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What viral RNA genomes lack in size, they make up for in intricacy. Elaborate RNA structures embedded
in viral genomes can hijack essential cellular mechanisms aiding virus propagation. Exoribonuclease-
resistant RNAs (xrRNAs) are an emerging class of viral elements, which resist degradation by host cellular
exoribonucleases to produce viral RNAs with diverse roles during infection. Detailed three-dimensional
structural studies of xrRNAs from flaviviruses and a subset of plant viruses led to a mechanistic model
in which xrRNAs block enzymatic digestion using a ring-like structure that encircles the 50 end of the
resistant structure. In this mini-review, we describe the state of our understanding of the phylogenetic
distribution of xrRNAs, their structures, and their conformational dynamics. Because xrRNAs have now
been found in several major superfamilies of RNA viruses, they may represent a more widely used strat-
egy than currently appreciated. Could xrRNAs represent a ‘molecular clock’ that would help us under-
stand virus evolution and pathogenicity? The more we study xrRNAs in viruses, the closer we get to
finding xrRNAs within cellular RNAs.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-
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1. Introduction: xrRNAs as generic mechanical blocks to
exoribonucleases

The compact genomes of RNA viruses (max. 30 kb) are littered
with structured elements [1,2]. Structured RNA elements are key
contributors to all stages of viral infection and usually to
pathogenicity. They are often used by viruses to manipulate tran-
scription, translation, antiviral responses, and other cellular mech-
anisms [3]. Such elements comprise for example hairpin
structures, which protect the 30 end and may affect translation
[4], and pseudoknotted folds, which may start translation or alter
the translation reading frame [3,5].

An emerging class of structured viral RNAs are the
exoribonuclease-resistant RNAs (xrRNAs), which were first discov-
ered in the 30 untranslated region (UTR) of flaviviruses and plant
viruses [6–8]. xrRNAs resist degradation from the 50 direction by
Fig. 1. xrRNAs across the viral phylogeny. (A) Relationship between viruses based
on RNA-dependent RNA polymerase sequences (adapted from [13]). The five main
branches stemming from a putative common ancestor are shown by colored boxes.
Only relevant viral families are shown, the rest are symbolized as dashed lines.
Color coding for the viral families: bold & black, contains an xrRNA; black,
representative families within each branch in which xrRNAs have not (yet?) been
found; grey, human pathogen closely related to viruses containing xrRNAs. (B)
Schematic exoribonuclease-mediated degradation pathway. The xrRNA element
blocks the exoribonuclease.
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the host cellular exoribonuclease Xrn1 (or its homologs, like
Xrn4 in plants [9]) and more generally by any 50-to-30 exoribonu-
clease (e.g., bacterial RNase J1 and yeast decapping and exoribonu-
clease protein 1) [10–12]. Viral xrRNAs can therefore be viewed as
a generic roadblock to directional degradation.

Altogether, xrRNAs have now been reported in at least three of
the five major virus branches (Fig. 1A) [13]. Outside of Flaviviridae,
but still within branch 3, xrRNAs have been identified in Tom-
busviridae and Luteoviridae [7,12,14] as well as in the Alphavirus
supergroup [15,16]. Putative xrRNAs have also been proposed
within branch 2 (e.g., Potyviridae [17]) and branch 5 (e.g., Bun-
yaviridae and Arenaviridae [18]). Overall, these findings highlight
that xrRNAs are more widespread than originally thought.

Generally, xrRNAs are responsible for the production of certain
subgenomic RNAs (sgRNAs), through partial degradation of the
genomic RNA (Fig. 1B; these are distinguished from sgRNAs result-
ing from internal transcription initiation [19]). For example, in fla-
viviruses —where the sgRNAs are referred to as sfRNAs for
‘subgenomic flaviviral RNAs’— sfRNAs act as noncoding RNAs that
interact with the cellular proteome to alter antiviral responses
[20,21], but the details of this remain poorly understood [11]. For
some plant-infecting viruses, xrRNAs are located within subge-
nomic RNAs (sgRNAs) that encode proteins and these sgRNAs
may therefore be translated [14,22]. In Tombusviridae, an xrRNA
is similarly responsible for the formation of a non-coding RNA with
translation regulation properties [7,12,23]. In Benyviridae, Betaflex-
iviridae and Virgaviridae, an xrRNA is sufficient to block Xrn4, lead-
ing in Benyviridae to the formation of non-coding RNA3 (ncRNA3)
and RNA5 (ncRNA5), which are essential for viral long-distance
movement within the infected plant [15–17,24]. Hence, xrRNAs
may be important for producing or protecting a variety of viral
RNAs with diverse functions; they are emerging as an important
mode of viral RNA maturation and protection.
2. Encircling the 50 end: Different strategies for a shared feature

