiments, as well as the global

transcriptome analysis, suggest that this effect is only partially medi-

ated via miR-9/miR-124 expression.

Based on this, we designed and cloned a single “all-in-one”

construct that expressed both RESTi hairpins and conversion genes

on the same construct (Fig 6A). This vector resulted in similar

conversion efficiencies compared to the vector system in which the

conversion genes are delivered using the dual-promoter vector

pB.pA and the two REST shRNAs on three separate vectors (Fig 6B).

Modeling neurodegenerative disorders would greatly benefit from

this technology, as iNs from elderly donors have been shown to

maintain their aging signature, which is critical given that age is the

biggest risk factor for developing these disorders. To establish its

utility for generating cells for disease modeling, we used the new

single-vector system to convert dermal fibroblasts from healthy

adults as well as individuals with sporadic PD, familial PD (LRRK2

c.6055G>A mutation), HD (41 CAG repeats), and familial AD (APP

KM670/671NL mutation) (Appendix Table S2). All lines were

successfully converted to iNs expressing MAP2 (Fig 6C), albeit with

some variation between the lines in terms of yield and purity

(Fig 6D). In particular, the HD and familial PD showed less conver-

sion than other lines, but line-specific optimization of cell culture

condition where cell passaging was omitted was able to increase the

conversion as exemplified by the HD line (MAP2+ neuronal count

13,857 � 250; purity 62.4 � 3.4%) (Fig 6E). We also used TAU as

a neuronal marker in addition to MAP2 to assess the conversion into

more mature neurons. Conversion of all lines resulted in neurons

with a similar morphological complexity as assessed by the propor-

tion of cells developing variable numbers of neurites for each line

(Fig 6F). Additionally, qPCR analysis revealed a major increase in

all the neuronal genes that we assessed (NCAM, MAP2, MAPT,

SYNAPSIN, SNCA, and SYNAPTOPHYSIN) in every line converted,

independently of the disease status of the donor (Fig 6G).

Discussion

The direct conversion of one cell type to another, without going

through a stem cell intermediate, has been successfully achieved for

several cell types including the generation of neurons. This type of

conversion makes it possible to study otherwise hard to access

patient- and disease-specific neurons and holds great promise for

creating age-relevant models of neurological disorders. iNs, that are

obtained via direct conversion, present a faster route by which to

generate neurons compared to conventional reprogramming

approaches using induced pluripotent stem cells (iPSCs) followed

by directed differentiation. However, as iN technology converts one

mature cell type directly into a postmitotic neuron, the requirement

for high-yield conversion is essential in order to obtain a sufficient

number of neurons for downstream applications.

To date, a few studies have reported successful neural repro-

gramming of adult primary dermal fibroblasts using a wide array of

conversion genes, chemical cocktails, and miRNAs, but all have

resulted in relatively low numbers of induced neurons (Ambasud-

han et al, 2011; Caiazzo et al, 2011; Pfisterer et al, 2011b; Iovino

et al, 2014; Hu et al, 2015; Xu et al, 2015). While purification steps

or antibiotic selection can increase the purity of the iNs (Vierbuchen

et al, 2010; Victor et al, 2014; Mertens et al, 2015), this is associated

with large cell loss making the yield low which in turn requires a

high number of input cells which is a major drawback since adult

dermal fibroblasts do not expand indefinitely. In this study, we set

out to gain a better mechanistic understanding of the road blocks to

reprogramming present specifically in adult human fibroblasts, by

studying the early transcriptional response in fetal versus adult

fibroblasts. We found that the most commonly used neural conver-

sion genes (ASCL1 and BRN2) elicit largely distinct transcriptional

response in these two populations. Bioinformatics analysis con-

firmed that many of the genes that were up-regulated only in the

fetal fibroblasts were REST targets and thus suggested REST as a

potential adult-specific reprogramming barrier. This is in line with

recent studies that had shown REST as a specific barrier for repro-

gramming of cultured astrocytes (Masserdotti et al, 2015) and in

mouse and human fibroblasts (Xue et al, 2013, 2016).

We thus focused our subsequent studies on the knockdown of

REST, which has been shown to release roadblocks of conversion.

