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ABSTRACT

The catalytic domain of Dnmt3a cooperatively
multimerizes on DNA forming nucleoprotein fila-
ments. Based on modeling, we identified the inter-
face of Dnmt3a complexes binding next to each
other on the DNA and disrupted it by charge
reversal of critical residues. This prevented co-
operative DNA binding and multimerization of
Dnmt3a on the DNA, as shown by the loss of co-
operative complex formation in electrophoretic
mobility shift assay, the loss of cooperativity in
DNA binding in solution, the loss of a characteristic
8- to 10-bp periodicity in DNA methylation and direct
imaging of protein–DNA complexes by scanning
force microscopy. Non-cooperative Dnmt3a-C
variants bound DNA well and retained methylation
activity, indicating that cooperative DNA binding
and multimerization of Dnmt3a on the DNA are not
required for activity. However, one non-cooperative
variant showed reduced heterochromatic localiza-
tion in mammalian cells. We propose two roles of
Dnmt3a cooperative DNA binding in the cell:
(i) either nucleofilament formation could be
required for periodic DNA methylation or (ii) favor-
able interactions between Dnmt3a complexes may
be needed for the tight packing of Dnmt3a at het-
erochromatic regions. The complex interface
optimized for tight packing would then promote
the cooperative binding of Dnmt3a to naked DNA
in vitro.

INTRODUCTION

One of the important epigenetic modifications of unicellu-
lar and multicellular organisms is DNA methylation. In
mammals and other vertebrates, DNA methylation occurs

at the C5 position of cytosine bases, mostly at the cytosine
residues followed by a guanine (CpG dinucleotides) (1–3).
In mammals, DNA methylation has many functions
including the control of cellular differentiation and devel-
opment, the maintenance of chromosomal integrity,
parental imprinting, the regulation of gene expression
and X-chromosome inactivation. Hypermethylation of
tumor-suppressor genes and genome-wide hypo-
methylation contribute to genomic instability and the de-
velopment of cancer (4–6). DNA methylation is important
for normal cellular differentiation and viability of
mammals (3,7), as indicated by the finding that the
deletion of any active DNA methyltransferase enzyme in
mice is lethal (8,9). Abnormal methylation patterns of
genomes are associated with several human diseases,
such as Rett syndrome, ICF and Fragile X syndrome.
Additionally, DNA methylation plays an important role
in brain function (10,11) and changing of DNA methyla-
tion patterns is needed for cellular reprogramming (12).
The mammalian DNA methylation machinery consists

of the DNA methyltransferase 1 (Dnmt1), which has spe-
cificity for hemimethylated DNA and the members of the
DNA methyltransferases 3 family, Dnmt3a and Dnmt3b.
The Dnmt3 enzymes set up the initial methylation pattern
in the genome during embryonic development; however,
they also have a role in the preservation of methylation
levels at heterochromatin (2,13). The Dnmt3 family also
includes one catalytically inactive regulatory factor called
DNA methyltransferase 3 like protein (Dnmt3L), which
stimulates the activity of de novo DNA methyltransferases
and assists them at the setting of the initial methylation
imprints (14–16). The distinct feature of all Dnmts is that
they have a common structure of their C-terminal catalytic
domain, which contains 10 amino acids motifs that are
conserved among prokaryotic and eukaryotic C5 DNA
methyltransferases. Motifs I and X have a role in
cofactor binding, motifs IV and VI are involved in cataly-
sis. The conserved region between motifs VIII and IX rep-
resents the so called Target Recognition Domain (TDR),
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which is involved in DNA recognition. The C-terminal
domain adopts a fold characteristic for S-adenosyl-L-
methionine (AdoMet) dependent methyltransferases (17).
Dnmt3a and Dnmt3b have a similar domain arrangement;
both contain a variable N-terminal region followed by a
PWWP domain, a Cys-rich Zinc-binding ADD domain
and the C-terminal catalytic domain (18). The PWWP
domain of Dnmt3a reads the H3K36 trimethylation
mark (19) and it targets the enzyme to pericentromeric
heterochromatin (19–21). The ADD domain of Dnmt3a
binds H3 tails unmethylated at K4 (22,23) and stimulates
the activity of Dnmt3a after peptide binding (23,24).
The isolated catalytic domain of Dnmt3a (Dnmt3a-C) is

catalytically active (25) and it interacts with the
C-terminal domain of Dnmt3L (17), forming a
butterfly-shaped elongated tetrameric complex (26). This
complex contains two monomers of Dnmt3a-C and two
monomers of Dnmt3L-C forming a linear 3L–3a–3a–3L
heterotetramer. It has two 3a–3L interfaces and one 3a–3a
interface. The 3a–3L interaction is mediated by hydropho-
bic interactions represented by two pairs of phenylalanines
F728 and F768 of mouse Dnmt3a and F297 and F337 of
mouse Dnmt3L, whereas the 3a–3a interaction is mediated
by two charged amino acids R881 and D872 (26). The
active sites of the two Dnmt3a are located in the major
groove of the DNA in a distance of �40 Å, such that they
could methylate two CG sites separated by �8–10 bp in
one binding event (26,27). In the absence of Dnmt3L,
Dnmt3a-C also self-interacts via the FF interface
forming reversible oligomers, which bind to more than
one DNA molecule oriented in parallel (28). The
multimerization of Dnmt3a via the FF and RD interfaces
and binding to parallel DNA molecules contribute to the
heterochromatic localization of the enzyme. Since
Dnmt3L does not possess an RD interface, its binding
to Dnmt3a disrupts Dnmt3a oligmerization and leads
to the release of Dnmt3a from heterochromatic re-
gions, which could help methylate euchromatic targets
like the differential methylated regions in imprinting
centers (28).
We have shown previously that the heterotetrameric