The three-dimensional crystal structures of xrRNAs from sev-
eral viruses within the flavivirus supergroup (Murray Valley
Encephalitis Virus, MVEV; Zika Virus, ZIKV; Tamana Bat Virus,
TABV) offer detailed insights into the molecular basis of exoribonu-
clease resistance [25–27]. They reveal that xrRNAs adopt a ring-
like structure through which the 50 end threads (Fig. 2A). In all
cases observed thus far, the ring comprises 15–16 nucleotides.
Complex tertiary interactions including pseudoknots, non-
canonical base-pairs, bound metal ions, and intricate stacking
and hydrogen bonding schemes stabilize the ring feature. Some
of these interactions form patterns that are specific to different
xrRNA classes (Fig. 3; see next section). The resulting compact fold
braces against the surface of the enzyme approaching from the 50

side, preventing further progression of the enzyme through the
xrRNA [25].

The importance of a ring structure for blocking the enzyme is
further supported by structures from xrRNAs outside the fla-
viviruses. Specifically, plant-infecting viruses from Tombusviridae
and Luteoviridae (Fig. 1A), have xrRNAs with sequences and sec-
ondary structures that differ from flaviviral xrRNAs [12,25,26].
Although the crystal structures of xrRNAs from Sweet Clover
Necrotic Mosaic Virus (SCNMV; Tombusviridae) and Potato Leaf Roll
Virus (PLRV; Luteoviridae) did not capture the RNA in its active
ring-supported conformation, a ring-like structure could be mod-
eled that also contained 15 nucleotides encircling the 50 end
(Fig. 2B). As in flaviviruses, this ring depends on the formation of
a pseudoknot whose importance was verified by site-directed
mutagenesis and via an infection system [12].



Fig. 2. Ring-like structures in RNA. (A) The ~15 nucleotides forming a ring around the 50 end are highlighted in bold and purple on the three-dimensional structure of xrRNAs
from MVE, ZIKV and TABV (PDB ID: 4PQV, 5TPY, 7K16). See Fig. 3B for corresponding secondary structure cartoons. (B) 3D model computed for the SCNMV xrRNA. (C) Ring-
like topology in the bacterial SRP Alu RNA (PDB ID 4WFL). (D) Helical packing leading to a ring-like arrangement within the SARS-CoV-2 frameshift stimulation element (PDB
ID 6XRZ). The 50 end and strand directionality around the ring structure are indicated in all panels. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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The ring-like architecture in both flavivirus and plant virus
xrRNAs requires at least one pseudoknot. In the flavivirus xrRNAs,
the ring topology appears to be formed by interactions between a
three-way junction and the 50 end, forming the PK1 pseudoknot
(Figs. 3, 4). A second pseudoknot forms to ‘‘latch” the structure
closed [28] (Figs. 3, 4). In plant virus xrRNAs, formation of PK1
(Figs. 3, 4) and the ring follows degradation by Xrn1 through the
P1 stem, leading to the exoribonuclease resistant fold, as shown
by Förster resonance energy transfer (FRET; [12]). A similar phe-
nomenon of structural remodeling could occur within other xrRNA
families, particularly when alternative pairing schemes are
proposed, which may result in the Xrn1 halt site being located
within a predicted stem (compare for example secondary structure
predictions in [29–31]. In short, just like ‘co-transcription folding’
can occur as an RNA chain is progressively extended [32], progres-
sive degradation of an RNA in the 5’ to 3’ direction can create
‘co-degradational’ stabilization of a specific structure. While these
proposed folding pathways remain to be fully tested, they may pre-
sent two different ways to solve the topological challenge of
‘threading’ a single strand of RNA through a ring.
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3. How unique are xrRNA ring-like structures?