RESTi has also been shown to induce the expression of miR-124 as

well as miR-9 in a number of cell types (Conaco et al, 2006; Xue

et al, 2013) which is interesting given that these miRNAs can medi-

ate neural conversion alone or when expressed together with

neuronal transcription factors (Yoo et al, 2011; Xue et al, 2013,

2016; Victor et al, 2014). Our study shows that a reprogramming

strategy for adult fibroblasts based on REST inhibition indeed results

in increased expression of the pan-neuronal miR-9 and miR-124,

while not affecting regionally expressed neural miRNAs (Jönsson

et al, 2015). We also show that while the effect of RESTi can be

partially mimicked via overexpression of neuron-specific miRNAs,

inhibiting activation of miRNAs during the neural conversion

process only partially inhibits the formation of iNs. This suggests

that RESTi mediates its effect on neural conversion both via up-

regulation of neuronal miRNAs but also via a miRNA-independent

mechanism. This hypothesis was supported by our comparative

RNA-seq analysis that revealed that while many of the same

neuronal genes are up-regulated in fibroblasts converted with

RESTi, miRNA overexpression, or both RESTi and miRNA expres-

sions combined, additional gene transcription changes that are asso-

ciated with a neuronal identity are uniquely up-regulated when

fibroblasts are reprogrammed in the presence of RESTi.

Combined, our results show that a conversion strategy based on

co-delivery of the conversion factors Ascl1 and Brn2 in combination

with RESTi is sufficient to overcome the reprogramming barriers

previously associated with adult donors, in the absence of additional

miRNA expression. It results in high efficiency and high purity

conversion of aged dermal fibroblasts without the need for a purifi-

cation step. In addition, we also show that the passage number of

the starting fibroblast culture does not impact on the reprogram-

ming efficiency, at least up until 10 passages, ensuring that one skin

biopsy will provide enough iN material to complete large-scale

disease modeling, drug screening, and transplantation studies. For

example, with the efficiency of our system, it would be possible to

obtain ~10 billion neurons from one skin biopsy, which by far
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makes our method the most efficient approach reported to date

using skin biopsies from elderly donors. This makes our approach

suitable to explore any potential disease-associated phenotypes in

these cells, as well as offering a readily available source of relevant

cells for drug screenings and diagnostics.

Materials and Methods

Biopsy sampling

Adult dermal fibroblasts were obtained from the Parkinson’s

Disease Research and Huntington’s disease clinics at the John van

Geest Centre for Brain Repair (Cambridge, UK) and used under

local ethical approval (REC 09/H0311/88); from the Clinical

Memory Research Unit (Malmö, Sweden) and used under the

Regional Ethical Review Board in Lund, Sweden (Dnr 2013-402);

from the Karolinska Institutet (Stockholm, Sweden) (Dnr 2005/498-

31/3, 485/02; 2010/1644-32); and lung fibroblasts from a healthy

individual with no clinical history of lung disease from Lunds

Universitet under approval of the local Ethics committee (Dnr 413/

2008 and 412/03) (see Appendix Table S2). Written informed

consent was obtained from each participant, and the experiments

conformed to the principles set out in the WMA Declaration of

Helsinki and the Department of Health and Human Services

Belmont Report. The skin biopsies were taken with a 4-mm punch

biopsy from the upper or lower arm under local anesthetic (1%

lidocaine), and the site was then closed with steri-strips or a stitch.

Primary fibroblast from biopsies was cultured according to the two

following methods: (i) Fibroblasts were isolated using standard

fibroblast medium (Dulbecco’s modified Eagle’s medium (DMEM) +

Glutamax (Gibco) with 100 mg/ml penicillin/streptomycin (Sigma),

and 10% FBS (Biosera)). The skin biopsy was sectioned into 4–6

pieces and placed in a 6-cm dish coated with 0.1% gelatin contain-

ing 1.5 ml of medium, which was topped up with 0.5 ml every 2–

3 days for a week. One week after the initial plating down of the

cells, all of the medium was removed and 2 ml of fresh medium

was added. Medium was changed every 3–4 days until full conflu-

ency of the fibroblasts was observed. The skin biopsy specimen

was then transferred into a new dish, and the process was repeated

until no more cells grew out of the biopsy. (ii) Subjects from the

Swedish Biofinder Study had a 3-mm skin punch biopsy taken

through the whole dermis to the subcutaneous fat layer using stan-

dard clinical procedures. The biopsies were immediately placed on

ice in phosphate-buffered saline containing calcium and magne-

sium with glucose (1.8 g/l) and antibiotic–antimycotic (Gibco).