Dnmt3a/3L complex, as well as oligomeric Dnmt3a-C
complexes, bind non-specifically to DNA and cooperative-
ly multimerize on DNA forming large nucleoprotein fila-
ments (26–28). Cooperative multimerization of Dnmt3a/
3L and Dnmt3a complexes on DNA was shown by
DNA-binding analyses and scanning force microscopy.
DNA methylation studies revealed fluctuations of methy-
lation activities along the DNA molecule, which also
indicated that there must be a regular arrangement of
Dnmt3a complexes on the DNA (26–28). Cooperative
DNA binding implies an interaction of Dnmt3a
complexes which bind next to each other on the DNA.
In this work, based on modeling we have identified one
loop that contributes to the interface of such neighboring
complexes. By mutating critical residues in the interface
and introducing opposite charges, we disrupted the inter-
action and prevent multimerization of Dnmt3a complexes
on DNA, which confirms the predication from modeling.
Non cooperative Dnmt3a variants did not lose DNA
binding and retained methylation activity, indicating

that cooperative DNA binding and multimerization of
Dnmt3a on the DNA is not required for enzyme
activity. Loss of the cooperative multimerization of
Dnmt3a on DNA reduced the heterochromatic localiza-
tion of the enzyme in NIH3T3 cells, suggesting that it has
a role in binding of Dnmt3a to heterochromatic regions.

EXPERIMENTAL PROCEDURES

Site-directed mutagenesis, protein expression and
purification

The sequence encoding the C-terminal domain (residues
608–908) of mouse Dnmt3a (Dnmt3a-C) was cloned into
pET-28a (Novagen) with an N-terminal His6-tag (17).
Based on modeling, we selected 10 hydrophilic and
charged amino acids for the interface study and using
the megaprimer site-directed mutagenesis method we
mutated these residues to opposite charges to break the
interaction (29). Mutagenesis was confirmed by restriction
marker analysis and DNA sequencing (Supplementary
Figure S1). Protein expression was carried out as
described (17). The proteins were purified at high
micromolar concentrations using Ni–NTA agarose. Each
protein was purified at least twice and the purity of the
preparations was estimated to be >95% from Coomassie
stained SDS gels (Supplementary Figure S2). The concen-
trations of the proteins were determined by UV spectro-
photometry and confirmed by densitometric analysis of
Coomassie stained SDS–polyacrylamide gels. Wild-type
like folding of the most important mutants was confirmed
by circular dichroism spectroscopy (Supplementary
Figure S3).

Methyltransferase activity assay

The methyltransferase activity of Dnmt3a-C wild-type and
its interface mutants was measured using biotinylated
30-mer oligonucleotides (Bt-GAG AAG CTG GGA
CTT CCG GGA GGA GAG TGC/GCA CTC TCC
TCC CGG AAG TCC CAG CTT CTC) containing a
single CpG site as described (27). Briefly, DNA methyla-
tion was measured by the incorporation of tritiated methyl
groups from radioactively labeled AdoMet (Perkin Elmer)
into the biotinylated oligonucleotide using the avidin–
biotin methylation assay (30). The methylation reactions
were carried out in methylation buffer (20mMHEPES pH
7.2, 1mM EDTA, 50mM KCl, 25 mg/ml bovine serum
albumin) at 37�C, using 1 mM substrate DNA, 0.76mM
AdoMet and 2 mM Dnmt3a-C wild-type and mutant
enzyme. The initial slope of the enzymatic reaction was
determined by linear regression. All the kinetic reactions
were carried out at least three times. DNA methylation
was also measured using a 520-bp DNA fragment contain-
ing 40 CpG sites was amplified from phage �DNA using a
biotinylated PCR primer as described (31).

Methylation pattern analysis by bisulfite conversion

DNA methylation patterns of Dnmt3a-C wild-type and
mutants were analyzed by hairpin bisulfite analysis
(27,32) using an oligonucleotide substrate containing
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nine CG sites in an identical sequence context d(AAT
TGA CGA CGA CGA CGA CGA CGA CGA CGA
CGAC)/d(GAT CGT CGT CGT CGT CGT CGT CGT
CGT CGT CGTC). The annealed oligonucleotide
(100 nM) was incubated with 2.5 mM enzyme for 2 h in
methylation buffer supplemented with 0.32mM AdoMet
(Sigma) at 37�C. The methylation reaction was stopped by
freezing the sample in liquid nitrogen, followed by pro-
teinase K digestion (New England Biolabs). Afterwards,
the hairpin loop and the adaptors were ligated to the
methylated substrates as described (27) and DNA was
subjected to bisulfite conversion, cloned into Topo-TA
vector (Invitrogen) and individual clones were sequenced
essentially as described (33).

In addition, the DNA methylation patterns of Dnmt3a
wild-type and mutants was analyzed using a 146-mer
DNA substrate amplified from the mammary tumor
virus 30 long-terminal repeat nucleosome A-binding site
(34) which contains 10 CpG sites in various distances.
Methylation reactions and bisulfite conversion were con-
ducted as described above.

Electrophoretic mobility shift assay

The DNA-binding affinity and cooperativity of Dnmt3a-C
and its mutants was analyzed by electrophoretic mobility
shift assay (EMSA) carried out essentially as described
(27). Briefly, increasing concentrations of Dnmt3a-C
wild-type and its interface mutants were incubated with
the Cy-5-labeled 146 bp DNA described above (30 nM) in
reaction buffer (20mM HEPES pH 7.5, 1mM EDTA,
100mM KCl, 0.5mg/ml of bovine serum albumin) con-
taining 0.2mM sinefungin at room temperature for 20min
to form the protein–DNA complex. The protein–DNA
complexes were separated on an 8% non-denaturing
acrylamide gel, which was scanned with a phosphor
imager system (Fuji). Free DNA and wild-type
Dnmt3a-C protein were included on the gels as controls.