Ring-like structures in xrRNAs beg the question as to how com-
mon these folds are. In fact, ring-like topologies have been previ-
ously observed in RNA structures. For example, double-stranded
regions may form a ring-shaped super-structure, as in the packag-
ing motor prohead RNA [33]. Ring structures are also appealing for
synthetic biology [34], which focuses on the design RNA nanopar-
ticle for disease diagnosis and drug delivery [35]. Such RNA rings
combine several molecules, which is different from the situation
in xrRNAs, where a single continuous section of an RNA strand
encircles a single-stranded element. The resulting structure is
‘‘knot-like” and thus far seems unique to xrRNAs (Fig. 2A,B). The
Alu region from the bacterial single recognition particle (SRP)
shows a stunningly similar ring architecture to that of xrRNAs,
but no RNA threads through the ring [36] (Fig. 2C). In the case of
the SARS-CoV-2 frameshift stimulation element, a ring was pro-
posed to represent a critical structural feature, but that ring is
assembled from several parts of the RNA [37] (Fig. 2D). Additional
evidence may be required to support a ring-like status for features

https://www.rcsb.org/structure/4PQV
https://www.rcsb.org/structure/5TPY
https://www.rcsb.org/structure/7K16
https://www.rcsb.org/structure/4WFL
https://www.rcsb.org/structure/6XRZ


Fig. 3. Towards a structure-based taxonomy of xrRNAs. (A) Phylogeny within the Flavivirus supergroup, based on the NS5 sequence (adapted from [69]). Genera belong to
one of three (sub)classes: 1a, 1b, or 2. The position between P2 and P3 (orange circle) is a key discriminator between xrRNA (sub)classes of xrRNAs. NKV, no known vector
flavivirus; TBFV, tick-borne flavivirus; MBFV, mosquito-borne flavivirus; ISFV, insect-specific flavivirus. (B) Cartoon representation of the secondary structure of xrRNAs from
the Flavivirus supergroup. P, paired region; PK, pseudoknot; BT, base triple. (C) BT interactions visualized in the crystal structures of the xrRNAs from ZIKV (PDB ID 5TPY) and
TABV (PDB ID 7K16). (D) Close up on the discriminating position (orange) in the ZIKV and TABV structures. (E) Cartoon representation of the secondary structure of an xrRNA
from Luteoviridae. (F) Cartoon representation of the secondary structure of an xrRNA from Benyviridae. Double arrow in panels B, E, F: Xrn1 halt site. Regions forming the ring
as highlighted in Fig. 2 are shown in purple in panels B, E. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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that essentially constitute tightly packed RNA. Whether the topol-
ogy seen in xrRNAs represents a distinct and defining characteristic
of xrRNAs remains to be determined as more xrRNA structures are
solved, or perhaps similar features are identified in other RNAs.
4. Flavivirus xrRNA structures in context

xrRNAs form discrete folded structures, which are often
found in series in the 30 UTRs of many flaviviruses
[14,17,38,39]. While these ‘tandem’ xrRNAs might initially seem
4376
independent and redundant, evidence suggests that the struc-
tural integrity of one can affect the function of the other
[25,40,41]. This may be an important virological feature, as
studies of the Dengue virus (DENV) and Zika show tandem
xrRNA1 and xrRNA2 allow for a higher fitness as the virus
cycles between hosts (such as mosquito and human) [38],
where sfRNAs may play different roles. When two xrRNA folds
are present in tandem, the pressure to maintain one of them
may be relaxed to accommodate mutations that would be ben-
eficial for that particular environment.