Within 1.5–4 h, the biopsies were cut into 10–15 pieces avoiding

the subcutaneous fat and the epidermis. The dermal pieces were

placed in one well of a six-well culture plate (Nunclon) and left

inside a laminar flow cabinet until dry, usually for < 15 min. 2 ml

fibroblast culture medium (DMEM, 20% FBS, penicillin–strepto-

mycin, sodium pyruvate, and antibiotic–antimycotic, all from

Gibco) was then added. Incubation was in a standard cell culture

incubator in 5% CO2 and humidified air at 37°C. Half the medium

was changed twice weekly. When ~30% of the culture well surface

was covered by fibroblasts, cells were harvested by trypsinisation

for ~5 min at 37°C (0.05% trypsin/EDTA, Sciencell). Cells were

washed, centrifuged for 3 min at 100 × g at room temperature,

transferred to a T25 culture flask (Nunc), and cultured in either

DMEM (as above but with 10% FBS) or in a defined serum-free

medium (Fibrolife, Lifeline Celltech). The explants were fed with

new DMEM with 20% FBS and placed back in the incubator to

allow more fibroblasts to migrate out. Fibroblasts expanded in T25

flasks were either transferred to one T75 flask (Nunc) or frozen for

long-term storage. For the lung biopsy, alveolar parenchymal speci-

mens were collected 2–3 cm from the pleura in the lower lobes.

Vessels and small airways were removed from the peripheral lung

tissues, and the remaining tissues were chopped into small pieces

and allowed to adhere to the plastic of cell culture flasks for 4 h.

They were then kept in cell culture medium in 37°C cell incubators

until the outgrowth of fibroblasts was confluent.

Cell culture and cell lines

HFL1 (ATCC-CCL-153) cells were obtained from the American Type

Culture Collection (ATCC) and expanded in standard fibroblast

medium. All the fibroblasts used in this study were expanded at

37°C in 5% CO2 in fibroblast medium. The cells were then dissoci-

ated with 0.05% trypsin, spun, and frozen in either 50/50 DMEM/

FBS with 10% DMSO (Sigma) or DMEM + 10% FBS with 10%

DMSO. Each cell line used in this study has been tested regularly for

mycoplasma.

Viral vectors and virus transduction

DNA plasmids expressing mouse open-reading frames (ORFs) for

Ascl1, Brn2, or Myt1L or a combination of Ascl1 and Brn2 with or

without short hairpin RNA (shRNA) targeting REST or miRNA loops

for miR-9/9* and miR-124 were generated in a third-generation

lentiviral vector containing a non-regulated ubiquitous

phosphoglycerate kinase (PGK) promoter (Figs 1A, 3B and 5A). For

electrophysiological recordings, a lentiviral vector expressing GFP

under the control of the neuron-specific Synapsin promoter was

generated and cells were transduced at a multiplicity of infection

(MOI) of 5 on day 0. All the constructs have been verified by

sequencing. Lentiviral vectors were produced as previously

described (Zufferey et al, 1997) and titrated by quantitative PCR

(qPCR) analysis (Georgievska et al, 2004). Unless otherwise stated,

transduction was performed at a MOI of 10 for separate vectors and

MOI 20 for the single vector (all viruses used in this study tittered

between 3 × 108 and 6 × 109).

Neural reprogramming

For direct neural reprogramming, fibroblasts were plated at a

density of 27,800 cells per cm2 in 24-well plates (Nunc) coated with

0.1% gelatin (Sigma). Three days after viral transduction, fibroblast

medium was replaced by neural differentiation medium (NDiff227;

Takara-Clontech) supplemented with growth factors at the following

concentrations: LM-22A4 (2 lM, R&D Systems), GDNF (2 ng/ml,

R&D Systems), NT3 (10 ng/ll, R&D Systems) and db-cAMP

(0.5 mM, Sigma) and the small molecules CHIR99021 (2 lM,

Axon), SB-431542 (10 lM, Axon), noggin (0.5 lg/ml, R&D

Systems), LDN-193189 (0.5 lM, Axon), as well as valproic acid

sodium salt (VPA; 1 mM, Merck Millipore). Half of the neuronal

conversion medium was replaced every 2–3 days. Cells were
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replated onto a combination of polyornithine (15 lg/ml), fibro-

nectin (0.5 ng/ll), and laminin (5 lg/ml) coated 24-well plates at

day 12 post-transduction. Eighteen days post-transduction, the small

molecules were stopped and the neuronal medium was supple-

mented with only the growth factors (LM-22A4, GDNF, NT3, and

db-cAMP) until the end of the experiment.

