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ABSTRACT The 2019 coronavirus disease (COVID-19) pandemic is caused by severe acute respiratory
syndrome-coronavirus-2 (SARS-CoV-2). Clinical outcomes, including mortality, are worse in males, older
individuals and patients with comorbidities. COPD patients are included in shielding strategies due to
their susceptibility to virus-induced exacerbations, compromised pulmonary function and high prevalence
of associated comorbidities. Using evidence from basic science and cohort studies, this review addresses
key questions concerning COVID-19 and COPD. First, are there mechanisms by which COPD patients are
more susceptible to SARS-CoV-2 infection? Secondly, do inhaled corticosteroids offer protection against
COVID-19? And, thirdly, what is the evidence regarding clinical outcomes from COVID-19 in COPD
patients? This up-to-date review tackles some of the key issues which have significant impact on the long-
term outlook for COPD patients in the context of COVID-19.

Introduction
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is responsible for the global coronavirus
disease (COVID-19) pandemic. SARS-CoV-2 is a beta coronavirus believed to have originated in the city
of Wuhan, China [1]. SARS-CoV-2 may cause asymptomatic infection or a mild viral illness, while more
severe COVID-19 cases are characterised by high fever, cough and dyspnoea [2–4]. Other commonly
reported symptoms include myalgia, fatigue, gastro-intestinal disturbance, anosmia and sputum
production [2–4]. A proportion of patients with COVID-19 develop pneumonia and acute severe
respiratory failure, which is associated with a high mortality [4, 5]. A feature of severe COVID-19 is high
levels of systemic inflammation, the so called “cytokine storm” [6].

Acute severe respiratory failure associated with COVID-19 is characterised by severe hypoxaemia with
good lung compliance [7]. This suggests vascular injury and/or vasoconstriction are key underlying causes
for respiratory failure, with microvascular injury causing the leaky pulmonary exudate typical of
COVID-19 pneumonia. Additionally, severe COVID-19 patients show abnormal levels of systemic
pro-coagulation markers including high D-dimer levels and low platelet counts, implicating pulmonary
thrombosis as a contributor to respiratory failure [4, 8]. Autopsies have confirmed that typical pathological
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features of severe COVID-19 include endothelial injury and thrombotic microangiopathy [9, 10].
Multi-organ involvement in severe COVID-19 is common, including renal disease and neurological
involvement, suggesting that endothelial disease and microvascular involvement are central
pathophysiological processes in COVID-19 [3, 4, 8, 11].

Clinical outcomes, including mortality, in COVID-19 are worse in males, older individuals and patients
with diabetes, cardiovascular disease and obesity [3–5, 11, 12]. This information has been used to guide
“shielding” strategies during the COVID-19 pandemic, identifying high-risk sub-groups who should
remain at home, away from social contact that allows viral transmission. COPD patients have been
included in this shielding strategy due to their susceptibility to virus-induced exacerbations, compromised
pulmonary function and high prevalence of associated comorbidities [13–17]. This narrative review sets
out to address key questions concerning COVID-19 and COPD. First, are there mechanisms causing
COPD patients to be more susceptible to SARS-CoV-2 infection? Secondly, do inhaled corticosteroids
(ICS) offer protection against COVID-19? And, finally, what is the evidence regarding clinical outcomes
from COVID-19 in COPD patients?

Mechanisms of susceptibility to SARS-CoV-2 infection in COPD patients
Entry of SARS-CoV-2 into host cells is a sequential process involving cellular attachment and endocytosis
[18]. This is mediated by the membrane bound viral spike protein which consists of the S1 receptor
binding subunit, and the S2 membrane fusion subunit. In common with other coronaviruses, SARS-CoV-2
uses angiotensin converting enzyme 2 (ACE2) as a receptor for cellular attachment (mediated by the S1
subunit) [19, 20]. It is thought that SARS-CoV-2 spike protein mutations enable greater affinity for
binding to ACE2, thereby enhancing the ability of this virus to gain cellular entry [21].

ACE2 is a transmembrane peptidase which hydrolyses angiotensin II to produce angiotensin 1–7 [22].
Angiotensin II acts directly on vascular smooth muscle cells through the angiotensin type 1 (AT1)
receptor to cause cellular contraction, and thus increased vascular tone [23]. Intravenous infusion of
angiotensin II increases pulmonary vascular pressure in human subjects [24]. Sustained high pulmonary
vascular pressures cause hydrostatic oedema due to leakage from the single cell thick capillary bed [25].
Angiotensin II also increases microvascular permeability; a study using rat post capillary venules showed
increased fluid movement across the endothelial layer in response to angiotensin II [26].