https://www.rcsb.org/structure/5TPY
https://www.rcsb.org/structure/7K16


Fig. 4. Covariation of xrRNAs. (A) Secondary structure of subclass 1a xrRNAs emphasizing the three-dimensional architecture [25,26] (32 sequences and models from
[28,43]). Core features (P1, P3, PK1, BT and the discriminating position (in orange)) are horizontally aligned between panels A–C. (B) 3-D based secondary structure of subclass
1b xrRNAs [27] (87 sequences from [43]). (C) Predicted secondary structure of class 2 xrRNAs (28 sequences from [29,31], with automatic improvement of covariation
patterns using R-scape [70,71]). (D) 3-D based secondary structure of xrRNAs from Luteoviridae and Tombusviridae (55 sequences from [12,72]). (E) Predicted secondary
structure of xrRNAs from Benyviridae, Betaflexiviridae and Virgaviridae (original 10–12 sequence alignment [15,17] expanded to 47 sequences from searching the viral
sequence database [73] using a published methodology [14,74,75]). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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How do two tandem xrRNAs communicate to couple their func-
tion? The most straightforward hypothesis is through a direct
physical interaction. Consistent with this, small-angle X-ray scat-
tering (SAXS) revealed that tandem xrRNAs from ZIKV, DENV2
and WNV have a defined envelope and thus may have a preferred
relative orientation, but that they do not appear to be in intimate
contact [42]. However, because SAXS envelopes reflect the popula-
tionally weighted average of the structural ensemble, more data
are needed at higher resolution to fully assess the presence and
nature of likely physical contacts between individual xrRNAs in
tandem. Overall, these current data suggest that flavivirus 30UTRs
and sfRNAs are best described as a structural ensemble rather than
by a single conformation [42]. This characteristic may be important
for the virus, allowing alternative folds to be adopted in different
environments or at different stages of the viral life cycle to coordi-
nate different processes important for infection.
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5. A budding structure-based taxonomy of xrRNAs

Within the flavivirus supergroup where they were originally
found, xrRNAs have now been identified and characterized in all
genera of Flaviviridae (Fig. 3A) [11,30,39,43]. Initial characteriza-
tion of these xrRNAs based on proposed secondary structures, con-
served sequences, and the halt point of the enzyme suggested two
major genera-specific classes [29], both organized around a three-
way junction (3WJ [44]) and at least one pseudoknot [45] (Fig. 3B).
The high-resolution structures of class 1 (from MVE and ZIKV)
revealed additional tertiary features, including a conserved base-
triple interaction (BT; Fig. 3B,C) supplemented with additional
non-canonical interactions necessary to support such intricate
folds. A three-dimensional structure of a class 2 xrRNA (e.g., within
Tick-Borne Encephalitis Virus, Langat Virus and Powassan Virus)
has yet to be solved, but alignments of the conserved xrRNA fea-
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tures in both classes have been harnessed by a search algorithm for
automatic identification of xrRNAs [46]. Overall, a taxonomy of
xrRNAs emerges from the knowledge of their features at the sec-
ondary and tertiary structure levels [30,31,39,47,48]. By definition,
the current classification for xrRNAs will be amended as more
xrRNAs are discovered.

Specifically, class 1 xrRNAs are distinguished from class 2
xrRNAs on the basis of (1) their 3WJ configuration, (2) a longer dis-
tance between the regions forming the PK2 pseudoknot in 2, and
(3) a longer P4 in 2 [29,31,49]. xrRNAs originally described as
belonging to class 1 are now further divided into subclasses 1a
(32 sequences, from e.g., MVEV, ZIKV, and DENV [28,43]) and 1b
(87 sequences, from e.g., Culex Flavivirus, Cell Fusing Agent Virus
and TABV [43]): (1) in 1b, the P1 and P3 stems are shorter than
in 1a, (2) characteristic non-Watson-Crick pairs in P1 are found
in 1b but not 1a, (3) a P4 stem may not always be present in 1b,
and (4) the BT interaction tends to be U-A-U for 1a but C-G-C+

for 1b [43] (Fig. 3B,C and 4A–C). Whether the BT interaction is pre-
sent in 2 remains an open question. (Sub)classes 1a, 1b and 2 are
distinct on the basis of bioinformatic and structural analysis; in
the case of subclasses 1a and 1b this extends to distinct tertiary
interactions beyond Watson-Crick base-pairing.