microRNA knockdown experiment

Eight tandem repeats of an imperfectly complementary sequence,

forming a central bulge when binding to miR-9 and miR-124 (knock-

down sponge sequence), were synthesized and cloned into a

third-generation lentiviral vector under a PGK promoter (see

Fig 3B). The sponge sequences were as follows: miR-9 TATCATACA

GCTACGACCAAAGACG and miR-124 TGGCATTCATACGTGCCTT

AA. A detailed description of how to design and use lentiviral

miRNA reporters and sponge vectors has been described previously

(Brown et al, 2007; Gentner et al, 2009). Adult dermal fibroblasts

were transduced with lentiviral vectors containing pgk.Brn2.pgk.

Ascl1 (pB.pA), REST shRNA (all MOI = 10), and either mCher-

ry.mir-9.sp and GFP.mir-124.sp or control vectors containing the

reporter gene only (mCherry or GFP) (All MOI = 5). Cells were

transduced again weekly with the mCherry.mir-9.sp, GFP.mir-124.

sp, mCherry, or GFP, and triplicates of each conditions were

analyzed at 25 days post-transduction with the reprogramming

factors. Average fluorescence intensity analysis was performed on

GFP+ or mCherry+ cells.

Immunocytochemistry, imaging, and high content
screening quantifications

Cells were fixed in 4% paraformaldehyde and permeabilized with

0.1% Triton X-100 in 0.1 M PBS for 10 min. Thereafter, cells were

blocked for 30 min in a solution containing 5% normal serum in

0.1 M PBS. The following primary antibodies were diluted in the

blocking solution and applied overnight at 4°C: mouse anti-ASCL1

(1:100, BD Biosciences, 556604), goat anti-BRN2 (1:500, Santa Cruz

Biotechnology, sc-6029), rabbit anti-MAP2 (1:500, Millipore, Ab5622),

mouse anti-MAP2 (1:500, Sigma, M1406), mouse anti-NEUN (1:100,

Millipore, MAb377), rabbit anti-SYNAPSIN I (1:200, Millipore,

514777), mouse anti-TAU clone HT7 (1:500, Thermo Scientific,

MN1000), and rabbit anti-TUJ1 (1:500, BioLegend, 802001). Fluo-

rophore-conjugated secondary antibodies (Jackson ImmunoResearch

Laboratories) were diluted in blocking solution and applied for 2 h.

Cells were counterstained with DAPI for 15 min followed by three

washes in PBS. The total number of DAPI+, MAP2+, and TAU+ cells

per well as well as the average fluorescence intensity for ASCL1,

BRN2, and TAU were quantified using the Cellomics Array Scan

(Array Scan VTI, Thermo Fischer), which is an automated process

insuring unbiased measurements between groups. Applying the

program “Target Activation”, 289 fields (10× magnification) were

acquired in a spiral fashion starting from the center. The same array

was used for the analysis of the number of neurites per TAU+ cells

using the program “Neuronal Profiling”. Neuronal purity was calcu-

lated as the number of MAP2+ or TAU+ over the total number of

cells in the well at the end of the experiment, whereas conversion

efficiency was calculated as the number of TAU+ over the total

number of fibroblasts plated for reprogramming.