Fluorescence depolarization

To study equilibrium binding of Dnmt3a to Cy5-labeled
oligonucleotide substrates, the change of fluorescence an-
isotropy caused by protein binding to the DNA was
determined using a Cary Eclipse fluorescence spectropho-
tometer (Varian) equipped with excitation and emission
polarizers. Three substrates were used, two 29-mer oligo-
nucleotides (2CG-Cy5 and non-CG-Cy5) and one 60-bp
PCR product containing two CpG sites that was amplified
from the 146-mer substrate described above (34). All
binding substrates were fluorescently (Cy5) labeled at
one end.

2CG-Cy5: ACT TGC AAC GGT CCT AAC CGT
CAC CTC TT

Non-CG-Cy5: ACT TGC AAC AGT CCT AAC ATT
CAC CTC TT

The anisotropy was measured with the excitation wave-
length at 633 nm (band-width 10 nm) and the emission
wavelength at 665 nm (band-width 10 nm) for 5 s. The re-
actions were carried out in binding buffer containing
20mM HEPES pH 7.5, 100mM KCl, 1mM EDTA,

2 nM of Cy5-labeled DNA and increasing concentration
of protein after incubation at room temperature for
5min. Each protein concentration was measured in tripli-
cate and the average values were taken for the analysis.
Data were least squares fitted using a 1:1 binding model
for the 29-mer, where no cooperativity could be detected.
For the 60-mer, a cooperative binding model was used de-
termine the dissociation constant (KD) and Hill coefficient
(n) of DNA binding.

Scanning force microscopy

Scanning force microscopy (SFM) experiments were per-
formed with Dnmt3a-C wild-type and the R832E and
K837E mutants using a 509-bp DNA fragment, which
can be visualized easily in SFM. The DNA was derived
from the CG island upstream of the human SUHW1 gene
and contains 58 CG sites roughly equally distributed over
the entire DNA length. The sample preparation was
carried out essentially as described (27). Briefly, the
DNA–protein filaments were formed in a reaction
volume of 30 ml by incubating 12 nM DNA with 200 nM
Dnmt3a-C wild-type or mutants in 50mM HEPES
(pH 7.5), 250mM NaCl, 1mM EDTA and 100 mM of
sinefungin (Sigma). After addition of DNA to the
reaction mixture containing the protein, samples were
incubated for 20min at room temperature to allow for
DNA binding. Then, the complex solution (1 ml) was
mixed with 9 ml of 5mM NiCl2 solution and deposited
on freshly cleaved mica (Plano, GmbH), allowed to
adhere for 2min and then washed with sterile water. The
sample was then dried using compressed air. Protein–
DNA filaments were observed by tapping mode in air
using a Multimode SFM with a Nanoscope IIIa controller
(Veeco Instruments GmbH, Germany) using RTESPW
silicon cantilevers (Veeco) with a nominal spring
constant of 50 N/m and a resonance frequency of
150 kHz. All images were obtained with a scanning
speed of 1Hz and at a resolution of 512� 512 pixels. To
remove background slope, raw images were flattened
using the Nanoscope software. DNA–protein complexes
were considered present if the height of the filament
exceeded 150% of the height observed for free DNA mol-
ecules and if filaments had an apparent width of at least
20 nm. Filaments were evaluated using the section tool of
the Nanoscope V6r12 software and ImageJ software.

Cell culture and laser scanning microscopy

The cellular and sub-nuclear localization of the YFP-fused
Dnmt3a and its variants in NIH 3T3 cells was investigated
essentially as described (19,28). Briefly, cells were grown in
DMEM with 10% (v/v) fetal calf serum and 2mM L-glu-
tamine at 37�C in 5% (v/v) CO2. Cells (1–2� 105) were
transfected in six-well plates using FuGENE 6 (Roche,
Basel, Switzerland; 1 mg total plasmid DNA per well).
Transfected NIH3T3 cells were fixed in 4% (w/v)
paraformaldehyde. Confocal images were taken using a
Carl ZeissLSM510 (Jena, Germany; software version
3.0). The sub-nuclear localization pattern of Dnmt3a
was inspected in detail for 100 cells for the wild-type, 25
cells for the R832E and K837E mutants (which did not
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differ from wild-type) and 50 cells for the R832E/K837E
double mutant and the observed patterns were divided
into three categories: spotty, spotty plus diffused and
diffused.

RESULTS

We have already shown that Dnmt3a cooperatively
multimerizes on DNA. To identify the positions of the
individual active sites on the DNA, we employed an
‘activity footprint’ approach using a substrate which
contains nine CG sites next to each other. By applying
the hairpin bisulfite technology, the methylation of both
strands of individual molecules could be directly studied.
After methylation of this substrate with wild-type
Dnmt3a-C (Figure 1A) four peaks of preferential methy-
lation were observed, two of them in the lower strand (first
peak at sites 7 and 8 and second peak at site 5) and two in
the upper strand (first peak at site 5 and second peak at
sites 2 and 3). These peaks are all separated by 8- to 10-bp
distances both in the same strand and across the strands.
This result is in perfect agreement with results of a
previous experiment with the Dnmt3a-C/3L-C complex
(27). According to the model of the Dnmt3a/3L
heterotetramer in complex with DNA (26,27), the methy-
lation of two sites in a distance of 8–10 bp in opposite
DNA strands could be attributed to the activity of the
active sites from the two central Dnmt3a subunits of the
Dnmt3a or Dnmt3a/3L complex, which interact via the
RD interface. In contrast, the preferential methylation
of sites in distances of 8–10 bp located in the same DNA
strand must be due to the presence of two Dnmt3a
complexes binding next to each other on the DNA.
The observation of four peaks of methylation suggests