ACE2 is expressed throughout the body, including in the lungs, where expression has been confirmed in the
trachea, large airway epithelium, small airway epithelium, type 2 pneumocytes and endothelium [27–30].
ACE2 has a homeostatic protective role in the lungs by limiting the effects of angiotensin II activity on
vascular tone and permeability and increasing the production of angiotensin 1–7 which has vasodilator
activity. Angiotensin II also causes pro-inflammatory cytokine production [31]. Reduced ACE2 activity
resulted in increased pulmonary cytokine levels and neutrophil influx in endotoxin exposed mice, coupled
with increased vascular permeability and lung oedema [32]. In contrast, angiotensin 1–7 reduces
experimental lung injury in rats [33]. A loss of ACE2 function may therefore enhance host inflammatory
responses and cause vasoconstriction and vascular injury.

In vitro studies have confirmed that a lack of ACE2 expression prevents SARS-CoV-2 infection [19].
Furthermore, the degree of SARS-CoV infection of epithelial cells is related to the level of ACE2
expression [34]. Emerging evidence from computational studies suggests genetic variants of ACE2
structure may alter SARS-CoV-2 interaction thereby increasing susceptibility to infection [35]. However, it
is the degree to which altered ACE2 expression levels or genetic variation causes increased susceptibility to
SARS-CoV-2 infection in humans or the development of severe COVID-19 that remains unclear. The role
of ACE2 in the disease process is likely part of a complex and multi-factorial sequence of
pathophysiological mechanisms [36].

During SARS-CoV-2 infection, cell surface ACE2 activity may be reduced due to internalisation or
shedding, following binding of the virus, as demonstrated with SARS-CoV infection [37]. Interestingly,
SARS-CoV, but not HCoV NL63, causes ACE2 shedding and increased lung injury in murine models,
with concurrent increases in angiotensin II levels [38]. Importantly, AT1 receptor antagonism attenuated
these affects [39]. Collectively, these observations implicate reduced ACE2 activity in COVID-19 lung
injury (figure 1).

The second phase of SARS-CoV-2 cellular entry is fusion between the host and virus membranes, where
the spike protein undergoes proteolytic cleavage at the S1/S2 interface which facilitates fusion between the
virus and host membranes (mediated by the S2 subunit) and subsequent cell entry [18, 20]. The virus
utilises host proteases including furin, transmembrane serine protease 2 (TMPRSS2) and cathepsins during
this process [18, 20].
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Recent gene and protein expression studies have demonstrated increased ACE2 expression in the bronchial
epithelium and whole lung tissue of COPD patients compared to controls, with an association between
higher ACE2 expression levels and lower lung function (table 1). LEUNG et al. [28] used bronchial brushing
samples obtained by bronchoscopy to demonstrate increased ACE2 gene expression in COPD patients
compared to controls, which included a mixture of never-, former and current smokers. In these samples,
current smokers had higher ACE2 gene expression levels. The authors also used immunohistochemistry to

TABLE 1 Expression of genes/proteins related to severe acute respiratory syndrome-coronavirus-2 infection in controls# and
COPD patients

First author [ref.]

Key findings

Sample type Patient groupsACE2 Furin TMPRSS2

CAI [40] ↑ ↑ No difference Bronchial epithelium Current smoker versus never-smoker
COPD versus ex-smoker

LEUNG [28] ↑ Not quantified Not quantified Bronchial epithelium Current smoker versus never-smoker
COPD versus controls

Negative correlation with FEV1 %
SMITH [41] ↑ Not quantified No difference Whole lung tissue Current smoker versus never-smoker

COPD versus current smoker
BRAKE [27] ↑ Not quantified Not quantified Bronchial epithelium COPD versus controls¶

ZHANG [29] ↑ No difference ↑ Bronchial epithelium Current smoker versus never-smoker
RADZIKOWSKA [42] ↑ Not quantified Not quantified Bronchial biopsy Current smoker versus never-smoker
HIGHAM [43] ↑ No difference¶ No difference Bronchial epithelium Negative correlation with FEV1 %

