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Abstract: The workforce shortage is one of the significant problems in the construction industry.
To overcome the challenges due to workforce shortage, various researchers have proposed wearable
sensor-based systems in the area of construction safety and health. Although sensors provide rich and
detailed information, not all sensors can be used for construction applications. This study evaluates
the data quality and reliability of forearm electromyography (EMG) and inertial measurement unit
(IMU) of armband sensors for construction activity classification. To achieve the proposed objective,
the forearm EMG and IMU data collected from eight participants while performing construction
activities such as screwing, wrenching, lifting, and carrying on two different days were used to
analyze the data quality and reliability for activity recognition through seven different experiments.
The results of these experiments show that the armband sensor data quality is comparable to the
conventional EMG and IMU sensors with excellent relative and absolute reliability between trials for
all the five activities. The activity classification results were highly reliable, with minimal change in
classification accuracies for both the days. Moreover, the results conclude that the combined EMG
and IMU models classify activities with higher accuracies compared to individual sensor models.

Keywords: wearable sensor; reliability; construction activity classification; electromyography; inertial
measurement unit; data quality

1. Introduction

The construction industry is one of the leading industries in the world, which spends $10 trillion
on construction-related goods and services every year [1]. However, the construction industry is
facing a massive workforce shortage of skilled craft workers [2]. More than 8 out of 10 construction
firms report having a hard time finding qualified workers. One of the significant causes of workforce
shortage is the premature retirement of skilled craft workers due to safety and health issues. Due to a
lack of proper safety training and monitoring systems, the construction workforce is exposed to various
fatal and non-fatal injuries such as work-related musculoskeletal disorders (WMSDs). To overcome
these challenges, various researchers have proposed wearable sensor-based systems in the area of
construction safety and health [3–8]. Various applications in the area of safety and health involve
preventing musculoskeletal disorders, fall prevention, mental and physical workload assessment,
and fatigue monitoring [3–8]. All these applications can be categorized as a classification problem
since they involve identifying different postures, classifying different physical and mental workloads,
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or detecting different motions or gestures using the sensor data. Moreover, classifying workers’ activity
helps in monitoring and managing the productivity, safety, and quality of work [9].

In the construction domain, the wearable sensor-based activity recognition models have gained
increased attention due to low-cost, ease of use, high accuracy, and non-intrusiveness. Most of the
previous studies have used accelerometers and gyroscopes embedded in smartphones to recognize
construction workers’ activity [10–13]. A study by Cezar [14] used an accelerometer and gyroscope
embedded in the smartphone placed on the dominant hand to recognize hammering, sawing, sweeping,
and drilling activities with an accuracy of 91% using quadratic discriminant analysis (QDA) algorithm.
Lim, et al. [15] and Akhavian and Behzadan [16] have developed artificial neural network (ANN)
based models for identifying falls and manual material handling activities with an accuracy of 94%
and 90.74% using the smartphone placed in the hip pocket and upper arm respectively. The ironwork
activities recognition models developed by [17] and [9] using support vector machine (SVM) and
decision trees (DT) were able to recognize activities with 94.83% and 92.98% accuracy. Even though
these smartphone sensors-based models have achieved considerable accuracy, there are practical
implementation challenges. In order to overcome the smartphone challenges, inertial measurement
unit (IMU), sensor-based activity recognition models have been proposed for various construction
applications such as work sampling [18–20] and fall detection [21]. The wearable IMU sensor-based
models have used various machine learning algorithms such as DT, random forest, and SVM to
recognize ironwork [18], fall detection [19], and bricklaying [20] with an accuracy of 90.4%, 93.90%,
and 88.1% respectively. However, the current activity classification methods are that they are limited
to a fewer number of activities involving either upper body or lower body, use of multiple sensors,
and do not consider activities with multiple intensities. Moreover, none of these studies have discussed
the reliability of sensor data and classification results. Therefore, there is a necessity for low-cost,
easy to use, and non-obstructive sensors that can provide reliable data for complex construction
activity classification.

Despite the fact that sensors provide rich and detailed information, not all sensors can be used for
construction applications due to the dynamic nature of construction work [3]. It was recommended
that multisensory data fusion, which was applied in other domains, provides an opportunity for
enhancing the accuracy of activity classification [6,22]. The sensor for construction applications should
be simple and easy to wear, unobtrusive, affordable, and wireless. Moreover, the sensor should provide
reliable data and involve minimal or no preprocessing for noise removal. Therefore, it is essential to
identify a suitable and reliable sensor for construction activity classification, which helps in developing
construction workers’ safety and health monitoring systems to prevent work-related injuries such as
WMSDs, which is one of the significant reasons for the workforce shortage.

The armband sensor is an affordable, non-invasive, lightweight, and wireless wearable armband
sensor that is available off-the-shelf to collect workers’ forearm electromyography (EMG) and inertial
measurement unit (IMU) data [23]. Many researchers have used these signal data for different
applications in various domains. To the best of the authors’ knowledge, none of the studies in the
construction domain have explored the use of armbands and a combination of EMG and IMU data for
construction applications. Furthermore, investigating muscle activity and kinematic signals provides
an understanding of workers’ physiological responses to workload. Furthermore, the signals facilitate
activity analysis and workers’ behavior towards the work. In order to choose a wearable sensor for
any construction applications specifically for activity classification, it is essential to investigate the
data quality and reliability because the muscle activity and motion sensor signals from the forearm
may inevitably be contaminated due to noise signals and artifacts that originate at the skin-electrode
interface or due to external sources. A reduction in the noise and artifact contamination is required
as well as preservation of the required information from the signals. Moreover, the sensor should
provide consistent and reliable signals for activity throughout the data collection process. Therefore,
the objective of this study is to assess the data quality and reliability of forearm EMG and IMU data for
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construction activity classification by following the guidelines, recommendations, and methods for
data quality and reliability assessment proposed by previous studies on sensor [24–29].

In order to achieve the proposed objective, the whole study is divided into seven experiments.
The first three experiments involve evaluating the data quality, understanding the effect of armband
position on data quality, and reliability of forearm EMG and IMU data. Later, four experiments involve
building and evaluating activity classification models, assessing the reliability of classification results,
understanding the effect of lifting weights on classification results, and evaluating the classification
performance of different sensor combinations. The results of these experiments answer various
questions such as noise level in armband signal data, drift in the IMU sensor data, quality of EMG
and IMU data for at-rest and in-motion activities, the effect of armband position on signal quality,
the accuracy of construction activity classification using EMG and IMU, reliability of sensor data and
classification results, effect of lifting weights on classification accuracy, and classification performance
of different sensor combinations. It was hypothesized that the armband sensor provides reliable EMG
and IMU data and activity classification results. The answers to the above questions establish the
reliability and applicability of forearm EMG and IMU data for construction activity classification.

2. Materials and Methods

2.1. Participants

Eight healthy college male students voluntarily participated in all the experiments. The participants’
ages ranged from 24 to 28 years (mean ± SD: 26.13 ± 1.55 years), height ranged from 1.65 to 1.83 m
(1.74 ± 0.06 m), and weight ranged from 62.60 to 100 kg (81.35 ± 12.44 kg). All the participants were
right-handed, healthy, and had no musculoskeletal disorders at the time of experiments. All the
procedures involving human participants were approved by the Louisiana State University Institutional
Review Board (IRB #: IRBAM-20-0112). The purpose of the research was demonstrated to all the
participants before the start of the experiment, and their signatures were obtained on the informed
consent forms. The sample size required to assess the reliability of the sensor using the intraclass
correlation (ICC) was determined using the tables from Bujang and Baharum [30]. An ICC score greater
than or equal to 0.75 indicates excellent reliability [31,32]. At least seven participants are required to
achieve a minimum of 0.75 ICC scores with two assessments per subject at a 0.05 significance level and
a power of 0.80 [30].