that two Dnmt3a-C complexes were bound to the sub-
strate, each of them containing two active centers con-
nected via an RD interface. The right complex
methylates the lower strand sites 7 and 8 with one of its
active sites and the upper strand site 5 with the other. The
left complex approaches the other one and it methylates
the lower strand site 5 with one of its active sites and the
upper strand sites 2 and 3 with the other (Supplementary
Figure S6). The observation that CpG site 5 was prefer-
entially methylated in both DNA strands indicates that
the Dnmt3a-C subunits in adjacent Dnmt3a-C complexes
can approach each other and interact with both DNA
strands of this CpG site.
Several observations support the significance of the

methylation peaks at CpG site 5 in both strands:
(i) P-values are highly significant (except for the compari-
son of site 5 and 6 in the lower strand where the P-value is
0.078) (Supplementary Figure S4), (ii) the geometry of the
peaks is palindromic in the upper and lower strand with
methylation peaks at sites 2, 3 and 5 in the upper strand
corresponding to methylation peaks at sites 8, 7 and 5 in
the lower strand, (iii) methylation preferences in opposite
strands occur in a distance of 8–10 bp as expected for the
two active sites of one Dnmt3a complex (sites 2 and 3 in
the upper strand combined with site 5 in the lower strand,
site 5 in the upper strand combined with sites 7 and 8 in

the lower strand), (iv) a very similar pattern has been
observed before in a completely independent experiment
(27). The preferred methylation of both DNA strands at
site 5 suggests that two Dnmt3a-C subunits from adjacent
complexes can simultaneously approach the upper and the

Figure 1. Methylation pattern studied by hairpin bisulfite experiments.
Double-stranded hairpin oligonucleotide substrates containing nine
equally spaced CG sites were methylated by Dnmt3a-C wild-type or
R832E and K837E mutants. 185, 170 and 190 clones were analyzed for
Dnmt3a-C wild-type (A), R832E (B) and K837E (C), respectively. The
lines in (A) connect peaks of methylation separated by �8 bp in the
opposite DNA strand.
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lower strand of one CpG site (site 5 in this case). We took
this observation as the starting point for modeling of the
multimerization of Dnmt3a-C complexes on DNA.

Modeling of the multimerization of Dnmt3a-C
complexes on DNA

To model a complex in which two Dnmt3a-C molecules
would interact simultaneously with the upper and lower
strand of one CpG site, we have used as a template the
structure of the bacterial M.HhaI methyltransferase
bound to DNA (35), which was the first methyltransferase
for which base flipping could be shown. The complex was
used twice and the two DNA strands with the flipped
cytosine were annealed with each other to obtain a CpG
site with both target cytosines flipped out. Then,
Dnmt3a-C molecules were superimposed with the two
M.HhaI molecules using the conserved methyltransferase
motifs. In the obtained structural model it was also
possible to replace each Dnmt3a-C by a Dnmt3a-C/
3L-C heterotetramer without larger steric overlaps to
obtain a model of two Dnmt3a-C or Dnmt3a-C/3L-C
complexes bound to DNA. In this model, two loops
(residues 820–855) of the two Dnmt3a-C complexes
approach each other symmetrically (Figure 2). This loop
is enriched with charged amino acids and may form a

hydrophilic interface, which could explain the
co-operative multimerization of Dnmt3a-C and
Dnmt3a-C/3L-C complexes on DNA. A large part of
this loop (residues 827–844) is not ordered in the structure,
such that the detailed interactions could not be deduced.
The modeling also suggested that the active sites of the
two Dnmt3a-C subunits from adjacent complexes that are
interacting with the same DNA strand are located �40 -Å
apart from each other, indicating that they could methy-
late two CG sites separated by 10 bp in one binding event.
However, given that this modeling did not take into
account any conformational changes of the DNA or the
Dnmt3a-C complexes, its results need to be interpreted
with caution. It was the aim of the following study to
investigate if the putative interface suggested by
modeling is involved in multimerization of Dnmt3a-C on
DNA, if the multimerization can be influenced by muta-
tions and if non-multimerizing Dnmt3a-C variants would
still be able to bind and methylate DNA.

DNA binding of Dnmt3a-C and its interface variants
studied by EMSAs

To study the role of the selected residues in the coopera-
tive multimerization of Dnmt3a-C, we prepared the
putative interface mutants K822E, R827E, R832E,