Overweight COPD versus not overweight COPD

↑: increase in cell number; FEV1: forced expiratory volume in 1 s. #: controls were a mixture of never-, ex- and current smokers; ¶: data not
presented in manuscript.
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FIGURE 1 The implications of angiotensin converting enzyme (ACE)2 dysfunction during severe acute respiratory
syndrome-coronavirus-2 (SARS-CoV-2) infection. In the absence of infection, ACE2 is working at capacity and
the levels of angiotensin II (ang II) are tightly regulated by conversion to angiotensin 1–7 (ang 1–7). Ang 1–7
activates the Mas receptor to regulate inflammation and vasomotor tone. During SARS-CoV-2 infection, ACE2
activity is reduced due to receptor occupancy, shedding and internalisation and the levels of ang II increase. Ang
II activates the AT1 receptor to cause increased pro-inflammatory cytokine production, increased
vasoconstriction, increased vascular permeability, oedema and lung injury. Pulmonary inflammation increases
and acute severe respiratory failure may ensue.
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show increased ACE2 protein expression in the small airway epithelium of COPD compared to
never-smokers but not current smokers. CAI et al. [40] observed increased ACE2 gene expression in
bronchial brushing samples of COPD patients compared to former smokers but not current smokers.
SMITH et al. [41] demonstrated ACE2 expression was significantly higher in the whole lung tissue of COPD
patients compared to smokers. RADZIKOWSKA et al. [42] observed increased ACE2 gene expression in
bronchial biopsies of smokers compared to never-smokers but no difference in COPD versus controls,
however the number of COPD samples were small (n=3). The overall pattern of these data is that COPD
patients have increased ACE2 expression compared to never-smoker controls, and that smoking itself
upregulates ACE2 expression. Increased ACE2 expression in COPD patients compared to smokers
(without airflow obstruction) was less consistent; differences between studies may be related to site of
sampling, analytical methodology, or number of samples.

Cigarette smoke exposure increases ACE2 gene expression in mice [41]. In primary bronchial epithelial
cells, nicotine dependent activation of the α7 subtype of nicotine acetylcholine receptors (α7-nAChR) was
shown to increase ACE2 gene expression [44]. The levels of CHRNA7 (the gene which encodes
α7-nAChR) in the bronchial epithelium are higher in current smokers and levels positively correlate with
ACE2 expression (r=0.54 p=2.31×10−8) and negatively correlate with forced expiratory volume in 1 s
(FEV1) % predicted (r=-0.37 p=2.83×10−4) in COPD patients [45]. We have been able to replicate these
findings concerning CHRNA7 using a cohort of 37 COPD patients (correlation with ACE2: r=0.4 p=0.02;
correlation with FEV1%: r=−0.4 p=0.02 previously unpublished data).

Using single cell RNA sequencing, enabling identification of specific cell types in a mixed cell population,
it was shown that several epithelial cell types including basal cells, intermediate cells, ciliated cells and
secretory cells (goblet/club) express ACE2 [29, 41, 46, 47]. Differences exist in the conclusions of these
studies, with some suggesting ACE2 expression was particularly high in secretory cells [41, 46]. The
location of sampling, donor variability and methodology used to analyse expression may explain these
differences. Nevertheless, it is important to recognise that epithelial remodelling as a result of injury and
repair may impact epithelial cell phenotype, including ACE2 expression. Cigarette smoking is a key driver
of goblet cell hyperplasia, and goblet cell numbers are increased in COPD airways [48]. Furthermore,
α7-nAChR regulates mucous production in bronchial epithelial cells exposed to nicotine [49]. Cigarette
smoke, and in particular nicotine, dependent activation of α7-nAChR may therefore drive concurrent
goblet cell hyperplasia and increased ACE2 expression in the airways of COPD patients.

We have shown increased gene expression of ACE2 in the bronchial epithelium of COPD patients who are
overweight (mean body mass index (BMI) 29 kg·m−2) compared to those not overweight (mean BMI
23 kg·m−2) [43]. This suggests comorbidities, or even diet, may regulate expression of ACE2 in the lungs.
This is supported by observations showing increased ACE2 expression in the adipose tissue of individuals
with obesity [50].

CAI et al. [40] demonstrated increased gene expression of furin, but not TMPRSS2, in the bronchial
epithelium of smokers compared to never-smokers, but found no difference in furin or TMPRSS2
expression in COPD patients compared to controls. In contrast, ZHANG et al. [29] reported increased gene
expression of TMPSSR2, but not furin, in the bronchial epithelium of smokers compared to
never-smokers, while COPD patients were not studied. Whilst the results are not consistent, it appears
cigarette smoking may alter protease expression, but modulation of expression in COPD is less clear.