2.2. Measurements and Instrumentation

A forearm based wearable armband sensor (Myo armband) developed by Thalmic Labs Inc. was
used to collect the EMG and IMU data. Myo armband sensor is a non-intrusive wearable sensor
that consists of eight dry surface EMG sensors and a 9-axes IMU sensor (3-axes gyroscope, 3-axes
accelerometer, and 3-axes magnetometer). The sensor weighs approximately 93 g [23]. The data from
the sensor is transmitted to the computer or cloud storage via Bluetooth Low Energy (BLE) wireless
connection. The raw EMG and IMU data can be assessed through the Myo software development
kit (SDK). The Myo SDK was used to acquire real-time forearm EMG and IMU data at a frequency of
200 Hz and 50 Hz, respectively. The device goes into an idle state if there is no activity for more than
30 s. The configuration of Myo armband electrodes is shown in Figure 1a, where the electrode with the
LED light and Myo logo is channel-4, followed by channel-3 in clockwise direction and channel-5 in
counter-clockwise direction. Moreover, Figure 1a shows the direction of x, y, and z of the IMU sensor.
The armband was worn on the thickest part of the forearm, as shown in Figure 1b with the channel-4
in the line of the index finger, and the blue marker was in the lower forearm for the experiments unless
otherwise stated [33]. After wearing the armband sensor, the participant calibrates their motion by
performing predefined gestures such as finger spread, wave-in, wave-out, and relaxed state gestures
by connecting with Thalmic Labs’ Myo Connect manager [34].
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Figure 1. (a) Myo armband electrode location and (b) Myo armband placement on the forearm.

The eight EMG sensors capture the electrical impulses generated by the forearm muscles, which are
returned as an 8-bit array, in other words, each EMG sensor outputs an integer value between −128
and 127 representing muscle activation levels. The armband sensor captures the muscle activity of
various forearm muscles such as the brachioradialis, flexor digitorum superficialis, medial epicondyle
of humerus, palmaris longus, flexor carpi ulnaris, flexor carpi radialis, and pronator teres [35].
Whereas, the IMU unit captures the motion of the forearm by measuring acceleration, angular velocity,
and orientation along the x, y, and z axes. It was ensured that the armband was always synced with
the application and calibrated throughout the experiments.

High-precision conventional wearable EMG and IMU sensors such as FREEEMG (BTS
Bioengineering Corp., Quincy, MA, USA) and YEI 3-Space IMU sensor (Yost Engineering Inc.,
Portsmouth, OH, USA) respectively, were used to compare the armband sensor data quality. The
conventional sensor measures the acceleration and gyroscope in units of g and radians/s, respectively.
In comparison, the conventional EMG sensor measures muscle activity in millivolts (mV). Besides,
the conventional IMU sensor was calibrated using a gradient descent calibration procedure and no
preprocessing was performed on any of the sensor data before data quality calculations.

To assess the reliability of the armband sensor data, features such as absolute acceleration,
absolute angular velocity, and mean absolute value of EMGsum (sum of EMG values) were calculated
from raw data [36]. These sensor features are widely used in activity/gesture/motion recognition
applications [33,36–42]. The acceleration along x, y, and z axes were used to compute the absolute
acceleration or magnitude of the acceleration vector (Acc) at any given timestamp (t) using Equation
(1) [31,43,44]. Similarly, the angular velocity along the three axes provided by the gyroscope sensor
was used to calculate the absolute gyroscope angular velocity or magnitude of gyroscope vector
(Gyro) at any given timestamp (t) using Equation (2) [31,44–46]. For simplicity, the angular velocity
along the axes was represented as Gyro in Equation (2). Using the eight EMG values, a new feature
EMGsum was calculated by summing up all the eight EMG values at any timestamp (t) [47,48]. Further,
the mean absolute value (MAV) of EMGsum was evaluated using Equation (3), which was later used
for reliability assessment [33,37,38]. For each trial, an average of acceleration magnitude, an average
of gyroscope magnitude, and MAV of EMGsum was computed to assess the trial-to-trial (intra-day)
reliability of the sensor. Whereas in the case of day-to-day (inter-day) reliability test, the mean values
of three trials of each day were used for ICC analysis.

Acc(t) = 2
√

Acc(t)2
x+Acc(t)2

y+Acc(t)2
z (1)

Gyro(t) = 2
√

Gyro(t)2
x+Gyro(t)2

y+Gyro(t)2
z (2)
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MAV =
1
N

N∑
k=1

|EMGsumk| (3)

2.3. General Procedures of the Study

This study consists of seven experiments, including (a) evaluating the forearm EMG and IMU data
quality for “at-rest” and “in- motion” activities (Experiment I); (b) investigating the effect of armband
sensor position on EMG and IMU data (Experiment II); (c) assessing the reliability of forearm EMG and
IMU data obtained while performing construction activities (Experiment III); (d) classification model
building, performance evaluation, and classifier comparison (Experiment IV); (e) investigating the
reliability of results obtained from classification models using EMG and IMU data while performing
construction activities on different days (Experiment V); (f) investigating the effect of lifting weight on
forearm EMG and IMU data and activity classification results (Experiment VI); and (g) comparison
of activity classification performance for different sensor combinations. The activities performed
by the participants are standardized across all the experiments. The “at-rest” activities include the
armband lying stationary on the floor or placed on the arm of a person sitting still with arm resting
on a desk. Whereas, the “in- motion” activities include screwing at elbow height at a frequency of
1 turn/6 s, wrenching while kneeling at a frequency of 1 turn/6 s, lifting a 25 lbs sandbag from elbow
to shoulder height at a frequency of 1 lift/6 s, and carrying a 25 lbs sandbag on the shoulder with
the dominant hand at the bottom of the sandbag for 30 s. Activities were designed in such a way
that they represent a wide range of construction activities involving forearm (lifting), wrist (screwing
and wrenching), and whole-body (carrying). Moreover, these activities represent controlled natural
motions such as repeated motion (lifting), impulsive motion (screwing or wrenching), and free motion
(carrying). All the activities were performed for 30 s (i.e., each trial of activity was 30 s). Each
participant performed three trials for an activity on a testing day. There were two testing periods
(i.e., Day-1 and Day-2) where participants performed all five activities (i.e., stationary on the body,
screwing, wrenching, lifting, and carrying) on both days. Therefore, each participant performed a
total of 15 activities (3 trials × 5 activities) in one day. There was no gap between the testing periods.
The activities were randomized for all the participants for both days. Before the start of the experiment,
all the participants were given enough time to familiarize themselves with the tools to eliminate
systematic bias, which occurs due to learning effects [49]. The participants were asked to warm up
their bodies before the start of the session, and enough rest was provided between the trials to prevent
injuries and fatigue [50]. Once the armband was worn on the body and synced with the computer, a
two minute settling time was considered before the start of the experiment to prevent the rotational
drift. In order to test the reliability using the test-retest approach, all the activities were performed in
an indoor environment under control conditions unless stated otherwise. The eight participants’ EMG,
accelerometer, and gyroscope data were recorded and stored for all five activities for both the days.
The data were processed and analyzed accordingly based on the experiment requirements. The seven
experiments mentioned above are further explained in the following sections and broadly divided
into three categories: data quality assessment, data reliability assessment, and activity classification
performance evaluation.