Fluorescence activated cell sorting

For qRT–PCR analysis of neuronal gene expression, reprogrammed

cells were detached from cultureware with Accutase (PAA Laborato-

ries), gently triturated, and washed with washing buffer containing

Hank’s balanced salt solution (GIBCO) with 1% bovine serum albu-

min and DNAse. Fibroblasts were either directly used for sorting

according to GFP expression or incubated in washing buffer contain-

ing a mouse anti-human NCAM antibody labeled with APC (1:50 for

fetal fibroblasts or 1:10 for adult fibroblasts, BD Biosciences) for

15 min at 4°C. The cells were sorted using a FACSAria III cell sorter

according to human NCAM (neural cell adhesion molecule 1)

expression gated against unstained converted iNs.

qRT–PCR analysis for miR-9-, miR-124-, and RE1-silencing
transcription factor

Total RNA, including miRNA, was extracted from human fibroblasts

as well as NCAM+ sorted converted fibroblasts from the same lines

using the micro miRNeasy kit (Qiagen) followed by Universal cDNA

synthesis kit (Fermentas, for RNA analysis; Exiqon for miRNA

expression). Three reference genes were used for each qPCR analy-

sis (ACTB, GAPDH, and HPRT1). Primer sequences can be found in

Appendix Table S3. LNA–PCR primer sets, specific for hsa-miR-9-

5p, hsa-miR-124-3p, and hsa-miR-103 (the latter used as normaliza-

tion miRNA), were purchased from Exiqon and used for the miRNA

qPCR analysis. All primers were used together with LightCycler 480

SYBR Green I Master (Roche). Standard procedures of qRT–PCR

were used, and data were quantified using the DDCt method. Statis-

tical analyses were performed on triplicates from each group.

RNA-seq analysis

Fibroblasts were transduced with the different lentiviral vectors

(pB.pA or pB.mir9/124.pA � RESTi), and both untransduced fibro-

blasts and fibroblasts transduced only with REST shRNA were used

as controls (CTR). Cells were collected 5 days after transduction.

RNA was extracted using RNeasy mini kit (Qiagen) with DNase

treatment and sent for RNA-seq to UCLA Clinical Microarray Core.

cDNA libraries were prepared using the KAPA Stranded mRNA-Seq

Kit from KAPAbiosystems. The 50-bp single-end reads from the Illu-

mina HiSeq 2000 were mapped to the human genome assembly

(GRCh38) using STAR (2.4.0j) (Dobin et al, 2013) with default

parameters. mRNA expression was quantified using the subread

package FeatureCounts (Liao et al, 2014) quantifying to NCBI anno-

tation (GRCh38). Read counts were normalized to the total number

of reads mapping to the genome. Clustering and differential expres-

sion analysis were done with DESeq2 (Love et al, 2014). Down-

stream analyses were performed using in-house R and unix scripts.

Gene ontology analysis was done with the Functional Annotation

Tool of DAVID Bioinformatic Resources 6.7 (Huang et al, 2009). To

get a list of uniquely up-regulated genes in the gene ontology analy-

sis (Figs 1I and 4D), BH-corrected P-values < 0.001 were used to

get the genes strongly up-regulated in one group (fetal fibro-

blasts + pB.pA in Fig 1I and pB.pA + RESTi in Fig 4D), while genes

with P-value < 0.05 in the other group (adult fibroblasts + pB.pA in

Fig 1I and pB.mir9/124.pA in Fig 4D) were removed from the gene

list. This ensured that no genes that showed a strong trend for
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up-regulation were classified as “not up-regulated”. For the princi-

pal component analysis (PCA), one of the pB.pA + RESTi triplicate

clustered with the pB.pA group which is most likely due to lack

of co-expression of pB.pA and REST shRNA as they are delivered on

separate vectors. This group was excluded from further analysis.

Data availability

The RNAseq dataset can be found on the GEO repository under

accession number GSE90068.

Transplantation

Adult fibroblasts were first transduced with Syn-GFP and then with

lentiviral vectors containing pB.pA, REST shRNAs. Cells were

prepared for transplantation 3 days post initiation of neural conver-

sion and transplanted to the striatum of male and female neonatal

Sprague Dawley rats (p1; Charles River) under hypothermia anes-

thesia using a 5-ll Hamilton syringe fitted with a glass capillary

(outer diameter 60–80 lm). The rats received a 1-ll injection of

100,000 cells through one needle penetration‡. After injection, the

syringe was left in place for 2 min before being retracted slowly.

Animals were housed in standard cages, under a 12-h light/dark

cycle with ad libitum access to food and water. All procedures were

conducted in accordance with the European Union Directive (2010/

63/EU), were approved by the ethical committee for the use of labo-

ratory animals at Lund University and the Swedish Department of

Agriculture (Jordbruksverket), and were performed in compliance

with the ARRIVE guidelines.