These recent studies investigating susceptibility to SARS-CoV-2 infection in COPD patients have focused
on ACE2 and protease expression. However, it should also be remembered that COPD patients have
increased susceptibility generally to viral infections, possibly due to decreased type 1 interferon (IFN)
production [51] or immunosenescence, characterised by increased numbers of exhausted T-cells and
reduced numbers of memory T-cells [52–54]. Any increase in ACE2 levels in COPD patients, thereby
increasing susceptibility to SARS-CoV-2 infection, therefore occurs on a background of suboptimal host
defence.

Evidence of endothelial cell dysfunction and coagulopathy have been reported in COPD patients. The
number of apoptotic endothelial cells is increased in COPD patients and increased permeability of the
airway microvasculature in COPD patients is related to the degree of airflow limitation [55, 56].
Circulating levels of pro-coagulation factors are increased in COPD patients, which increase further during
exacerbations [57, 58]. This likely contributes to the occurrence of pulmonary embolisms that are reported
in COPD patients with exacerbations [59]. COPD patients may therefore be more susceptible to vascular
damage and thrombosis during SARS-CoV-2 infection.

The available evidence suggests COPD patients may be more susceptible to SARS-CoV-2 infection due to
changes in ACE2 expression. Cigarette smoking appears to be an important risk factor, whilst preliminary
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evidence suggests that obesity may play a role. Increased susceptibility to vascular abnormalities may also
be involved.

ICS use in COPD: implications for COVID-19
An exacerbation is defined as a worsening of COPD symptoms resulting in the need for additional
pharmacological treatment [60]. COPD patients with more frequent exacerbations suffer with worse
clinical outcomes, including lung function decline and mortality [61, 62]. Viral infections are a common
cause of COPD exacerbations [13, 14, 16, 17], with secondary bacterial infections commonly occurring
[14, 63].

Multiple randomised clinical trials have shown that ICS reduce exacerbation rates when used as part of a
combination treatment with a long-acting β-agonist (LABA) or a LABA plus a long-acting muscarinic
antagonist [64–66]. This ICS benefit appears to be greater in patients with higher blood eosinophil counts,
with little or no benefit in patients with lower counts (<100 eosinophils·µL−1) [67–71]. ICS treatment can
cause side-effects, including osteoporosis, diabetes and most notably pneumonia [72, 73]. Due to these
potential risks, it is recommended that ICS are used in a personalised manner using exacerbation risk and
blood eosinophil counts to identify individuals most likely to benefit [74]. The association between
eosinophil counts and clinical benefit suggests that ICS target type 2 inflammation in COPD, as is the case
in asthma.

Corticosteroids suppress pro-inflammatory cytokine production from various cell types, through
trans-repression of gene transcription [75, 76]. Bronchoscopy and sputum sampling studies have shown
that ICS treatment can reduce inflammatory cell counts in the lungs [77, 78]. While these
anti-inflammatory effects provide protection against COPD exacerbations, there are also molecular
mechanisms whereby corticosteroids may increase susceptibility to infection. The suppression of innate
immune cytokines may impair the ability of the host defence to counter bacterial infection. The reported
association between ICS treatment and increased presence of colonising bacteria supports this possibility
[79, 80]. The phagocytosis ability of alveolar macrophages is reduced in COPD patients [81], but we have
recently demonstrated that corticosteroids do not further suppress phagocytosis by these cells [82].
Interestingly, a recent longitudinal cohort study showed that ICS use increased the risk of pneumonia in
COPD patients with chronic bacterial infection or low blood eosinophil counts (<100 eosinophils·µL−1)
[83]. The mechanism for the association between ICS and both increased bacterial presence and increased
pneumonia incidence has yet to be conclusively elucidated.

Corticosteroids suppress the production of the anti-viral type I and III IFN from epithelial cells [85, 86].
This is associated with increased viral replication, and excess mucin production [84]. The use of ICS in
COPD patients may therefore increase susceptibility to virus infection, and/or worsen clinical outcomes
through these mechanisms [87]. Secondary bacterial infection in such cases provide one possible
explanation for the increased bacterial presence and pneumonia risk observed with ICS use in COPD
patients [83]. Overall, the benefits of ICS appear to outweigh these infection risks in patients with higher
eosinophil counts, but in those with lower eosinophil counts the benefit–risk ratio often does not justify
the use of these drugs [74].