2.3.1. Data Quality Assessment

Experiment I—Evaluating the Forearm EMG and IMU Data Quality for “At-Rest” and
“In-Motion” Activities

The wearable sensor data is highly susceptible to various confounding factors that affect the
quality of data. In this experiment, the data quality of EMG, acceleration, and gyroscope measurements
were assessed by evaluating the signal-to-noise ratio (SNR) and compared to a conventional sensor.
Furthermore, the influence of confounding factors (communication devices, another sensor, power
tools, and smartwatches) and environments (indoor and outdoor) on the data quality were studied
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in this experiment. Firstly, the data quality was determined for the armband sensor and compared
with the conventional sensors for at-rest and in-motion activities. In order to compare the data quality
of the armband sensor, the conventional sensors were placed along with the armband sensor while
performing activities, as shown in Figure 2. Each in-motion activity was performed three times by all
eight participants. The average SNR value was used for the comparison. The influence of various
confounding factors and environmental conditions on the armband sensor data quality was assessed
when Myo was lying on the floor by computing SNR values for three trials. Inter-device data quality
was assessed using two armbands lying on the floor at the same time to check if the data is consistent
across different devices under the same conditions. All the at-rest activities were conducted three times,
and the average value was considered to represent the influence of confounding factors, environment,
and inter-device variability on the data quality.
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Figure 2. Position of conventional (a) inertial measurement unit IMU and (b) electromyography (EMG)
along with armband sensor.

Experiment II—Investigating the Effect of Armband Sensor Position on EMG and IMU Data

In order to explore the effect of sensor position on the EMG and IMU data, a lifting activity was
performed for three different sensor positions as shown in Figure 3. The standard position refers
to wearing an armband with sensor-4 in the direction of the index finger. Whereas the rotated and
slid positions refer to rotating the armband in an anticlockwise direction (sensor-5 in the direction
of the index finger) and sliding the armband downwards with respect to the standard position,
respectively. A qualitative analysis was performed on the root mean square value of EMG and the
absolute magnitude of IMU data collected while performing lifting activity with three sensor positions.
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Figure 3. Three armband sensor positions to test the effect of sensor position on data quality: (a) rotated,
(b) standard, and (c) slid down.

The sensor data quality was assessed by evaluating the noise level in the data using the
signal-to-noise ratio (SNR). The SNR value of a signal is the ratio of the power of the signal to
the power of the noise [51]. Alternatively, it is defined as the ratio of the mean of the measurements
(µ) to the standard deviation of the measurements (σ) as shown in Equation (4). Where mean and
standard deviation (SD) of measurements represent the power of signal and power of noise in the
measurements. The signal power of acceleration and gyroscope measurements were determined
as mean values of absolute magnitude. Whereas, the mean value of the EMG measurements was
calculated as mean-absolute-value (MAV) [25,52].

SNR =
µ

σ
(4)
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2.3.2. Data Reliability Assessment

Experiment III—Assessing the Reliability of Forearm EMG and IMU Data Obtained While Performing
Construction Activities

The EMG and IMU data collected from eight participants while performing construction activities
on two different days were assessed for reliability. In this experiment, the raw EMG and IMU data
collected from eight participants were processed to calculate the mean absolute value (MAV) of EMG,
absolute acceleration (Acc), and absolute gyroscope (Gyro) for each trial of both the days (Day-1 and
Day-2). The MAV, Acc, and Gyro values of each trial were used to assess trial-to-trial reliability for both
the days. Further, the MAV, Acc, and Gyro values of all the three trials were averaged for an activity
for a participant for each day to evaluate reliability between days. The relative reliability was assessed
using the intraclass correlation coefficient, and absolute reliability was evaluated using standard error
of measurement (SEM) and smallest detectable difference (SDD).

All statistical analyses were performed using IBM SPSS statistical package version 25 (Armonk,
NY, USA). The trial-to-trial and day-to-day reliability were assessed on the accelerometer, gyroscope,
and electromyography measurements obtained while performing five construction activities on two
different testing periods (i.e., Day-1 and Day-2). Moreover, the assessment of the trial-to-trial and
day-to-day reliability measures intradevice reliability. The reliability was assessed between the trials and
between the days using test-retest reliability, which consists of relative and absolute reliability [31,53].
The relative reliability refers to the magnitude of the correlation of repeated measurements, which was
evaluated using the intraclass correlation coefficient (ICC) [31,32]. The relative reliability was expressed
using ICC form (3, k), which includes a two-way mixed effect model, mean of k measurement type, and
a definition of a relationship as absolute agreement [54,55]. Moreover, the ICC form (3, k) considers both
systematic and random errors and uses the mean value of the repeated measurements as evaluation
scores [31]. Based on the ICC score, the strength of relative reliability can be interpreted as excellent (if
ICC score is higher than 0.75), good (if ICC score is between 0.59 and 0.75), fair (if ICC score is between
0.48 and 0.58), and poor (if ICC score is less than 0.40) [31,32,54–57].

Whereas the absolute reliability refers to variability in the repeated measurements of an
individual [31,32]. The absolute reliability was evaluated by estimating the standard measurement error
(SEM). SEM estimates how the repeated measures of an individual on the same device tend to distribute
around true value [31]. SEM is estimated as defined in Equation (5), where SD is the standard deviation
of the measurements of a test and retest of all participants, and ICC is the average trial-to-trial or
day-to-day test-retest relative reliability [31,32,56,58,59]. The SEM% was used to compare the absolute
test-retest reliabilities of different scenarios, which was evaluated using Equation (6), where the SEM
score is represented as a percentage of SEM divided by the mean of test and retest measurements.
The SEM% value below 10% indicates excellent absolute test-retest reliability. Moreover, the smallest
detectable difference (SDD) was calculated from SEM at a 95% confidence interval using Equation (7),
which is the smallest change in the measurement that is required to be considered as a real change in
the measurement but not due to error [31,32,56]. Similar to SEM%, the SDD score is expressed as a
percentage of the mean of measurements (SDD%), which is computed using Equation (8) [31,32,56].
Before performing the parametric reliability testing, a nonparametric Kolmogorov–Smirnov test was
performed to verify the normality of the data.

SEM = SD
√

1− ICC (5)

SEM% =
SD
√

1− ICC
Mean

× 100 (6)

SDD = 1.96 ×
√

2 × SEM (7)

SDD% =
1.96 ×

√
2 × SEM

Mean
× 100 (8)
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2.3.3. Activity Classification, Performance Evaluation, and Classification Reliability

Experiment IV—Classification Model Building, Performance Evaluation, and Classifier Comparison

The data obtained from the armband sensor worn by the eight participants performing five activities
on two different days (Day-1 and Day-2) was used to build machine learning (ML) based classifiers
for respective days. A typical machine learning methodology, which includes data preparation,
model building, model training, hyperparameter tuning, and model evaluation, was used to develop
ML classifiers for activity classification, which was implemented using the PyCatet classification
module in Google Colab. Firstly, the dataset was prepared using the raw acceleration (ax, ay, az),
gyroscope (gx, gy, gz), and EMG (8-channel) features for both the days. The 8-channel EMG data were
downsampled by converting 8-bit to 32-bit to match the frequency of accelerometer and gyroscope
data. Therefore, the final dataset for each day consists of 38 (3-acceleration, 3-gyroscope, and 32-EMG)
input features. Further, the data were manually labeled for five different activities (i.e., stationary on
the body, screwing, wrenching, lifting, and carrying). Once the datasets were prepared, the labeled
data was used to build the machine learning (ML) based classifier models using the default classifier
settings. Besides, the hyperparameters of the model were tuned by optimizing the model accuracy to
obtain a finely tuned model. The ten most common ML-based classifier models such as random forest,
J48 decision trees, support vector machine (SVM), naïve Bayes, k-nearest neighbors (KNN), logistic,
multi-layer perceptron (MLP), linear discriminant analysis (LDA), quadratic discriminant analysis
(QDA), and gradient boosting (Xgboost) were built using each day dataset. Additionally, 10-fold
cross-validation was performed to evaluate the performance of the classifiers. In the cross-validation
technique, the dataset is randomly shuffled and divided into ten groups. Each unique group is
considered as a holdout or test dataset, and the remaining nine groups are used for model training.
Once the model has been fitted on the training dataset, the model is evaluated on the test set.
The evaluation score is retained, and the model is discarded. This process is repeated for each unique
group. The performance of the trained ML classifier was evaluated using metrics such as accuracy,
recall, precision, F1 score, kappa, and confusion matrix. The performance of different classifiers was
compared to determine the best performing classifier for each dataset.