Electrophysiology

In vitro patch-clamp electrophysiology was performed on iNs repro-

grammed from adult dermal fibroblasts on coverslips and co-

cultured with glia between days 85 and 100 post-transduction. Cells

were recorded in a Krebs solution composed of (in mM): 119 NaCl,

2.5 KCl, 1.3 MgSO4, 2.5 CaCl2, 25 glucose, and 26 NaHCO3. Cells

(n = 20) with a neuronal morphology as evidenced by them

possessing a round cell body, processes and expressing GFP under

the control of the synapsin promoter (co-transduced with the repro-

gramming factors) were patched for whole-cell recordings.

For recordings on slices, coronal brain slices from transplanted

rats were prepared at 8 weeks postconversion. Rats were killed by

an overdose of pentobarbital, and the brains were rapidly removed

and cut coronally on a vibratome at 275 lm. Slices were transferred

to a recording chamber and submerged in a continuously flowing

Krebs solution gassed with 95% O2 and 5% CO2 at 28°C. The

composition of the Krebs solution for slice recording was (in mM):

126 NaCl, 2.5 KCl, 1.2 NaH2PO4-H2O, 1.3 MgCl2-6H2O, and 2.4

CaCl2-6H2O. Converted cells were identified by their GFP fluores-

cence and patched (n = 8 in total).

Recordings were made using Multi-clamp 700B (Molecular

Devices), and signals were acquired at 10 kHz using pClamp10 soft-

ware and a data acquisition unit (Digidata 1440A, Molecular

Devices). Borosilicate glass pipettes (3–7 MΩ) for patching were

filled with the following intracellular solution (in mM): 122.5 potas-

sium gluconate, 12.5 KCl, 0.2 EGTA, 10 Hepes, 2 MgATP, 0.3

Na3GTP, and 8 NaCl and adjusted to pH 7.3 with KOH as in (Pfis-

terer et al, 2011a). Resting membrane potentials were monitored

immediately after breaking into the cell, in current-clamp mode. In

cultures, cells were kept at a membrane potential of �60 to

�80 mV, and 500 ms currents were injected from �20 pA to

+90 pA using 10 pA increments to induce action potentials. For

slices, action potentials were induced with a 500 ms current injected

from �100 pA to +400 pA with 50 pA increments. Spontaneous

postsynaptic activity was recorded in current-clamp mode at resting

membrane potentials using 0.1 kHz lowpass filter.

Statistical analysis

All data are expressed as mean � the standard error of the mean.

Whenever the analysis is performed with one cell line, biological

replicates (n = 3–4) were used. In case of experiments using multi-

ple cell lines, we used n = 5 to account for inter-individual varia-

tion. For electrophysiology on slices, we estimated that n = 2

neurons would be recorded per animal and animals could not be

randomized nor done blind as they all received the same cell

suspension. A Shapiro–Wilk normality test was used to assess the

normality of the distribution. When a normal distribution could not

be assumed, a nonparametric test was performed. Groups were

compared using a one-way ANOVA with a Bonferroni post hoc or a

Kruskal–Wallis test with a Dunn’s or Conover multiple comparisons

tests. In case of only two groups, they were compared using a

Student’s t-test. An F-test was used to compare variance, and in case

of unequal variance, a Welch’s correction test was then performed.

Statistical analyses were conducted using the GraphPad Prism 7.0.

An alpha level of P < 0.05 was set for significance.

Expanded View for this article is available online.

The paper explained

Problem
Direct neural reprogramming holds great promises for disease model-
ing and cell-based replacement therapy for neurodegenerative disor-
ders. However, no current reprogramming approach is sufficiently
efficient to allow the use of this technology using patient-derived
material for high content biomedical applications.

Results
We provide mechanistic insights and a new strategy for direct
neuronal reprogramming specifically adapted for the conversion of
dermal fibroblasts of elderly donors, including those derived from
patients with neurodegenerative disorders such as Alzheimer’s, Parkin-
son’s, and Huntington’s diseases.

Impact
Our new one vector conversion system offers new and important
opportunities to obtain patient- and disease-specific neurons for
disease modeling, drug screening, diagnostics, and transplantation.

‡Correction added on 1 August 2017 after first online publication: The mode of anesthesia and number of cells injected was corrected.
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