In addition, the region of the 3WJ between stems P2 and P3
(which comprises either a single nucleotide or no nucleotide) acts
as a convenient discriminator between classes and subclasses (or-
ange on Fig. 3B,D and 4A-C). A ~90% conserved C in 1a forms ter-
tiary contacts at the core of the fold (Figs. 3D, 4A); replacing it
with a G or deleting it abrogates exoribonuclease resistance
[25,26]. Conversely, no nucleotide is present at the equivalent posi-
tion in 1b (Figs. 3D, 4B) and introducing one leads to loss of resis-
tance [27]. Hence, subclasses 1a and 1b achieve a similar fold and
architecture with different sets of tertiary interactions. In class 2, a
highly conserved A is found at what is proposed to be the analo-
gous location (Fig. 4C), which can be hypothesized to similarly sup-
port the architecture of the 3WJ, although this has not yet been
visualized in a structure.

Overall, using the solved crystal structures (for 1a and 1b repre-
sentatives), comparative sequence alignments, site-directed muta-
genesis, and chemical mapping data (for all classes), we can
hypothesize that all xrRNAs from the Flavivirus supergroup fold
around a generally similar core (Fig. 4A–C). Locally, key interac-
tions differ, leading to the classification into classes and subclasses,
but globally, core ring structures are similar. 1b is more compact
than 1a, while 2 presents a longer PK1, with additional pairing
upstream of PK1 as well as 10–15 nucleotides within P1 (Fig. 4C)
[29,31]. The hypothesis that xrRNAs fold around a common core
remains to be validated through structural analysis. In particular,
the three-dimensional structure of a class 2 representative would
illustrate the role of the discriminating A between P2 and P3 and
would indicate whether the conserved but covarying BT interac-
tion in other classes is present in 2.

The xrRNAs from Luteoviridae and Tombusviridae adopt distinct
secondary structures from the flavivirus xrRNAs, with no central
3WJ (Fig. 3E). The crystal structures of Tombusviridae xrRNAs in
an inactive conformation revealed a stem-loop structure with
appendages so the apical loop ‘falls back’ to make contacts with
an internal loop region [12] (Fig. 4D). These xrRNAs nonetheless
form a functionally important and hence conserved pseudoknot
(Fig. 4D). In contrast, the Benyviridae xrRNAs contain neither a
3WJ, nor a pseudoknot (Fig. 3E). The currently accepted secondary
structure model for the Benyviridae xrRNA has two stem loops sep-
arated by a 10 nucleotide-long linker [15,17] (Fig. 4E). The simplic-
ity of that arrangement does not account for the complex fold
needed to block an exoribonuclease. In fact, the strong conserva-
tion of the first ~20 nucleotides neither supports nor disproves this
secondary structure. More xrRNAs have been identified with even
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more distinct predicted structures [18,50]. Whether these more
‘exotic’ xrRNAs form more distinct classes remains uncertain until
their tertiary folds have been visualized.
6. Footprints of evolution?

The presence of diverse xrRNAs in divergent RNA virus clades
raises the question of their origins and evolutionary relationships.
It seems likely that within the Flavivirus supergroup, xrRNA classes
1 and 2 evolved from a common fold, then the basic core structure
supporting the ring-like structure diversified as new lineages
arose. This idea is highlighted by the structures of class 1 xrRNAs,
which showed variations within a similar overall fold [27]. Fur-
thermore, these variations led to distinct subclasses based on
diverged tertiary interactions [30,39,43]. However, except for class
1 flavivirus xrRNAs, we do not know what the active fold of xrRNAs
looks like, which limits fully understanding xrRNA evolution. Solv-
ing the structures of xrRNAs from distinct viral families and lin-
eages remains a key to determining how these RNAs evolved.