Experiment V—Investigating the Reliability of Results Obtained from Classification Models Using
EMG and IMU Data While Performing Construction Activities on Different Days

The reliability of results obtained from the classification models using Day-1 and Day-2 datasets
was investigated. The best classifier obtained in Experiment III was further used to run ten iterations
on each dataset. The accuracies of the classifier on the Day-1 dataset were compared to accuracies of
the same classifier on the Day-2 dataset using paired t-test at 0.05 significance level.

Experiment VI—Investigating the Effect of Lifting Weight on Forearm EMG and IMU Data and
Activity Classification

Detecting different weights is useful for many construction applications. This experiment
investigates if the weight affects forearm EMG and IMU data and activity classification. For this
experiment, an activity of lifting three different weights (10 lbs, 25 lbs, 50 lbs) with three trials from four
participants was considered. The raw data with 38 features (acceleration-3, gyroscope-3, and EMG-32)
was manually labeled for three activities (Lift10, Lift25, and Lift50). The ML-based classification
models such as random forest, J48 decision trees, support vector machine (SVM), naïve Bayes, k-nearest
neighbors (KNN), logistic, multi-layer perceptron (MLP), linear discriminant analysis (LDA), quadratic
discriminant analysis (QDA), and gradient boosting (Xgboost) were built using the raw data and
evaluated using 10-fold cross-validation technique. The best classifier results were analyzed for three
different classes to check if the sensor data could classify different weights.
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Experiment VII—Comparison of Activity Classification Performance for Different
Sensor Combinations

This experiment focuses on comparing the performance of various ML-based classifier models
built using different sensor feature combinations such as EMG + IMU, IMU alone, and EMG alone.
For this analysis, two datasets were considered, namely, controlled and uncontrolled activity datasets.
The controlled activity dataset was prepared by combining the Day-1 and Day-2 data of five controlled
activities, namely screwing, wrenching, lifting, and carrying. Whereas the uncontrolled dataset was
prepared by collecting forearm armband data from the participants while performing nine construction
activities at varied intensities and pace such as walking at random speed (walk), carrying (10 lbs,
25 lbs, and 50 lbs), lifting (10 lbs, 25 lbs, and 50 lbs), and screwing (at elbow height, kneeling,
and overhead). Both the datasets consist of 38 features (3-acceleration, 3-gyroscope, and 32-EMG).
Once the datasets were prepared, the ML-based classifiers were built with different sensor feature
combinations. As explained in Experiment IV, the ten most used ML-based classifier models were
built for three sensor data combinations for both datasets. The finely tuned ML-based classifiers were
evaluated using 10-fold cross-validation, and the accuracy of the classifiers was combined across all
the sensor feature combinations for both the datasets.

The classification involves identifying a set of classes using the input features. The performance
of a classification algorithm is evaluated using metrics such as accuracy, recall, precision, F1 score,
and kappa. In order to define these metrics, one needs to understand the terms true positives (TP),
true negative (TN), false positive (FP), and false-negative (FN). The classification accuracy is the ratio
of correct predictions (TP + TN) to the total number of predictions (TP + TN + FP + FN). Precision
measures the number of correct positive predictions, which is the ratio of true positives (TP) to total
positive predictions (TP + FP). In contrast, recall is the measure of the number of correct positive
predictions out of all the positive predictions, which are the ratio of true positives to true positives
(TP) and false-negatives (FN). F1 score is the weighted average of precision and recall, as shown in
Equation (9) [60]. Cohen’s kappa value measures the agreement between the predicted and actual
labels. Apart from these metrics, the performance of the classifier on individual classes was assessed
by using a confusion matrix.

F1 Score = 2 ×
Precision×Recall
Precision + Recall

(9)

3. Results

3.1. Forearm EMG and IMU Data Quality for “At-Rest” and “In-Motion” Activities

Firstly, the EMG and IMU data quality of the armband sensors were compared with conventional
EMG (FREEEMG) and IMU (Yost) using standard deviation and signal to noise ratio. Table 1 shows the
standard deviation (noise level) and SNR (signal quality) for accelerometer, gyroscope, and EMG for
both conventional and armband sensor for at-rest and in-motion activities. The at-rest activities include
stationary on the body for the EMG and stationary on the floor for IMU. For at-rest and in-motion
activities, the noise levels in acceleration and gyroscope data of the armband sensor are comparable to
a conventional sensor. The SNR values are higher in the case of armband acceleration data compared to
the conventional sensor for both at-rest and in-motion activities. Whereas, the SNR values of gyroscope
and EMG armband data are comparable to conventional sensors (Table 1). However, the signal quality
measured as SNR is better in armband data compared to conventional sensors for both EMG and
IMU (Table 1). Secondly, the noise level and data quality were compared between the indoor and
outdoor environments. The results show that the noise level slightly increased in case of gyroscope
(SDIndoor = 0.121, and SDOutdoor = 0.138) and EMG (SDIndoor = 3.006, and SDOutdoor = 2.974) data for
outdoor environment (Table 2). However, the signal quality is comparably the same for both the
environments (Table 2). Thirdly, two different armband sensors under same conditions have similar
noise level and data quality for acceleration (SD1 = 0.002, SNR1 = 514.120; SD2 = 0.002, SNR2 = 515.192),
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gyroscope (SD1 = 0.121, SNR1 = 1.325; SD2 = 0.138, SNR2 = 1.469) and EMG (SD1 = 3.006, SNR1 = 0.865;
SD2 = 2.947, SNR2 = 0.881) data (Table 3). The acceleration, gyroscope, and EMG data of stationary
on the body were assessed for potential confounding factors, as shown in Table 4. The results show
that the noise level in the acceleration is almost similar for all the factors; however, slightly affected in
the presence of a communication device (Table 4). The noise level in gyroscope and EMG data have
slightly increased in the presence of other sensor and power tools, respectively. However, the data
quality of gyroscope and EMG data is similar in the presence and absence of confounding factors
(Table 4). Finally, the rotational drift was determined by observing the evolution of the yaw angle
for the data collected during the stationary on the body and Myo lying on the floor. Figure 4 shows
the evolution of a yaw angle for 80 s of a stationary experiment. The results indicated that there was
0.13 deg/s drift initially and it reached a steady orientation when the armband was stationary on the
body (Figure 4a). Whereas in the case of armband lying on the floor, the yaw angle drifts at a rate of
0.17 deg/s before it reached steady orientation, as shown in Figure 4b. Besides, it can be observed that
the rotational drift was reduced considerably when worn on the body compared to the armband lying
on the floor. Furthermore, the drift was higher in the initial frames and reached steady orientation in a
few seconds. Therefore, a settling time of two minutes was considered to prevent rotational drift.

Table 1. Comparison of EMG and IMU data quality of Myo armband and conventional sensors.

Accelerometer (Units of g) Gyroscope (rad/s) EMG

Myo Conv. Myo Conv. Myo Conv.