Figure 2. Modeling of two Dnmt3a-C complexes bound to DNA. (A) Schematic model of two Dnmt3a-C/3L-C heterotetramers binding next to each
other on the DNA, such that a central CpG site could be methylated in both DNA strands. The Dnmt3a-C subunits of the left tetramer are colored
orange and red, those of the right tetramer dark green and green. Dnmt3L subunits are colored light red and light green, respectively. (B) Model of
the central Dnmt3a-C dimers (colored orange and red for one complex and dark green and light green for the other) bound to DNA (blue). The
flipped target cytosines are shown in pink, AdoMet is colored yellow. The red and green ovals indicate the proposed interactions of both loops. Note
that the amino acids 827–844 are not ordered in the structure and hence not visible in the model. (C) Detail of the model showing the interacting
loops from the adjacent complexes. The disordered region (amino acids 827–844) is colored yellow. (D) Amino acid sequence of the putative
interaction loop.
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K837E, K840E, D841K, H843E, E850H, K851E and
E852K. In each of them, a charged residue was exchanged
by a residue carrying an opposite charge. Such exchange
should result in a repulsive interaction, if the residue was
involved in a charge/charge interaction at the interface
and, therefore, disrupt the cooperativity of DNA
binding by preventing the binding of two Dnmt3a
complexes next to each other. The Dnmt3a-C wild-type
and its mutants showed comparable expression in
Escherichia coli cells. The proteins were purified to
similar quality as the wild-type Dnmt3a-C and their
folding confirmed by circular dichroism spectroscopy for
the R832E and K837E mutants (Supplementary Figure S2
and S3). EMSA were carried out to study the DNA
binding of the wild-type Dnmt3a-C and its interface
mutants (Figure 3). It had been shown previously that
the wild-type Dnmt3a-C multimerizes on the DNA at
increasing protein concentration, as indicated by the for-
mation of a protein–DNA complex with very low electro-
phoretic mobility corresponding to several Dnmt3a-C
complexes being bound to the DNA (region 3 in
Figure 3) (27). The high degree of cooperativity of the
multimerization reaction is indicated by the formation of
the multimeric complex without generation of detectable
amounts of intermediates. Using identical reaction condi-
tions, the binding of the Dnmt3a-C interface mutants on
DNA was studied. The K822E, R832E and K837E
mutants shifted the DNA into complexes with an electro-
phoretic mobility that corresponds to one Dnmt3a-C
complex being bound to the DNA (region 2 in
Figure 3), which indicates that these variants have lost
the ability to multimerize on DNA. The slight differences
in the mobilities of these complexes may be explained by
the exchanges of charged residues which can affect the

behavior of the mutants in native gel systems. DNA
binding of these variants is efficient as illustrated by the
disappearance of unbound DNA, which indicates that the
loss of multimerization is not a trivial effect caused by a
reduction of DNA binding. The K840E and K851E
mutants bound strongly to DNA and formed large
multimeric complexes, but intermediates were also detect-
able, indicating lower cooperativity of multimerization
than observed with the wild-type Dnmt3a-C. E852K
showed better DNA binding than the wild-type enzyme
and cooperativity could not be evaluated due to the
strong binding. The D841K and H843E mutants bound
very weakly to the DNA. In summary, we conclude that
mutation of most of the candidate residues led to a loss or
reduction of the cooperativity of multimerization of
Dnmt3a-C complexes on DNA. The most interesting
non-multimerizing variants were R832E and K837E,
which both completely lost the ability to form cooperative
complexes, but showed good DNA binding. To obtain
even stronger phenotypic effects, we have also generated
and purified the R832E/K837E double mutant and con-
firmed its folding by circular dichroism spectroscopy
(Supplementary Figure S2 and S3). As expected, this
variant showed strong DNA binding and loss of
multimerization (Figure 3).

DNA binding of Dnmt3a-C and its interface variants
studied in solution

To study DNA binding in a homophasic assay, we used
Cy5-labeled DNA substrates and determined the increase
in fluorescence anisotropy of the Cy5 probe, which
accompanied protein binding to the DNA. We first used
two 29-mer substrates which either contain two or no

Figure 3. DNA binding and cooperativity studied by EMSA. Dnmt3a-C wild-type protein forms a larger complex with very low electrophoretic
mobility (region 3). Free DNA runs in region 1. The K822E, R832E, K837E and R832E/K837E mutants bind to DNA, but form smaller complexes
with an electrophoretic mobility that corresponds to one Dnmt3a-C complex being bound to the DNA (region 2). The R827E, K840E, E850H and
K851E mutants formed large multimeric complexes, but also some intermediates. The D841K and H843E mutants bound very weakly to the DNA.
The E852K mutant showed even better DNA binding than the wild-type enzyme and no change in cooperativity.
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CpG sites. Fluorescence anisotropy was measured in
solution containing 2 nM of labeled DNA with increasing
protein concentration. Fitting to an equilibrium binding
model yielded a Kd of 190±10nM for the 2-CG substrate
and a Kd of 130±12nM for the non-CG substrate. This
result indicated that Dnmt3a-C bound to the DNA

without specificity for CpG sites. The slightly better
binding to the non-CG substrate might be due to the
flanking sequence, which has a strong influence on the
DNA interaction and DNA methylation of Dnmt3a that
is well documented [see (31) and references therein]. It is
also possible that the energy needed for flipping of the
target cytosine may reduce the binding to CpG site sub-
strates [see (36) and references therein for examples of
prokaryotic DNA methyltransferase studied in this
respect].
To investigate cooperative DNA binding of Dnmt3a-C,

we used a longer Cy5 labeled 60-mer DNA substrate for
subsequent binding studies. The cooperativity of the
wild-type Dnmt3a-C and mutant DNA binding was
determined by fitting the anisotropy values to the Hill
equation. The Dnmt3a-C bound the 60-mer DNA
strongly (the calculated KD value was 86 nM) and the
calculated cooperativity value for the wild-type protein
was n=2.2, indicating that at least three Dnmt3a-C
complexes bound to the DNA in a cooperative manner
(Figure 4 and Table 1). Although DNA substrates and
assay methods were different, there was a generally nice
correspondence between the results of the EMSA and
fluorescence polarization DNA-binding studies. In
contrast to the wild-type enzyme, the variants that
showed loss or reduction of cooperativity in DNA
binding in the EMSA, like K822E, R832E, K837E,
K851E, or the R832E/K837E double mutant had

Figure 4. DNA binding and cooperativity studied by fluorescence anisotropy. DNA binding and cooperativity was studies using a 60-mer
Cy-5-labeled DNA for the Dnmt3a-C wild-type and R832E, K837E and R832E/K837E proteins at increasing concentration. Dnmt3a-C binds to
DNA very strongly with positive cooperativity (n=2.2), suggesting that at least three molecules would bind on the DNA. The R832E, K837E and
R832E/K837E mutant proteins showed no cooperativity (n=1.0), but still bound the DNA.