There is in vitro evidence that bronchial epithelial cells treated with the corticosteroid budesonide, in
combination with the bronchodilators glycopyrronium and formoterol, inhibits HCoV-229E replication
[88]. The corticosteroid ciclesonide also appears to attenuate SARS-CoV-2 replication in vitro by targeting
non-structural protein 15, an endoribonuclease which helps evade host detection of viral double-stranded
RNA and type 1 IFN responses [89–91]. ICS may also prevent SARS-CoV-2 entry; ACE2 gene expression
is lower in the sputum of COPD and asthma patients who use ICS compared to those who do not [92, 93].
Furthermore, studies in mice have shown that ICS reduce ACE2 expression by inhibiting type 1 IFN
production [92]. While suppression of type 1 IFN secretion may reduce host defence, the associated
reduction of ACE2 expression may protect against SARS-CoV-2 cellular entry. These findings raise the
possibility that ICS use in COPD patients may protect against COVID-19 (figure 2).

A systematic literature review did not find any studies that could determine whether ICS are associated
with better or worse clinical outcomes in COPD patients with severe coronavirus infections including
COVID-19, SARS and Middle East Respiratory Syndrome [94]. Recently, observational data taken from
UK electronic health records reported increased COVID-19 associated mortality in COPD and asthma
patients using ICS compared to those not using ICS [95]. However, a sensitivity analysis also showed
increased mortality due to COVID-19 in COPD patients treated with ICS plus two long-acting
bronchodilators (triple therapy) compared to ICS plus one long-acting bronchodilator, indicating a
confounding effect of COPD due to greater disease severity in patients treated with triple therapy that was
not due to ICS itself. A negative control analysis also highlighted more non-COVID-19 deaths in patients
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treated with ICS, further re-enforcing confounding by disease severity. This analysis highlights the
practical issues regarding real-life data collection with regard to understanding whether ICS use has a
protective or detrimental effect in COPD patients with regard to COVID-19. In the absence of randomised
controlled trial data, COPD patients are being advised to continue with their usual inhaled treatment
regime, including ICS if already being used [94]. COPD management guidelines provide recommendations
regarding clinical situations where it is appropriate to withdraw ICS treatment [96]. Appropriate ICS
withdrawal should continue to be considered at the current time, in the absence of conclusive data
showing that ICS use has a protective effect against COVID-19 in COPD patients.

Epidemiology and clinical outcomes of COVID-19 in COPD patients
A number of publications have evaluated the epidemiology, clinical characteristics and clinical outcomes of
COVID-19. There is significant diversity in the clinical settings of these studies, and the type of data
collected. Accordingly, the case fatality rates of patients with severe (hospitalised) COVID-19 disease vary
from 1% to 62% [97]. Data on the epidemiology and outcomes of COVID-19 among patients with COPD
are still being accumulated. Here, we review the distinct issues of whether COPD is associated with an
increased risk of acquiring COVID-19, or an increased risk of worse outcomes with COVID-19.

The prevalence of COPD among patients with COVID-19 was summarised in a systematic review of 15
studies that had been published by 24th March 2020 involving 2473 patients with confirmed COVID-19,
mainly from China; a prevalence of 2% (95% CI 1–3%) was reported (figure 3) [98]. A similar prevalence
(3%), was found in a more recent report assessing 13442 patients diagnosed with COVID-19 after an
emergency department visit or admission in New York (NY, USA) [101] and a report of 1099 unselected
patients from China (1%, 95% CI 0.6−1.9%) [100]. To explain the lower than anticipated observed
prevalence of COPD among patients with COVID-19, it has been proposed that either the disease or its
treatment may reduce the risk of infection [108]. None of these hypotheses have been proven yet. COPD
under-diagnosis is a well-known issue that may contribute to these findings [108], or that full information
regarding comorbidities including COPD was not recorded in the clinical notes. It is also likely that the
low observed prevalence of COPD in some populations results predominantly from the early shielding of
older and high-risk populations, including patients with COPD, in many countries [109]. This is
supported by the higher prevalence of COPD (6.6%) and the higher median age (63 years compared to
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FIGURE 2 Inhaled corticosteroid (ICS) use in COPD: implications for coronavirus disease 2019. ICS prevent
exacerbations in eosinophilic COPD patients, probably in part by targeting type 2 inflammation in these
individuals. ICS may have further benefit by reducing the ability of severe acute respiratory
syndrome-coronavirus-2 (SARS-CoV-2) to proliferate, and by limiting SARS-CoV-2 cellular entry by reducing
angiotensin converting enzyme (ACE)2 expression as a result of inhibiting type 1 interferon (IFN) production.
However, immunosuppression may increase susceptibility to respiratory infections leading to secondary
bacterial colonisation and increasing the risk for pneumonia in some individuals. #: ICS reduces ACE2
expression by reducing type 1 IFN production.
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52.7 years) that were found in a case series of 1000 consecutive patients diagnosed with COVID-19 early
in the course of the epidemic in New York [99]. Nevertheless, none of these observations provide
definitive information demonstrating that patients with COPD have an increased risk of acquiring
SARS-CoV-2 infection or developing COVID-19.