SD SNR SD SNR SD SNR SD SNR SD SNR SD SNR

At-rest
Activities 0.00 514.12 0.00 340.64 0.00 1.32 0.04 0.32 3.01 0.87 0.00 0.83

Screwing 0.02 60.42 0.03 35.30 0.31 0.52 0.62 0.43 4.39 0.78 0.02 0.67
Wrenching 0.03 37.10 0.04 25.88 0.39 0.66 0.40 0.71 5.64 0.70 0.02 0.67
Lifting 0.13 8.02 0.15 6.96 0.95 0.90 0.97 0.89 19.50 0.49 0.07 0.41
Carrying 0.06 16.07 0.07 15.35 0.45 1.22 0.50 1.16 11.25 0.70 0.01 0.66

Table 2. Comparison of EMG and IMU data quality between indoor and outdoor for at-rest activity.

Indoor Outdoor

Std. Dev. SNR Std. Dev. SNR

Accelerometer 0.002 514.120 0.002 495.712
Gyroscope 0.121 1.325 0.223 1.093

EMG 3.006 0.865 3.389 0.846

Table 3. Comparison of EMG and IMU data quality between two armband sensors for at-rest activity.

Myo-1 Myo-2

Std. Dev. SNR Std. Dev. SNR

Accelerometer 0.002 514.120 0.002 515.192
Gyroscope 0.121 1.325 0.138 1.469

EMG 3.006 0.865 2.974 0.881
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Table 4. Effect of confounding factors on data quality for at-rest activity.

Communication Device Other Sensor Power Tool Smart Watch

Std. Dev. SNR Std. Dev. SNR Std. Dev. SNR Std. Dev. SNR

Accelerometer 0.002 443.860 0.002 470.081 0.002 493.564 0.002 479.490
Gyroscope 0.100 1.588 0.166 1.157 0.133 1.147 0.111 1.255

EMG 3.270 0.851 3.100 0.855 4.610 0.830 3.030 0.855
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the floor.

Further, a qualitative comparison was performed by inspecting the in-motion activity data from
the armband and conventional sensors. The acceleration and EMG data of lifting activity of armband
and conventional sensor wore at the same time was plotted in Figures 5 and 6, respectively. In Figure 5,
the acceleration magnitude was compared for both the sensors, and it is evident that the acceleration
data pattern is similar to the conventional IMU sensor. In Figure 6, the root mean square (RMS) of
EMG channel-4 was compared with conventional EMG RMS, which shows that they follow a similar
trend. Moreover, the Myo armband can capture more detailed information compared to a single
FREEEMG sensor.
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3.2. Effect of Sensor Position on Forearm EMG and IMU Data Quality

The effect of three sensor positions, such as “rotated,” “standard,” and “slid down” are compared
for lifting activity. Figure 7a,b shows the acceleration and gyroscope magnitude for three positions, the
range of magnitude and median is the same for all the three positions, and this shows that the IMU
data of the forearm is almost the same irrespective of the armband position; whereas the RMS plots of
EMG vary for different sensor positions, as shown in Figure 8. When the armband is rotated by one
sensor, the channel-5 takes the position of channel-4, and channel-6 takes the position of channel-5.
Similarly, the RMS plot of EMG-5 and EMG-6 in rotated positions are similar to the RMS plot of EMG-4
and EMG-5 in standard positions, respectively. Whereas the RMS plots in slid down position have a
lower magnitude range compared to the standard position due to lesser contact with the muscle in
slid position.
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3.3. Reliability of Forearm EMG and IMU Data of Construction Activities

The forearm acceleration, gyroscope, and EMG data from eight participants while performing
construction activities such as screwing, wrenching, lifting, carrying, and at-rest was assessed for
trial-to-trial and day-to-day reliability using the ICC test. Tables 5–7 summarize the test-retest reliability
evaluation of accelerometer, gyroscope, and EMG measurements. For each activity, the mean and
standard deviation of the measurements is the average of three trials (test mean (SD)) for each day.
The average ICC value of three trials at a 95% confidence interval (CI), SEM%, and SDD% for all
five activities for both days are shown in Tables 5–7. For acceleration measurements of both the
days, the average ICC values range from 0.844 to 0.995 for all five activities (Table 5). Similarly,
for gyroscope and EMG, the values range from 0.839 to 0.987 and 0.864 to 0.988, respectively (Tables 6
and 7). The results from Tables 5–7 indicate excellent relative reliability between trials of acceleration,
gyroscope, and EMG measurements for all five activities for both days. Moreover, SEM% for all the
activities for acceleration, gyroscope, and EMG measurements is below 10%, which indicates excellent
absolute reliability between trials for both the days. The SDD% for all activities for both the days
ranges from 0.098% to 0.669% for acceleration, 5.953% to 32.225% for gyroscope, and 6.709% to 29.130%
for EMG.

The day-to-day reliability assessment for accelerometer measurements shows that the ICC value is
greater than 0.75, and SEM% is below 10% for all the activities, which indicates an excellent relative and
absolute reliability for all activities (Table 8). For gyroscope, the ICC values are greater than 0.75 except
for lifting activity (ICC = 0.724), which indicates excellent relative reliability of gyroscope data except
for lifting. Whereas for the absolute reliability, SEM% values are below 10% except for stationary on
the body (SEM% = 11.36%) and screwing (SEM% = 16.322%) activity. For EMG measurements, the ICC
values are greater than 0.75 for all the activities indicating excellent relative reliability. Whereas the
SEM% is slightly above 10% except for lifting activity (SEM% = 7.75%). The SDD% values range from
between 14.48% to 31.48% and 24.49% to 39.89% for gyroscope and EMG measurements, respectively.
The higher SDD% values of gyroscope and EMG suggest that caution should be taken when using
gyroscope and EMG measurements for activity recognition because the change in the measurements
might be due to error. Therefore, later experiments investigate if the data quality and reliability of the
armband data are sufficient to yield accurate and reliable activity classification results.

3.4. Validating the Classifier Performance on Day-1 and Day-2 Dataset

Tables 9 and 10 present the classification performance results of the classifiers built using Day-1
and Day-2 datasets. The performance of both classifiers was evaluated using overall accuracy, recall,
precision, F1 score, and kappa, as shown in Tables 9 and 10. The best classification performance was
obtained for random forest for both Day-1 (accuracy—96.48%) and Day-2 datasets (accuracy—96.48%).
Further, the random forest classifier was used to assess performance between the classes using the
confusion matrix and class report, as shown in Tables 11 and 12. The recall values above 90% for both
the classifiers show that a specific activity can be predicted with less false positive values. The F1
score demonstrated high overall performance for stationary on the body, carrying, lifting, screwing,
and with the lowest for wrenching (93.2% and 94.9%) for both the classifiers (Tables 11 and 12). Finally,
the association between the actual activities and the predicted classes was measured with Cohen’s
kappa coefficient, and the values indicate strong agreement with the reality in both Day-1 (95.6% ±
0.003) and Day-2 (96.73% ± 0.0019) classifiers (Tables 11 and 12).
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Table 5. Accelerometer trial-to-trial reliability.

Day-1 Day-2

Test Mean (SD) ICC (95% CI) SEM% SDD% Test Mean (SD) ICC (95% CI) SEM% SDD%

Stationary on the Body 0.97 (0.0048) 0.961 (0.943–0.990) 0.100% 0.285% 0.97 (0.00504) 0.995 (0.993–0.998) 0.035% 0.098%
Screwing 0.98 (0.0099) 0.965 (0.952–0.979) 0.190% 0.537% 0.98 (0.00931) 0.991 (0.988–0.995) 0.087% 0.245%
Wrenching 0.99 (0.0127) 0.978 (0.964–0.985) 0.192% 0.539% 0.99 (0.01227) 0.980 (0.969–0.995) 0.179% 0.490%
Lifting 1.00 (0.0103) 0.959 (0.952–0.963) 0.212% 0.585% 0.99 (0.00673) 0.923 (0.892–0.962) 0.203% 0.524%
Carrying 1.01 (0.0073) 0.888 (0.868–0.900) 0.245% 0.669% 1.01 (0.00551) 0.844 (0.779–0.931) 0.258% 0.598%

Table 6. Gyroscope trial-to-trial reliability assessment.