Likewise, determining how widely xrRNAs are distributed
across viruses would offer a valuable reference for better seizing
the evolutionary relationships between viruses. If the proposition
that viruses have a common ancestor is correct [13], xrRNAs may
represent ‘molecular clocks’ that would help us understand virus
evolution and pathogenicity. xrRNAs may also have emerged inde-
pendently in different lineages, due to the high mutation rates and
effective population size of viral particles. Again, a full accounting
of xrRNAs and their structures can inform this discussion.
Whether, for example, xrRNAs from the Flavivirus supergroup
and from Tombusviridae / Luteoviridae are related would be worth
investigating. Similarly, searching the recently reported class of
Jingmenviruses for xrRNAs ought to be informative, as they are
more closely related to Flaviviruses than Hepaci-, Pegi- and Pes-
tiviruses [51,52]. Unfortunately, currently available database
entries for these viruses lack the 30UTR sequences. Continuing to
expand the catalogue of xrRNAs remains a necessity to increase
our chances of finding how widespread these folds are.

Tracking evolutionary relationships from comparing xrRNAs
could directly inform studies of structured RNA elements in human
pathogens outside flaviviruses. Extensively studying xrRNAs from
plant viruses for example from Benyviridae, Virgaviridae and
Poleroviruses makes sense, as these viruses are closely related to
Hepeviridae, Togaviridae and Coronaviridae (based on RNA-
dependent RNA polymerase sequences, Fig. 1A), which comprise
human pathogens like hepatitis E viruses, chikungunya viruses,
and coronaviruses. The chikungunya virus and coronaviruses
possess structured 3WJ RNA elements with currently unknown
functions [53–55], and the hepatitis E virus arose from recombina-
tions of Benyviridae viruses [56]. Such putative elements could be
systematically tested for exoribonuclease resistance, for example
by transposing to viral sequences a genome-wide assay for Xrn1
resistance that was recently reported for a human genomic library
[57].
7. xrRNAs within eukaryotic genomes?

Up to now, xrRNAs have only been characterized in viruses.
However, expecting xrRNAs in eukaryotic cells makes sense,
because their ability to block exoribonucleases could be a desired
feature for some cellular RNAs. In addition, eukaryotic genomes
are known to embed viral sequences [58,59], which would then
be passed across species through horizontal gene transfer [60].
Such sequences of viral origin could comprise xrRNAs. In fact, fla-
viviral sequences exist in host mosquito genomes [61–64]. For
example, 68% of a reported unplaced 18 kb genomic fragment from
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Aedes albopictus (Foshan isolate; NCBI #KQ571998.1) are 100%
identical to the complete genomic sequence of Dengue virus 1
(NCBI #AB178040.1) [64] (our own analysis using Blast [65]). Puta-
tive xrRNAs are found at positions 17807–17873 and 17880–
17942 on the fragment. Whether these sequences are expressed
and whether they are xrRNAs that can block exoribonucleases
in vivo or in vitro, as well as their biological role, if any, are aspects
that remain to be explored.

Learning more about viral xrRNA folds, their variety, and their
evolutionary relationships better equips us to search for similar
folds in eukaryotic genomes. Searching for xrRNAs both computa-
tionally and experimentally may lead to the discovery of folds with
a quite different mechanism to block Xrn1 than their viral counter-
parts. Such structures could have arisen within eukaryotes without
transfer from viruses. Alternatively, ring-like folds may be found
within regulatory RNAs like long non-coding RNAs, similarly to
folds which promote catalytic activities and which are also found
in a variety of genetic contexts [57,66].

8. Summary and outlook

xrRNAs are examples of viral elements that use complex three-
dimensional structures to usurp cellular mechanisms. Emerging
detailed three-dimensional structural information gives deep
insights into the molecular mechanism of these elements, and also
allows for new interpretations of biochemical, virological and phy-
logenetic information. We are now in a position to better explore
how widespread and diverse xrRNAs are, and how they are evolv-
ing. Doing so has the potential to illuminate the biology of diverse
but evolutionarily related viruses, expand our overall knowledge of
RNA structure in the viral world, and motivate futures studies into
the roles of xrRNAs in virus-induced disease. Because xrRNAs are
found in all major superfamilies of RNA viruses, they may repre-
sent an ancient feature that existed in the common ancestor to
these superfamilies [67,68]. Active xrRNAs could also be found in
cells, where they may have other functions in addition to blocking
exoribonucleases.
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