An age- and sex-adjusted meta-analysis of 11 case series in China and the USA suggested that current
cigarette smoking might be protective against contracting COVID-19; the prevalence of current smokers
among patients was significantly lower than anticipated (prevalence OR 0.20, 95% CI 0.13–0.31) [110].
However, current smokers have higher prevalence of cardiovascular and respiratory diseases and were
therefore more likely to be shielding during the COVID-19 epidemic, introducing a significant
unaddressed confounding in the meta-analysis. In addition, most of the COVID-19 series are based on
routinely collected data from case records, where current smoking information may be significantly
underestimated. A possible reason for this is that information not critical in guiding clinical decisions may
have been omitted due to the healthcare burden posed by the ongoing pandemic.

Patients with COPD, as well as current smokers, are consistently reported to have worse outcomes after
COVID-19 infection. Several large patient cohorts reported an association between co-existing COPD and
worse clinical outcomes among COVID-19 patients in hospitals (figure 4) [99–101, 104–106 111]. The
previously mentioned meta-analysis reported an 88% increased risk of intensive care admission or death
among those with co-existing COPD (RR 1.88, 95% CI 1.4–2.4) [98]. In addition, the risk of developing
severe complications was 45% higher among current smokers (RR 1.45, 95% CI 1.03–2.04), arguing against
a protective effect of current smoking against COVID-19. However, mortality estimates in this
meta-analysis are limited by the sample size. More specifically, mortality within the subgroup of patients
with co-existing COPD was only reported in two studies involving 10 patients with COPD. Among these
patients six died. In the larger New York cohort (13442 patients with COVID-19 attending the emergency
department), COPD was associated with an increased risk of hospitalisation (RR 1.77, 95% CI 1.67–1.87)
[100], and a trend for increased mortality (RR 1.08, 95% CI 0.88–1.33). Similar findings were reported in
an Italian cohort involving 1044 hospitalised patients; patients with COPD had significantly increased risk
of severe respiratory failure (RR 1.17, 95% CI 1.09–1.27) [102]. In a Spanish longitudinal cohort, COPD
was also associated with a 70% increase in the risk of death (RR 1.69, 95% CI 1.23–2.32) [111]. The
ISARIC (International Severe Acute Respiratory and Emerging Infection Consortium) cohort, based on data
from over 20000 patients hospitalised with COVID-19 infection, demonstrated that non-asthma chronic
pulmonary diseases are associated with an increased risk of death (HR 1.17, 95% CI 1.09–1.27) [103].
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FIGURE 3 Prevalence of COPD among patients with coronavirus disease 2019 with different severity. Data
summary from larger patient cohorts (n >1000 for hospitalised patients or >500 for critically ill patients).
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Consistently, the prevalence of COPD rises further among patients suffering from more critical or
lethal COVID-19 disease. A series of 257 critically ill patients admitted to the intensive care unit with
COVID-19 in New York revealed a much higher prevalence of COPD (9%) and current or former
smokers (33%) [106]. Moreover, COPD was predictive of significantly higher risk of death in univariate
regression analyses (HR 3.15, 95% CI 1.84–5.39), and this association remained robust in multivariate
regression (HR 2.94, 95% CI 1.48–5.84). Interestingly, COPD has been reported as a comorbidity in as
many as 16.4% of patients who did not survive the COVID-19 infection, in an Italian survey involving
3032 patients [107]. This corresponded to a prevalence of 17.2% among patients aged ⩾65 years, and
11.1% among younger patients.