Day-1 Day-2

Test Mean (SD) ICC (95% CI) SEM% SDD% Test Mean (SD) ICC (95% CI) SEM% SDD%

Stationary on the Body 0.575 (0.155) 0.921 (0.840–0.966) 7.981% 22.122% 0.581 (0.168) 0.839 (0.757–0.924) 11.626% 32.225%
Screwing 9.448 (3.850) 0.987 (0.986–0.987) 4.706% 13.043% 7.316 (1.900) 0.893 (0.873–0.930) 8.507% 23.581%
Wrenching 14.243 (3.291) 0.967 (0.954–0.988) 4.176% 11.577% 14.239 (2.538) 0.885 (0.854–0.935) 6.036% 16.731%
Lifting 46.043 (5.164) 0.963 (0.948–0.979) 2.148% 5.953% 45.945 (3.897) 0.824 (0.759–0.873) 3.562% 9.874%
Carrying 30.804 (3.960) 0.899 (0.864–0.921) 4.092% 11.344% 24.838 (5.609) 0.919 (0.880–0.939) 6.440% 17.851%

Table 7. EMG trial-to-trial reliability assessment.

Day-1 Day-2

Test Mean (SD) ICC (95% CI) SEM% SDD% Test Mean (SD) ICC (95% CI) SEM% SDD%

Stationary on the Body 10.183 (4.678) 0.981 (0.963–0.995) 6.332% 17.552% 7.80 (1.163) 0.864 (0.817–0.917) 5.499% 15.242%
Screwing 23.622 (8.206) 0.946 (0.914–0.992) 8.048% 22.308% 27.32 (7.602) 0.983 (0.973–0.990) 3.628% 10.056%
Wrenching 31.719 (11.066) 0.988 (0.985–0.989) 3.874% 10.739% 30.84 (11.966) 0.983 (0.977–0.988) 5.108% 14.159%
Lifting 40.497 (4.963) 0.961 (0.946–0.976) 2.420% 6.709% 40.65 (8.490) 0.948 (0.918–0.979) 4.748% 13.160%
Carrying 42.326 (16.037) 0.949 (0.937–0.962) 8.557% 23.718% 35.77 (10.282) 0.866 (0.806–0.914) 10.509% 29.130%
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Table 8. Accelerometer, gyroscope, and EMG day-to-day reliability assessment.

Accelerometer Gyroscope EMG

Day-1 vs. Day-2 Day-1 vs. Day-2 Day-1 vs. Day-2

ICC SEM% SDD% ICC SEM% SDD% ICC SEM% SDD%

Stationary on the Body 0.82 0.24% 0.57% 0.80 11.36% 31.48% 0.92 12.57% 34.83%
Screwing 0.86 0.40% 0.97% 0.80 16.32% 45.24% 0.85 12.14% 33.65%
Wrenching 0.86 0.52% 1.26% 0.84 8.22% 22.79% 0.79 16.21% 44.92%
Lifting 0.86 0.35% 0.86% 0.72 5.22% 14.48% 0.82 7.75% 21.49%
Carrying 0.88 0.24% 0.59% 0.78 6.94% 19.25% 0.85 14.39% 39.89%

Table 9. ML-based classifier performance on Day-1 dataset.

Classifier Accuracy Recall Precision F1 Score Kappa

Random Forest 96.48% (0.0024) 96.39% (0.0025) 96.49% (0.0024) 96.48% (0.0024) 95.60% (0.0030)
J48 94.30% (0.0017) 94.17% (0.0017) 94.78% (0.0016) 94.38% (0.0016) 96.33% (0.0022)
SVM 58.85% (0.0084) 57.59% (0.0086) 58.01% (0.0172) 54.31% (0.0165) 48.44% (0.0105)
Naïve Bayes 70.45% (0.0022) 69.87% (0.0021) 70.64% (0.0023) 70.06% (0.0023) 63.06% (0.0027)
KNN 79.43% (0.0024) 78.853% (0.0025) 79.55% (0.0025) 78.95% (0.0026) 74.25% (0.0030)
Logistic 61.64% (0.0044) 60.57% (0.0045) 64.28% (0.0052) 60.51% (0.0046) 51.96% (0.0055)
MLP 94.81% (0.0029) 94.67% (0.0029) 94.80% (0.0028) 94.80% (0.0028) 93.51% (0.0036)
LDA 59.11% (0.0037) 57.92% (0.0037) 63.11% (0.0081) 56.21% (0.0036) 48.76% (0.0046)
QDA 75.23% (0.0028) 74.65% (0.0029) 75.45% (0.0032) 74.86% (0.0031) 69.03% (0.0035)
Xgboost 93.42% (0.0029) 93.22% (0.0030) 93.50% (0.0028) 93.36% (0.0030) 91.77% (0.0037)

Table 10. ML-based classifier performance on Day-2 dataset.

Classifier Accuracy Recall Precision F1 Score Kappa

Random Forest 97.43% (0.0015) 97.35% (0.0015) 97.44% (0.0015) 97.43% (0.0015) 96.73% (0.0019)
J48 96.01% (0.0014) 95.99% (0.0014) 96.24% (0.0013) 96.05% (0.0014) 95.02% (0.0017)
SVM 66.50% (0.0069) 65.64% (0.0072) 66.03% (0.0061) 63.69% (0.0090) 58.03% (0.0087)
Naïve Bayes 73.27% (0.0036) 72.80% (0.0037) 73.81% (0.0034) 72.93% (0.0034) 66.61% (0.0046)
KNN 90.98% (0.0015) 91.00% (0.0012) 90.90% (0.0012) 90.90% (0.0012) 88.72% (0.0015)
Logistic 68.31% (0.0046) 67.82% (0.0046) 69.55% (0.0044) 67.97% (0.0046) 60.34% (0.0057)
MLP 97.13% (0.0019) 97.04% (0.0019) 97.13% (0.0018) 97.13% (0.0018) 96.41% (0.0023)
LDA 68.43% (0.0054) 67.88% (0.0055) 71.43% (0.0054) 67.70% (0.0056) 60.45% (0.0068)
QDA 76.32% (0.0035) 75.90% (0.0036) 77.00% (0.0033) 75.79% (0.0033) 70.42% (0.0043)
Xgboost 96.51% (0.0012) 96.39% (0.0012) 96.50% (0.0012) 96.50% (0.0012) 95.64% (0.0015)

Table 11. Confusion matrix and class report of random forest classifier on Day-1 dataset.

Predicted Class

Stationary on the Body Screwing Wrenching Lifting Carrying

True Class
Stationary

on the Body 8953 27 2 0 0

Screwing 13 8244 345 38 0
Wrenching 10 409 8035 209 0

Lifting 1 129 187 8131 97
Carrying 0 1 5 64 9598

Overall
Accuracy

96.48%
(0.0024)

Precision 99.70% 93.60% 93.60% 96.30% 99.00%
Recall 99.70% 95.40% 92.80% 95.10% 99.30%
F1 Score 99.70% 94.50% 93.20% 95.70% 99.10%
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Table 12. Confusion matrix and class report of random forest classifier on Day-2 dataset.