Table 1. Summary for the catalytic activities, DNA-binding constants

and DNA-binding cooperativity of wild-type Dnmt3a-C and the

interface mutants

Protein Catalytic
activity
(% of
wild-type)

DNA-binding
constant
(Kd in nM)

Cooperativity
of DNA
binding (n)

Dnmt3a-C WT 100 86 2.2
Dnmt3a-C K822E 5 310 1.0
Dnmt3a-C R827E 12 61 2.2
Dnmt3a-C R832E 48 190 1.0
Dnmt3a-C K837E 23 72 1.0
Dnmt3a-C K840E 28 77 1.3
Dnmt3a-C D841K 67 400 1.0
Dnmt3a-C H843E 38 130 1.0
Dnmt3a-C E850H 110 140 1.1
Dnmt3a-C K851E 42 130 1.0
Dnmt3a-C E852K 110 64 1.3
Dnmt3a-C R832E/K837E 5 151 1.0

All values were averages of two or more experiments. Highest standard
deviations were ±10% for the catalytic activity, ±25% for the Kd and
±15% for the cooperativity values.
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cooperativity values close to n=1 (Figure 4 and Table 1).
As seen in EMSA, R827E bound DNA with similar
affinity and cooperativity as the wild-type and E852K
bound DNA better. Also weaker DNA binding by
D841K, H843E and E850H was observed. We conclude
that R832E, K837E, K851E and the R832E/K837E
double mutant are most interesting. All of them show
complete loss of cooperativity in DNA binding and their
binding affinity is not reduced >50%. K837E is particular
striking, because its binding constant is identical to the
wild-type Dnmt3a-C (within the limits of error) but
cooperativity is completely lost.

Catalytic activity of Dnmt3a-C and its interface variants

The catalytic activity of the variants was determined using
an oligonucleotide substrate containing one CpG target
site. The K822E, R827E K837E, K840E and H843E
mutants showed a strong reduction of methyltransferase
activity, whereas R832E, D841K and K851E showed only
a weak reduction of activity. The activity of the E850H
and E852K mutants was not affected (Figure 5 and
Table 1). We tested the activity of the R832E, K837E
and R832E/K837E double mutant also using a 520-bp
substrate which contains 40 CpG sites and did not
observe major differences in the relative activities when
compared with wild-type Dnmt3a-C (Supplementary
Figure S5). In a previous study, we already investigated
the R827A and R832A mutants, which showed 45% and
75% of wild-type activity, respectively (37). The stronger
loss of activity observed here can be understood, because
the charge reversal done here was expected to cause a
stronger effect than the exchange by alanine in the
previous study. In summary, the R832E and K851E
mutants are most interesting, because both of them
show �50% of activity despite a complete loss of
cooperativity in DNA binding, indicating that
multimerization is not required for catalytic activity.

Methylation pattern of Dnmt3a-C and its interface
variants

We also performed hairpin bisulfite ‘activity footprint’ ex-
periments with the active non-polymerizing Dnmt3a-C

mutants as described above for the wild-type enzyme
(Figure 1). The activity footprint of the active
non-polymerizing R832E and K837E mutants showed
preservation of the preferential methylation of sites 2
and 3 in the upper strand as well as 7 and 8 in the lower
strand (Figure 1B and C). However, both mutants showed
clear changes in the methylation pattern including a loss of
the methylation at CpG site 5 in the lower strand and
broadening of the upper strand methylation peak. The
methylation of site 5 in the upper strand was still
detected (although somehow less prominent). When
taken together, these observations suggest that the right
Dnmt3a complex is bound to the substrate in the same
manner as with the wild-type Dnmt3a-C (Supplementary
Figure S6). Upper strand methylation at sites 2, 3 and 4
indicates that the second (left) Dnmt3a-C complex is
present as well. The broadening of the methylation peak
in the upper strand observed with the mutants suggests
that the left complex is more mobile and can reach more
sites. This could be due to the loss of the interaction with
the right tetramer cased by the mutations (Supplementary
Figure S6). Loss of methylation of the lower strand of site
5 suggests that the repulsion caused by the close approxi-
mation of two mutations from adjacent complexes led to a
conformational change in the lower subunit of the left
complex which caused the loss of methylation of the cor-
responding target site (Supplementary Figure S6). This
result indicates that methylation is not possible in both
DNA strands at CpG sites in the interface of two
Dnmt3a complexes, which is exactly what was expected
from our modeling. In addition, the R832E mutant
showed a reduced methylation of the lower strand when
compared to the upper one. We speculate that the reason
for this change is that the mutations affect the flanking
sequence preferences of Dnmt3a (upper strand flanking
context is ACGA, lower strand it is TCGT). Altered
flanking preferences of the mutants were also observed
on the larger substrate (see the next paragraph).

The DNA methylation patterns of wild-type Dnmt3a-C
and the R832E and K837E mutants were also investigated
with the 146-bp substrate that was also used for the gel
shift experiments. Methylation was analyzed by bisulfite
analysis of individual clones to derive the overall methy-
lation profiles, which revealed strong differences between
the wild-type and mutant enzymes (Figure 6). However,
these overall methylation profiles display the combined
effects of the mutations on flanking sequence preferences
and preferences for co-methylation in certain distances.
Since we were mainly interested in the latter, we focused
on those clones showing more than one methylation event
and collected the distances of all comethylation events for
wild-type and mutants. As shown in the insert of Figure 6,
with the wild-type enzyme we observed that 47% of all
comethylation events occurred in a distance of 9 or 10 bp
(the substrate does not contain CpG sites in a distance of
8 bp). This indicates a strong preference for comethylation
in such distances, similarly as shown before with two other
DNA substrates (26). This preference was completely lost
with the mutants, where only 2% and 8%, respectively, of
all comethylation events occurred in this distance range.
Since only comethylation events were used for this

Figure 5. DNA methyltransferase activity of the interface loop
mutants. The methyltransferase activity of Dnmt3a-C and its interface
mutants was determined using an oligonucleotide substrate containing
a single CpG site. All the kinetics were done at least in duplicate. The
error bar indicates the standard error of initial slopes.