Clinical and research implications
Risk factors for worse outcomes from COVID-19 include increasing age and cardiovascular comorbidities
[2–4]. COPD is a disease that occurs in later life, and is associated with multiple comorbidities including
cardiovascular diseases [15]. In addition to the risk conferred by age and comorbidities, the evidence
indicates that COPD itself is associated with worse outcomes [99–101, 104–106, 111]. The reasons for this
may be increased susceptibility to viral infection (through decreased anti-viral defence or increased ACE2
expression) in COPD or pre-existing compromised pulmonary function. The available data does not deal
with the heterogeneity of COPD, including disease severity, exacerbation frequency and comorbidities.
Future analysis should consider these features as additional susceptibility factors.

Thrombosis and coagulopathies are common features of severe COVID-19, and COPD patients also
demonstrate increased susceptibility to these vascular events [55–59]. It is important to understand if
pre-existing endothelial dysfunction in COPD patients predisposes to vascular complications during
COVID-19. Future studies should examine how COPD pulmonary endothelial cells behave during
infection and inflammation and if this may lead to vascular complications in the micro-circulation.

Evidence is still lacking on the long-term sequelae of COVID-19 among patients with pre-existing
respiratory diseases, such as COPD. Emerging evidence from COVID-19 convalescent patients without
pulmonary disease shows reduced lung function and computed tomography abnormalities up to 3 months
after discharge [112, 113]. COPD patients demonstrate abnormal remodelling processes following lung
injury, so one can expect significantly abnormal tissue remodelling following SARS-CoV-2 infection.
Future studies should attempt to understand the impact of SARS-CoV-2 infection on disease
pathophysiology including small airway disease and emphysema.
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FIGURE 4 Impact of COPD on the outcomes of coronavirus disease 2019. Data summary from larger patient
cohorts (n >1000 for hospitalised patients or >500 for critically ill patients). ICU: intensive care unit.
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The relationship between ICS use and SARS-CoV-2 infection is still unclear. Whilst there may be some
benefit on reducing the ability of SARS-CoV-2 to proliferate [89, 90], it is known that ICS can dampen
important anti-viral mechanisms [84–86]. Despite dampening anti-viral mechanisms, ICS use in COPD
patients prevents exacerbations in patients with higher blood eosinophils [67–70]. Conversely, ICS use in
COPD patients with low blood eosinophils counts or chronic bacterial infection can increase the risk of
pneumonia [83]. Similarly, ICS use in COPD patients with regard to SARS-CoV-2 infection may be a
double edged sword, conferring benefit to some but harm to others. This topic urgently needs further
research to support clinical decision making.

The long-term impact of isolation on the natural history of COPD is unclear; this may lead to reduced
viral infections in the short term, but may cause undesirable effects on the general physical and
psychosocial health of these patients. The resulting decrease in physical activities and exercise may deprive
patients of the beneficial effects that include improved quality of life, decreased symptoms burden and risk
of exacerbations and mortality [60].

We recognise there are limitations to this review. First, this is a narrative review. As more data becomes
available in this rapidly evolving field then a systematic review may be valuable. Secondly, many cohort
studies have not analysed COPD patients as subgroups. It is well recognised that COPD is a highly
heterogeneous disease with several clinical phenotypes and a spectrum of severities. Future analysis of
cohort studies should attempt to subgroup patients, including by ethnicity, to identify those most at risk.

Conclusion
This review focused on three key issues concerning COVID-19 and COPD (figure 5). First, it is well
known that COPD patients are prone to viral exacerbations [13, 14, 16], and current evidence shows that
COPD patients have increased pulmonary expression of ACE2, the SARS-CoV-2 receptor, providing a
mechanism by which COPD patients may be more susceptible to COVID-19 [41]. COPD patients also
demonstrate features of endothelial cell dysfunction and increased coagulopathy, which may predispose to
increased risk of worse outcomes from COVID-19 [55–58]. Secondly, there is no clinical evidence that ICS
are protective against COVID-19 or are associated with worse clinical outcomes [94]. Finally, whilst the
available evidence from cohort studies does not demonstrate that COPD patients are more or less
susceptible to acquiring infection with SARS-CoV-2, clinical outcomes including requirement for
mechanical ventilation and mortality appear to be worse in COPD patients [102–107, 111].
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