Predicted Class

Stationary on the Body Screwing Wrenching Lifting Carrying

True Class
Stationary

on the Body 11,857 25 0 0 0

Screwing 14 10,941 210 75 0
Wrenching 0 368 9949 220 0

Lifting 0 75 247 11,184 59
Carrying 0 21 32 47 11,653

Overall
Accuracy

96.33%
(0.0022)

Precision 99.90% 95.70% 95.30% 97.00% 100%
Recall 99.80% 97.30% 94.40% 96.70% 99%
F1 Score 99.80% 96.50% 94.90% 96.90% 99%

3.5. Reliability of Classification Results

The classification results obtained using the classifiers of Day-1 and Day-2 were further analyzed
for reliability using paired t-test on overall accuracy. A paired t-test (p = 0.63) at a significance level of
0.05 shows that their no significant difference between the accuracies of both the Day-1 and Day-2
classifier. The difference between the overall accuracy of Day-1 and Day-2 random forest classifier
is 0.15%.

3.6. Effect of Lifting Weight on Classification Results

The ten most common classification algorithms’ performances were analyzed on the lifting
different weights dataset. Table 13 shows the accuracy, recall, precision, F1 score, and kappa values
of all the classifiers. The random forest classifier showed the best performance in classifying three
different weights with an overall accuracy of 83.89%, recall value of 84.06%, and kappa value of 75.82%.
The results indicate that using the forearm EMG and IMU data, the random forest classifier can classify
all three weights at 83.89% accuracy. Further, the confusion matrix and class report show that the high
overall performance for Lift10 (F1 score = 91%) activity followed by Lift25 (F1 score = 80%) and Lift50
(F1 score = 77%) (Table 14). The results confirm that the forearm EMG and IMU data can not only
classify lifting activity but is also able to detect the weight. In addition, the correlation of raw features
shows that the gyroscope and EMG features are highly correlated compared to accelerometer features
(Figure 9). Therefore, it can be concluded that the gyroscope and EMG features provide an opportunity
to classify different weights of lifting activity.

Table 13. Classifier performance on lifting different weights.

Classifier Accuracy Recall Precision F1 Score Kappa

Random Forest 83.89% (0.0051) 83.71% (0.0053) 84.06% (0.0053) 83.93% (0.0052) 75.82% (0.0077)
J48 72.71% (0.0061) 72.73% (0.0061) 76.14% (0.0067) 73.05% (0.0060) 59.91% (0.0091)
SVM 54.31% (0.0079) 53.43% (0.0082) 53.26% (0.0163) 48.94% (0.0134) 31.00% (0.0123)
Naïve Bayes 43.21% (0.0080) 42.17% (0.0082) 43.86% (0.0169) 36.94% (0.0109) 13.61% (0.0123)
KNN 65.07% (0.0040) 64.47% (0.0003) 64.98% (0.0014) 63.91% (0.0001) 47.45% (0.0006)
Logistic 56.70% (0.0054) 55.96% (0.0055) 54.78% (0.0072) 53.57% (0.0062) 34.70% (0.0082)
MLP 71.838% (0.0043) 82.90% (0.0015) 83.00% (0.0054) 82.90% (0.0003) 31.14% (0.0093)
LDA 55.07% (0.0054) 54.35% (0.0056) 53.08% (0.0071) 52.15% (0.0060) 32.31% (0.0082)
QDA 45.69% (0.0069) 44.68% (0.0070) 46.11% (0.0104) 40.70% (0.0104) 17.50% (0.0106)
Xgboost 75.84% (0.0070) 75.58% (0.0072) 75.91% (0.0074) 75.81% (0.0072) 63.73% (0.0106)
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Table 14. Confusion matrix and class report of random forest classifier on different lifting weights.

Predicted Class

Lift10 Lift25 Lift50

True Class Lift10 3622 221 242
Lift25 94 3135 603
Lift50 169 669 2894

Overall Accuracy 83.89% (0.0051)
Precision 93% 78% 77%

Recall 89% 82% 78%
F1 Score 91% 80% 77%
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3.7. Comparison of Activity Classification Performance for Different Sensor Combinations

The comparison of overall accuracies for different sensor combinations is shown in Table 15. For the
controlled dataset, the EMG + IMU and IMU alone are better compared to EMG. The classification
accuracy is higher for EMG + IMU in the case of random forest, SVM, naïve Bayes, and MLP; whereas,
the classification accuracy is higher for IMU alone in the case of KNN, logistic, LDA, QDA, and Xgboost.
However, except for KNN and MLP, the accuracy is not significantly different for EMG + IMU and IMU
alone; whereas for the uncontrolled activity dataset, the accuracy is significantly higher for EMG + IMU
compared to IMU and EMG alone except in the case of KNN. For the KNN classifier, the IMU alone
has higher accuracy compared to EMG + IMU. However, the highest classification accuracy (98.13%)
for nine activities with various intensities was obtained for the EMG + IMU feature combination.
The combination of EMG and IMU features yields higher accuracy compared to individual sensor data
for complex activities.
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Table 15. Overall classification accuracy for different sensor combinations for controlled and
uncontrolled datasets.

Controlled Activity Dataset Uncontrolled Activity Dataset

Classifier EMG + IMU IMU EMG EMG + IMU IMU EMG

Random
Forest 96.21% 94.65% 44.97% 98.13% 84.80% 47.60%

J48 94.94% 95.33% 48.54% 96.55% 78.55% 30.83%
SVM 73.23% 73.33% 21.21% 96.55% 48.39% 14.19%
Naïve Bayes 71.40% 69.39% 45.95% 82.52% 54.79% 23.05%
KNN 86.16% 96.95% 45.58% 71.03% 84.62% 29.83%
Logistic 64.65% 64.69% 18.86% 88.76% 45.63% 14.11%
MLP 90.87% 81.99% 52.27% 90.82% 62.50% 37.51%
LDA 62.78% 62.87% 18.87% 88.26% 26.57% 14.19%
QDA 74.79% 75.73% 46.44% 62.33% 52.66% 29.24%
Xgboost 41.53% 41.53% 27.51% 85.52% 21.72% 15.70%

4. Discussion

In this study, the data quality of low-cost forearm based wearable sensors were explored by
comparing the standard deviation and signal to noise ratio of the armband sensor and the conventional
sensor for at-rest and in-motion activities. The noise levels in the armband acceleration data (SD = 0.002)
when lying on the floor are comparable to the high precision conventional IMU sensor (SD = 0.003),
which is in agreement with the previous study (SD = 0.0019) [25]. Similarly, the noise levels in the
acceleration and gyroscope data for in-motion activities are comparable to conventional sensors.
Besides, the signal quality of armband sensor data is higher compared to the conventional sensor, which
shows that the armband sensor is less sensitive compared to high precision and high-frequency sensors.
Moreover, the data quality test in the presence of confounding factors also proves that the armband data
is not affected much by the confounding factors, environment, and inter-device variability. Drift is one
of the most common issues of IMU when used to estimate position and orientation [26]. The rotational
drift of the armband sensor was assessed by observing the evolution of the yaw angle for at-rest
activities. The yaw angle drifts at a rate of 0.17 deg/s before it reaches the steady orientation, which is in
agreement with a previous study [61]. This experiment proves that the drift reduced when the Myo was
worn on the body compared to lying on the floor. Moreover, the rotational drift was highest in the initial
frames and reached a steady state in a few seconds. Similar to the other studies [25,62], the in-motion
(i.e., lifting) activity data of the armband and the conventional sensor was visually compared since the
quantitative comparison of both sensor signal data would not be appropriate. For the comparison of
EMG and accelerometer signals, RMS and absolute magnitude plots were considered, as shown in
Figures 5 and 6. The result shows that the armband data and conventional sensor both pick the same
peaks and follow a similar trend for lifting activity. The qualitative assessment of armband sensor
position on EMG and IMU data quality shows that accelerometer and gyroscope data is almost similar
for three (rotated, standard, and slid down) sensor positions. A previous study [63] reported similar
results where the classification accuracy using accelerometer data at different sensor positions made no
significant difference. However, the EMG data for three armband positions are significantly different,
which conforms with the fact that the IMU sensor captures the motion of the forearm, whereas the
EMG signal depends on the muscle contact.