576 Nucleic Acids Research, 2012, Vol. 40, No. 2

http://nar.oxfordjournals.org/cgi/content/full/gkr753/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr753/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr753/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr753/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr753/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr753/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr753/DC1


analysis, this difference cannot be attributed to the lower
activity of the mutants. This result confirms our conclu-
sion from the hairpin bisulfite experiment that the prefer-
ence for co-methylation in a distance of 8–10 bp in the
same DNA strand has been lost with the mutants.

Imaging of Dnmt3a-C protein–DNA filaments

We used scanning force microscopy to study the structure
of Dnmt3a-C wild-type and R832E and K837E mutant
DNA complexes. It had been shown previously (27,28)
and was confirmed here that Dnmt3a-C/3L-C
heterotetramer and Dnmt3a-C complexes form continu-
ous filamentous structures on DNA, while no binding of
individual complexes to the DNA was observed. This
result confirms the cooperative DNA binding of
Dnmt3a-C. Using the section tool of the SFM software
and the ImageJ software, we analyzed the height of the
filaments and compared with the height of free DNA mol-
ecules for about 100 molecules of free DNA and 60
protein–DNA complexes each for wild-type and the two
mutants. With wild-type Dnmt3a-C, we identified many
stretches, where the protein continuously occupied the
DNA (Figure 7 and Supplementary Figure S7). In
contrast, the non-cooperative mutants only showed
binding of individual protein complexes to the DNA, as
indicated by the sharp and narrow peaks in the height
profile (Figure 7, Supplementary Figure S7A and B).
Such peaks were never observed with the wild-type
enzyme. In contrast, long filamentous structures
occupied with protein as seen for the wild-type enzyme
were never detected with the R832E and K837E
mutants, indicating that the DNA-binding properties of
the mutants were radically changed. In conclusion, disrup-
tion of the Dnmt3a-C interface of adjacent Dnmt3a-C
complexes by introducing opposite charges at key
residues prevented the binding of Dnmt3a-C complexes
next to each other, leading to the binding of individual
complexes on the DNA. This result is in agreement with
the EMSA data reported above, which indicated that the

R832E and K837E mutants still bind to DNA, but they
have lost their cooperativity.

Heterochromatic localization of Dnmt3a variants in
NIH 3T3 cells

The N-terminal PWWP domain of Dnmt3a and the
multimerization of its catalytic domain are required for
the targeting of this enzyme to the heterochromatin
(19–21,28). We were interested to determine if the co-
operative DNA binding of Dnmt3a also has an influence
on its heterochromatic localization. Hence, we have
carried out localization studies with variants that lost co-
operative DNA binding. Consistent with previous studies,
wild-type Dnmt3a localized exclusively to multiple hetero-
chromatic spots in NIH3T3 cells (19–21,28). Despite their
loss of the cooperative DNA binding, the R832E and
K837E variants showed a similar localization pattern as
the wild-type protein (Figure 8A and C). However, the
R832E/K837E double mutant showed an altered
sub-nuclear localization pattern with many cells showing
a diffused nuclear localization that was never observed
with wild-type Dnmt3a (Figure 8B and C). This result
indicates that the two mutations in the R832E/K837E
double mutant protein prevent the approximation of
adjacent Dnmt3a complexes, which interferes with hetero-
chromatic localization of the enzyme. This observation
suggests that Dnmt3a binds to heterochromatin by
forming close contacts between adjacent Dnmt3a
complexes.

Figure 7. Imaging of Dnmt3a-C/DNA complexes by scanning force
microscopy. (A) Examples of free DNA, DNA covered with
wild-type Dnmt3a-C and DNA with R832E mutant. Wild-type
Dnmt3a-C showed complete occupancy of the DNA, whereas the
R832E variant showed individual binding events on the DNA. (B)
Height analysis of protein–DNA complexes. The height for the free
DNA is �0.5 nm, for wild-type Dnmt3a-C a continuous height profile
at 1.2 nm is observed, indicative of continuous coverage. In contrast,
for the Dnmt3a-C R832E individual binding events with heights of
1.2 nm are separated by free DNA. Additional examples of structures
for the R832E and K837E mutants are shown in Supplementary Figure
S7A and B.

Figure 6. Methylation pattern analysis of wild-type Dnmt3a and its
R832E and K837E mutants on the 146-mer DNA substrate which
has 10 CpG sites. The insert displays the fraction of co-methylation
events in a distance of 9 or 10 bp observed with the wild-type enzyme
and the mutants.
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DISCUSSION