The study assessed the relative and absolute reliability of forearm EMG and IMU data of
construction activities. The test-retest evaluation of accelerometer data indicated an excellent trial-to-trial
(ICC = 0.844 to 0.995 and SEM% = 0.087% to 0.258%) and day-to-day (ICC = 0.824 to 0.881
and SEM% = 0.245% to 0.526%) relative and absolute reliability for all the activities as shown in
Table 5. Whereas for the gyroscope data, an excellent relative reliability was observed for trial-to-trial
(ICC = 0.824 to 0.987) and day-to-day (ICC = 0.801 to 0.844) except for lifting where ICC = 0.724
(Tables 6 and 7). The absolute reliability of gyroscope data for day-to-day was slightly greater than 10%
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ranging from 5.224% to 16.322%. The EMG data has shown excellent relative (ICC = 0.864 to 0.988) and
absolute (SEM% = 2.420% to 10.509%) reliability between trials but the absolute reliability between the
days (SEM% = 7.75% to 16.21%) is slightly greater than 10% (Table 8). Overall, the results show that
armband sensor data (acceleration, gyroscope, and EMG) exhibited excellent relative reliability between
trials and days, which indicates a strong correlation of the repeated measurements. Furthermore,
the armband sensor data exhibited excellent absolute reliability between the trails and moderate
absolute reliability between days, which is indicated with a slight increase in SEM% and SDD%. As
shown in Equations (6) and (8), SEM% and SDD% are directly correlated to the ratio of SD and mean
of the measurements. The higher SEM% and SDD% between days are due to the larger SD to mean
ratio. Further investigation was performed to determine if the armband data obtained at this level of
reliability is sufficient to yield accurate and reliable activity classification results.

The ML-based classification results using both days’ datasets show that the forearm EMG,
acceleration, and gyroscope features are capable of classifying activities involving different body
parts such as wrist, forearm, and whole-body and various motions such as repetitive motion,
repeated impulsive motion, and free motion with high accuracy (Day-1accuracy = 96.48% ± 0.0024
and Day-2accuracy = 96.33% ± 0.0022). Furthermore, the overall classification accuracy of 98.13%
achieved for nine uncontrolled activity datasets shows that the model is capable of recognizing
activity with different intensities, which is one of the limitations of current construction activity
recognition models [10,16,20]. The accuracy of proposed activity recognition models using EMG and
IMU forearm data (AccuracyEMG + IMU = 98.13%) is higher than previously published construction
activity recognition models such as carpentry activities (91%) [14], fall identification (94%) [15], manual
material handling activities (90.74%) [11], ironworker activities (94.83%, 92.98%) [9,17], and bricklaying
activities (88.1%) [20].

Moreover, the reliability assessment of classification results using Day-1 and Day-2 classifiers
showed that there exists excellent reliability of classification results using the forearm EMG and IMU
features. Later, the forearm EMG and IMU data were used to classify different weights of lifting activity,
which is useful for various construction applications. The results showed that the overall classification
accuracy of three classes (Lift10, Lift25, and Lift50) is 83.89% (0.0051), which is higher than the accuracy
obtained by Ho, et al. [64] (77.1%) in classifying barbell weights from 20 to 70 lbs using forearm EMG
features. Moreover, for three lifting weights, the gyroscope and EMG features are highly correlated,
which contributed to higher classification accuracy. The comparison of classification performance
for different sensor combinations on controlled (AccuracyEMG + IMU = 96.21%, AccuracyIMU = 94.65%,
AccuracyEMG = 44.97%) and uncontrolled (AccuracyEMG + IMU = 98.21%, AccuracyIMU = 84.80%,
AccuracyEMG = 47.60%) dataset showed that the highest accuracy is obtained in case of EMG + IMU
which is in agreement with the previous studies on forearm gym activities (AccuracyEMG + IMU

= 71.6%, AccuracyIMU = 67.8%, AccuracyEMG = 20.7%) [38], forearm manufacturing activities
(AccuracyEMG + IMU = 87.4%, AccuracyIMU = 85.0%, AccuracyEMG = 50.7%) [41], and gym exercises
(AccuracyEMG + IMU = 84.2%, AccuracyIMU = 77.7%, AccuracyEMG = 85.2%) [47]. Further, the increase
in classification accuracy due to combined features show that the gyroscope and EMG features obtained
at higher SEM% and SDD% are suitable for activity classification. The fusion of forearm muscle activity
(EMG) and kinematic (IMU) data have resulted in the highest classification accuracy for a greater
number of complex activities with different intensities. The advantage of using an armband sensor is
that both forearm muscle activity and motion data are obtained from the single device and avoids the
use of multiple sensors that obstructs construction work.

Some of the limitations of the study worth mentioning are that the data quality of the sensor
data was assessed only on at-rest activities. All the in-motion activities were performed in residential
settings by participants with little to no construction experience. All the participants in this study were
right-handed and male. In addition to acceleration, gyroscope, and EMG data, the armband sensor
provides orientation quaternion and Euler angles of the forearm. However, the orientation angles were
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not assessed for reliability in this study. Moreover, one can consider performing validity assessment
for forearm EMG and IMU data of armband sensor.

5. Conclusions

The current study assessed the data quality and reliability of forearm EMG and IMU data from a
low-cost wearable sensor for activity classification. In order to achieve the objective, the whole study
was divided into seven experiments. From the first experiment, the data was inferred that the armband
sensor data is comparable to conventional EMG and IMU data. Moreover, there was a very minimal
effect of environment, confounding factors (communication device, power tools, other sensors, and
smartwatches), and inter-device variability. Secondly, a qualitative comparison was performed to
understand the effect of armband position on forearm EMG and IMU data, and it was concluded that
the armband position does not affect IMU data, but EMG data was affected due to the sensor position.
Thirdly, the trial-to-trial and day-to-day reliability of acceleration, gyroscope, and EMG data were
assessed for five construction activities. The results conclude that the forearm IMU and EMG data for
all five activities have excellent relative and absolute reliability between the trials, and between the days
except for EMG data between the days has SEM% slightly higher than 10%. Next, the EMG and IMU
data for both days was used to build and evaluate building ML-based activity classification models.
The most common classification models were compared for the performance on the Day-1 and Day-2
datasets. The random forest classification algorithm showed the best performance on both the datasets.
The reliability test on the classification results of both the classifiers confirmed that the classification
results are high reliability with minimal change inaccuracies for both the days. The effect of lifting
weight on classification performance was assessed, which concluded that the forearm EMG and IMU
data could classify three different weights. Further, it was observed that a strong correlation in gyroscope
and EMG features exists compared to accelerometer data for three classes. Finally, the comparison of
classification performance for different sensor combinations showed that the forearm muscle activity
and motion data fusion yield higher classification accuracy for construction activities with various
intensities. The armband data is highly reliable, and the scientific evaluation of the armband sensor
builds trustworthiness among researchers, policymakers, stakeholders, and customers to use the sensor
for various applications. The data quality and reliability assessment of armband sensors show that the
quality of muscle and motion-sensing data is sufficient for various construction applications related
to construction skill training, safety training, and monitoring. Moreover, the classification results
of the study conclude that the forearm-based EMG and IMU data can be used to generate reliable
construction activity, recognition models.
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