Crystallographic studies revealed that the C-terminal
domain of Dnmt3L interacts with Dnmt3a-C and forms
a butterfly-shaped elongated tetrameric complex (26,27).
The active sites of the two Dnmt3a are located in the
major groove of DNA �40 -Å apart from each other
and methylate two CG sites separated by 8–10 bp in one
binding event (26,27). In the absence of Dnmt3L,
Dnmt3a-C also interacts via the FF interface forming re-
versible oligomers, which bind to more than one DNA
molecule oriented in parallel (28). In the cell, Dnmt3a is
tightly bound to heterochromatin (2,13), as demonstrated
by the observation that it can only be eluted from the
chromatin by treatment with high salt (38,39). This
stable binding requires the interaction of the PWWP
domain with H3K36me3 (19) as well as oligomerization
of Dnmt3a and binding to parallel DNA molecules (28).
The oligomerization of Dnmt3a is disrupted by Dnmt3L,
which redistributes the enzyme for methylation of euchro-
matic targets (28).
In our previous studies, we showed cooperative DNA

binding of Dnmt3a-C and Dnmt3a-C/3L-C complexes

(26,27). The cooperative multimerization of proteins on
DNA is based on two features, a relatively non-specific
DNA binding and a favorable interaction between
adjacent protein molecules. Dnmt3a-C indeed binds
non-specifically to DNA, such that the first of the
pre-conditions for cooperative DNA binding is fulfilled.
Here, we have identified the putative interface between
Dnmt3a-C complexes bound next to each other on the
DNA by modeling and disrupted the interaction by
introducing opposite charges at key residues. The
mutants retained DNA binding and residual catalytic
activity, but lost cooperativity in DNA binding, indicating
that we have successfully mapped the oligomerization
interface. The interacting loops are partially disordered
in the Dnmt3a-C/Dnmt3L-C structure (26), which might
be due to the absence of a second enzyme tetramer bound
to the DNA. The successful modeling of the interface and
its targeted disruption illustrates the good level of under-
standing we have reached for this important enzyme and
its complicated quaternary structure.

Ever since its first observation, the cooperative
multimerization of Dnmt3a-C on the DNA was

Figure 8. Localization of Dnmt3a in NIH 3T3 cells. (A) Localization of the eYFP-tagged full-length Dnmt3a wild-type and R832E and K837E
mutants in NIH 3T3 cells. The wild-type protein and single mutants show localization to heterochromatic spots (19,28). (B) Localization of the
YFP-tagged full-length Dnmt3a R832E/K837E double mutant in NIH 3T3 cells, showing three different patterns of nuclear localization: diffuse,
spotty plus diffuse and spotty. (C) Quantification of the localizations patterns observed with wild-type Dnmt3a and the R832E/K837E mutant
protein. The scale bars represent 5 mm.
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considered puzzling, because it was difficult to attribute a
biological function to this ‘in vitro’ property. Is there
enough naked DNA available in the cell nucleus to
allow for the formation of long protein nucleofilaments?
What could be the role of the cooperativity in DNA
binding? In this study, we reconfirmed the cooperative
DNA binding of Dnmt3a-C by employing an EMSA,
showing the cooperativity of DNA binding in solution,
confirming a characteristic 8- to 10-bp periodicity in
DNA methylation in the same DNA strand and direct
imaging of protein–DNA complexes by scanning force
microscopy. We prepared non-cooperative variants
which lost all these properties giving further credence to
the experimental approaches. At the same time the
non-cooperative mutants did not lose DNA binding and
retained methylation activity, which indicates that co-
operative DNA binding and multimerization of Dnmt3a
on the DNA are not required for enzyme activity—a con-
clusion that further emphasizes the question of the physio-
logical role of this entire process.

We could imagine two models for the role of coopera-
tive multimerization of Dnmt3a complexes on DNA in
cells. One possible interpretation is based on the observa-
tion that the formation of a defined structured nucleopro-
tein complex of Dnmt3a on DNA leads to a characteristic
methylation pattern with peaks in a distance of 8–10 bp on
the DNA (Figures 5A and 6) (27). Such patterns have been
observed in genome-wide DNA methylation analyses
(33,40,41) and a similar periodicity of presentation of
CpG sites has been found in imprinted Dnmt3a/3L
target sites (26), suggesting that they may be of import-
ance. We show here that Dnmt3a-C variants which lost
cooperative complex formation did not generate such
defined patterns. Hence, multimerization of Dnmt3a and
stable filament formation is needed for periodic methyla-
tion of DNA. Such binding and periodic DNA methyla-
tion could be possible in linker DNA regions or after
chromatin remodeling. However, since the 8–10 bp peri-
odicity coincides with the helical repeat length of DNA, it
is still unclear if it contains epigenetic information or just
reflects the accessibility of CpG sites when the DNA is
bound to nucleosomes.

An alternative model is based on the finding that
Dnmt3a-C is known to bind very tightly to heterochro-
matic sites. We have provided evidence that the inter-
action of the PWWP domain with H3K36me3 is
essential for this localization (19), but also the oligomer-
ization of the Dnmt3a protein together with its ability of
binding to several DNA molecules oriented in parallel is
required (28). We show here that the disruption of the
interface of Dnmt3a complexes that is needed for the
side by side binding on the DNA, also leads to a disrup-
tion of heterochromatic targeting of the enzyme. What
emerges is a picture of Dnmt3a binding to very DNA
dense regions, which have a condensed and regular struc-
ture. We propose that the tight packing of Dnmt3a at
these regions requires the close approximation of
adjacent Dnmt3a complexes bound to the same DNA
molecule. The mutations in the R832E/K837E double
mutant protein interfere with such approximation, which
could explain the weakening of the heterochromatic

localization. In this model, the tight packing of Dnmt3a
at heterochromatic DNA regions is important for the
physiology of this enzyme. Tight packing of the enzyme
directly requires some favorable interactions between
adjacent complexes, which will automatically result in a
cooperative binding of the complexes to DNA in an
in vitro assay, if the general DNA binding is non-specific.
Hence, the cooperative binding to naked DNA in vitro
could be a consequence of the optimization of the inter-
face of Dnmt3a complexes for tight packing of Dnmt3a at
heterochromatic regions in vivo and not a property directly
selected for during molecular evolution of Dnmt3a.
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